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Sistem i differenziali a leatori. —  Asymptotically Self-invariant 
Sets and Random Functional Differential Systems. Nota di G. S. L a d d e , 
V. L ak sh m ik an th am  e P an —T a i L iu , presentata dal Socio 
G. S a n so n e .

RIASSUNTO. In questa Nota gli Autori studiano il comportamento di un insieme 
asintoticamente autoinvariante rispetto ad un sistema di equazioni funzionali differenziali 
aleatorie.

i . Introduction

The concept of an asymptotically self-in variant set was introduced in [3]. 
In [4] and [5], the stability behavior of an asymptotically self-invariant 
set with respect to nonlinear systems under constant perturbations was inve­
stigated. In the present paper, we wish to do the same thing for a system  
described by stochastic functional differential equations. Our approach again 
depends on the construction of Lyapunovlike functional (section 3). The main 
results are given in section 4.

2. D efinitions and motivation for the main result

Consider the random functional differential system  

C2-1) x  (t) =  f  (t , Xt , (ù) Xia((ù) =  <p0 (to),

where /  e C [R+ x C p , R"], where

Cp =  [<P eC ” : Il ? Ilo <  P]- 

Here Çn =  C [[—  t  , o] , RM] and || 9 ||Q =  max || <p (j) ||, || • || being any norm
n . ~ t < j < 0

in R and t is a random delay defined on a complete probability space 
,P )  with values in [o , h]. We follow the standard notation for func­

tional differential equations [3]. We shall assume, throughout this paper, 
that (2.1) has a least one solution {xt (tQ , <p0) , * <  t0} , which is a measurable 
and separable stochastic process.

D e fin it io n  2.1. A  function  X e C [R+, R+] is sa id  to belong to class 2 
i f  \ { f )  is decreasing in t  and  lim X(/) =  o.

t —> 00
DEFINITION 2.2. The random, set 9 =  0 is sa id  to be asymptotically self- 

invanant (ASI) with respect to system  (2.1) i f

(2-2) II (*0 » °) Ho F q ( t 0) ,  w.p.l., t > t 0 ,

where q e 2 and xt (tQ , o) is any solution of (2.1).

(*) Nella seduta del 12 gennaio 1974.
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For an equivalent definition of ASI sets and their stability properties, 
see [3, 4, 5].

We shall assume that the random set 9 =  o is ASI with respect to the 
system (2.1)

D e fin it io n  2.3. The ASI random set 9 =  0 of (2.1) is sa id  to be\
(i) Alm ost sure equi-stable, i f  fo r  each t0 € R+

ll^ (^ o .9o ) l l < K ( ^ o ^ ) l l9 llo +  ÿ(^)> w.p.l., t ^ t Q,

where K e C [R+ X R+, R+] and q e £;
(ii) Alm ost sure equi-exponentially asymptotically stable, i f

(2-3) l l^ (^ o -9o ) l lo < K (^o>T) l l 9o l l ^ a('’w +  H ( / , / 0) ,  w.p.l., t > t 0 ,

where K e C [R+ X R+, R+] , a > o ,  H e C [R+ X R+, R+], H ( / ,* )  =  o,
H ( t , lQ) <  p(/o)> P e ' an<t  lim [sup H ( t , /„)] =  o fo r  some positive num-

t- ôo jf0>T0
her T0 >  o.

Obviously (ii) implies (i), furthermore, if q(t0) = 0  and if H (t , t0) = 0 ,  
then the Definition 2.3 reduces to almost sure equi-stability and almost sure 
equi-exponential asymptotic stability of the trivial solution of (2.1) [2]. For 
the Definition 2.3, it is not necessary to assume that f ( t , o) =  o, w.p.l.

In the following, we will discuss an example to illustrate the meaning 
of the Definition 2.3 and to give the motivation of our main result in the sub­
sequent sections. Consider the linear system with random delay

(2.4) x* (I) == A  (*) X (t) +  B (t) X (/ — t) + w ( t )

with the initial function <p0 at t  =  /0 , where A (f) , B(^) are n X n  continuous 
matrix functions and w t C [ R +, T ] .  { w ( t ) } t > t 0} is an «-dimensional

t
stochastic prqcess which is measurable and j  E \\w(t)\\d /<  oo, t  is random delay.

