ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

VASILE I. ISTRATESCU, ANA I. ISTRATESCU

Some remarks on a class of Semi-Groups of Operators. II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **56** (1974), n.1, p. 52–54. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1974_8_56_1_52_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia. — Some remarks on a class of Semi-Groups of Operators. II. Nota di Vasile I. Istrațescu e Ana I. Istrațescu, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — In questa Nota sono dimostrati nuovi risultati sull'invertibilità dei semi-gruppi di operatori $(T_t, t \ge 0)$ su spazi di Banach.

o. In [1, 3] some results are given about the class of all semi-groups of operators $(T_t, t \ge 0)$ on a Banach space which have the property that for some t > 0, $T_t - I$ is compact or is an α -contraction or Riesz operators.

An important class of operators, generalizing the class of compact operators with important applications to Marcov processes is the class of quasi-compact operators [5]. Our purpose in the present Note is to obtain some results about semi-groups such that for some t > 0, $T_t - I$ is in a class of operators containing the class of quasi-compact operators.

I. First we recall some definitions for the reader's convenience.

Let X be a Banach space and A be a bounded set in X. We define $\alpha(A)$, the Kuratowski number of the set A, as the infimum of all $\epsilon > 0$ such that there exists a decomposition of A into a finite number of subsets of diameter less than ϵ . It is easy to see that the following assertions hold:

- 1) if A, B are bounded set in X, then $A \subseteq B$ implies $\alpha(A) < \alpha(B)$;
- 2) if A is relatively compact, then $\alpha(A) = 0$;
- 3) if $A + B = \{a + b, a \in A, b \in B\}$ then $\alpha(A + B) \le \alpha(A) + \alpha(B)$.

DEFINITION 1.1. An operator T on X which is continuous is called quasicompact if there exists an integer m and a compact operator Q such that

$$\|T^m - Q\| < 1.$$

DEFINITION 1.2. [4] A function $f: X \to X$ is called locally α -contraction if for each bounded set $A \subset X$, there exists an integer n = n(A) such that, if $\alpha(A) > 0$,

$$\alpha(f^n A) \le k\alpha(A)$$

where $k \in [0, 1)$ and is independent of A. For spectral properties of such class see [2].

It is clear that if n(A) = I for all A then our class reduces to the class of α -contractions introduced by Darbo. It is easy to see that the following assertion holds.

(*) Nella seduta del 12 gennaio 1974.

Theorem 1.3. Every quasi-compact operator on the Banach space X is locally α -contraction.

Proof. We can take $k = ||T^m - Q||$ and n(A) = m for all bounded sets in X.

This result motivates our considerations.

2. Let $\{T_t\}_{t\geq 0}$ be a semi-group of class C_0 on X and define the set C_{loc} as

$$\{t$$
 , $t > 0$, $T_t - I$ is locally α -contraction $\}$

It is clear that these semi-groups contain the semi-groups studied in the papers [1] and [3].

Also we suppose that the semi-group $\{T_t\}_{t\geq 0}$ satisfies $\|T_t\| \leq \mathrm{Me}^{wt}$ for all $t\geq 0$ with constants M and w.

Theorem 2.1. If $C_{loc} \neq \emptyset$ then T_t is invertible for all t.

Proof. Suppose that the assertion is false. Then $o \in \sigma(T_t)$ for some t > o and thus for all t > o. Since $T_t - I$ is locally α -contraction we have that the subspace $N(T_t)$ is finite dimensional. Indeed, if this is not so, let $\mathfrak{A} = \{x, x \in N(T_t), \|x\| = 1\}$ then we have, if $\alpha(A) < o$

$$\alpha((T_t - I)^{n(A)}A) = \alpha(A) < \alpha(A)$$

and the assertion is proved. We can show that $0 \in \sigma_p(T_t)$, the point spectrum of T_t . Indeed, we find a sequence of unit vectors $\{x_n\}$ such that $Tx_n \to 0$ and we wish to show that $\{x_n\}$ is relatively compact. If $m = n(\{x_n\})$ then clear

$$\alpha(\{x_n\}) = \alpha((T_t - I)^m \{x_n\}) < \alpha(\{x_n\})$$

since for all $i \in [1, n]$, $T^i x_n \to 0$ and thus $\alpha(\{T^i x_n\}) = 0$. From this clear $0 \in \sigma_p(T_i)$.

We can now follow the arguments in [1] to obtain the assertion of the theorem.

The following theorem represents a more direct extension of the result in [1] about the invertibility of T_t .

Let $\{T_t\}$ be a semi-group of class C_0 on X and define the set C_R as

$$\{\,t\,,\,t>\mathrm{o}\,,\,\mathrm{T}_t-\mathrm{I}\ \mathrm{is\ of\ Riesz\ type}\,\}.$$

Since every compact operator is of Riesz type clear this set is larger than the set C defined in [1].

We have the following results stated in [3] Theorem 2.2 but the proof was not explicitly indicated.

THEOREM 2.2. If $C_R \neq \emptyset$ then T_t is invertible for all t.

Proof. If the assertion is false, $o \in \sigma(T_t)$ for some, and then for all t > o. We wish to show that $N(T_t)$ is finite dimensional. Since $T_t - I$ is of Riesz

type then, by Ruston's characterization of Riesz operators T, we have that, if

$$\lambda_{m}(T) = \inf \|T^{m} - C\|$$

where the infimum is taken over all compact operators.

$$\lim \lambda_m^{1/m}(T) = 0$$

and from this clear T_t — I is a quasi-compact operator. Our assertion follows now from Theorem 2.1.

The proof of the theorem can be continued as in the paper [1].

Remark. Consider the measure of noncompactness $\alpha(\cdot)$ of Kuratowski and for each bounded operator T in the space $\mathfrak{L}(X)$ define

$$T \rightarrow p(T) = \inf\{k > 0, T \text{ is a } k\text{-contraction }\}\$$

and it is easy to see that $p(\cdot)$ is seminorm on $\mathfrak{L}(X)$ (p(T) = 0 if and only if T is compact). It is easy to see that Theorem 2.2 is valid if $T_t - I$ is supposed to be with the property

$$\lim p(T_t - I)^{1/m} = o.$$

REFERENCES

- [I] J. R. CUTHBERT, On Semi-Groups such that T_t I is Compact for some t > 0, « Z. Wahrscheinschkeitherorie werw. Geb. », 18, 9–16 (1971).
- [2] GH. CONSTANTIN, On some spectral properties for the locally α-contraction operators, « Boll. Un. Mat. Italiana », (4) 6, 323-330 (1972).
- [3] V. ISTRĂȚESCU, Some remarks on a class of Semi-Groups of Operators. I, « Z. Wahrscheinschkeitheorie verw. Geb. », 26, 241–243 (1973).
- [4] V. ISTRĂȚESCU and A. ISTRĂȚESCU, On the theory of fixed points for some classes of mappings. II, « Revue Roum. de Math. Pure Applique », 10, 1073-1076 (1971).
- [5] K. Yosida and S. Kakutani, Operator Theoretical Treatment of Markov processes and Mean Ergodic theorems, «Ann. of Math.», 42 (1941).