Analogous to the ordinary functional differential system, by following 
Bellman and Cook [i], let us introduce the random matrix function Y (s , t )  
having the initial conditions

Y ( t , f) =  I (unit matrix),

Y (s , t) = 0 ,  for t  <  s <  t  -f- t  ;

and Y ( s , t ) ,  as a function of s, satisfies the random matrix equation
,1Y

I T  (P , t )  =  -  Y ( s ., t) A (s) —  Y (s  +  r  , t) B (s  +  t), -, < t .

We further assume as in [4], that 

(2-5) Il B (f) II <; Bo , h < t < t Qf - h

Il Y ( s  , t) K <  N exp [ßr —  a.(t— s)], w.p.l., N  >  1, a >  o , ß ^  o.
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By following the proof in [1] any solution of (2.4) satisfies the random integral 
equation

io

(2.6) *(/„ , <p0) 00 =  y  (t0 , i) cp0 (o) +  j Y 0  +  T , f) B (r +  t)  90(j) dr
i o - T

t

+  j Y (s , t) w  (s) d .̂
0̂

This, together with the foregoing assumptions, yields the estimate

II *  (*o . <P0) 00 II ^  t1 +  t B o *(“+ß)T] II To Ho +
t

+  j  £-<*(*—0 II w  {s) II ds, w.p.l., t  >  t0 .
io

which further implies
t

(2.7) II x t(t0 , cp0) ||0 <  K (/0 , t )  II <P0 1|0 +  je~a^ - s>y(s)  dr , w.p.l.,
io

where K (/0 , t) =  N*?ß/o+aT [i +  tB 0 £<a+ß)T] and y (t) =  ì$eah e& || w  (t) | | .
t

Setting H ( / ,^ 0) =  | e~a^~ŝ  y (s) ds and assuming that w(t )  is such that
io

i + 1

(2.8) j y (s) di* o as t  oo.
t

which follows easily that lim [sup H ( /,/„ )]  =  o and H ( t , t0) < p  (t0), t > t 0 ,
t —> 00 /„>]

For the proof of this assertion, see [3, vol. I, pp. 113]. Thus, we 
can conclude from (2.7) the random set 9 =  o is AS I with respect to the 
linear differential system (2.4) with random delay and it is almost sure equi- 
exponentially asymptotically stable.

Let xt (t0 , 9o) > %t (̂ 0 » ^0) solutions of (2.4), then we can obtain

(2-9) II xt (̂ o ’ T0) xt (̂ o > ^0) Ho — K (^0,T) H ‘ Ho , w.p.l., t > t 0 ,

on the basis of the assumptions (2.5).
Thus we have proved the following statement.

Lemma 2.1. Let us assume that the conditions (2.5) and  (2.8) are satisfied. 
Then, the random set 9 =  0 is  AS I relative to the linear differential systems w ith  
random delay (2.4) and it  is almost sure exponentially asymptotically stable. 
Furthermore, fo r  any two solutions xf (t0 , 90), xt (t0 , ^0), the relation (2.9) is 
valid.

Let us now introduce the concept of almost sure extreme equi-expo- 
nential asymptotic stability.
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DEFINITION 2.4. The stochastic functional differential system  (2.1) is 
sa id  to be almost sure extremely equi-exponentially asymptotically stable, i f

(2.10) K C V ^ o ) —  xt (t0 A 0) \ \ o <  K ( V  T) II ^0 —  ^0II , t ^ f

with probability one, where K e C  [R+ X R+, R+] , a >  o.

Remark 2.1. Assume that a solution xt (t0 , o) of (2.1) satisfies the relation 

C2-11) II xt (t0 , o)|| <  H (V, /0) , w.p.l., t > t 0

H e C [R+ x  R+, R+] , H ( t , t )  =  o , H ( t , t0) <  p ( t0) , p  e 2 

and lim [sup H ( / ,  t0)] — o, for some positive number T0 >  o.
/ - * o o  0̂> T 0

This, together with the Definition 2.2, and the relation (2.10), one can 
obtain the following inequality with probability one

(2-12) II * ,(/„ , ?o)Ho ^  K ('o • T) II? Hfl

which shows that the AS I random set 9 =  0 almost sure equi-exponentially 
asymptotically stable. Furthermore, notice that the relation (2.10) implies 
the uniqueness of solutions of (2.1) w.p.l.

3. Construction of L yapunov- like functional

In this section, we shall construct a Lyapunov functional which will be 
utilized later on.

T heorem  3.1. Assume that

(i) the stochastic functional differential system  (2.1) is almost sure extre­
mely equi-exponentially asymptotically stable;

(ii) the solution xt (t0 ,0 )  of (2.1) satisfies the relation

l l* ,(* o * ° ) llo ^ H (*«*o>« w.p.l., t > t 0 ,

H e C [R+ x  R+, R+] , H ( t , t )  =  o , H ( t , Q < p ( t 0) ,  p e  2

and  lim [sup H ( t , t0)] =  o, fo r  some positive number T0 >  o and furthermore
t  —x°o  / 0> T 0

H ( t , tQ) is partia lly  differentiable w ith respect to t0 and  

(3 -0  sup —  —  (t +  a , t) e™ <  yj (t) ,
o>0 °̂ 0

where rj e C [R+, R+] .
Then there exists a functional V ( t , 9) with the follow ing properties'.

(a) V eC [R +xCp , R+] and  V is Lipschitzian in  9 fo r  the random  
function K .( t , t ); w.p.l.;

(,b) II 9 Ilo ^  v (̂ > ?) <  K ( / ,  t ) II 9 ||o , w.p.l., t  e R+, 9 e C p;
(e) D +V( t ,  9) =  lim sup — [V (t +  h , x t+k ( t , <p)) —  V  ( t , <p)] <

^  0 + n
<  —  ocV( t , 9) +  7] (if) , w.p.l., t  e R+, <p e Cp.

3. RENDICONTI 1974, Voi. LVI, fase. 1.
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Proof: Define*

(3.2) V(V, 9) =  sup [ II Xf+a( t , cp)||0 —  H 0  +  a , i)] e™.
o > 0

where x i+a( t , <p) is the solution of (2.1) for t e R+, <peCp, with probability 
one. Clearly, from (2.12), it follows that V ( t , 9) is defined on R+ x C p and 
satisfies the property (b) w.p.l. Moreover, using the uniqueness of solutions 
as mentioned in the Remark 2.1 and the assumption (ii), we get successively

D+V 9) < ^ m .suP -jr [sup {|| xt+o+A ( t + h , x f+k( t ,  9)) ||0 —

— H ( t +  h +  cr, t  +  k)} e«° — sup {\\xf+a(t , 9) ll„
o >  0

— H ( * + a ,*)}«” } =

=  lin* sup } [ s u p {  Il X ( t , 9)|| —  H (t +  a , t  +  h)} «“(»-*) —

—  sup {|| X ( t , 9)||0 —  H (t +  a , t)} e«°] —
o > 0

—  j j n .SUP X  [sup { IIx t+0( t , 9) Ilo —  H {t  +  5 , t  +  k)} ««(»-‘I —

—  sup { Il X ( t , 9) II —  H (t +  G , t )} e«°]
o > 0

<  V ( t , 9) lim sup ~  (e~ah —  1) -f-
k->o+ h

+  sup [ lim sup ~  { H ( t , cr, t) —  H (t +  a , t  +  h)} e ^ ~ h>> <  
o > 0  U - > 0 +  n

<  —  aV (/ , 9) +  sup I —  — - i t  +  cr, #)j <

<  —  aV ( t , 9) H- 7) (t)

which proves (c). To show V ( t , 9) is Lipschitzian in 9, let 9 , e Cp. Then, 
using the estimate (2.10), we have

|V ( * f 9 ) — V (* , <10 I =  I sup {\\x a( t ,  9) ||0 —  H ( / +  a , t ) } e aa
a > 0

— sup {|| Xt+g (t , <]>) ||0 — H (t +  (7 , t)} I
a > 0

^  sup I \*l+a( t . <p)— x t+a( t , «I») Ilo
a > 0

<  K (^, t) II9 — Ilio , w.p.l.

The continuity of V  ( t , 9) m ay be proved as in Theorem 7.2.1 [3]. The 
proof is complete.
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Remark 3.1. In the deterministic case, the converse theorem for the expo­
nential asymptotic stability of the trivial solution is well known [3] and has 
been successfully employed in studying the behavior of solutions of perturbed 
systems [3]. Theorem 3.1 is a corresponding result establishing the existence 
of a Lyapunov functional when the AS I random set 9 =  o of (2.1) is almost 
sure equi-exponentially asymptotically stable. This generalization naturally 
is a powerful tool in discussing the almost sure equi-stability properties of the 
ASI random sets of random perturbed systems.

Remark J.2. If f  ( t , 9) is non-linear and satisfies a Lipschitz condition 
is <p for a constant L >  o, one might suspect that simply assuming almost 
sure equi-exponential asymptotic stability of the ASI random set 9 — 0, 
the proof of Theorem 7.2.2 [3] m ay be adapted without the almost sure extre­
me equi-exponential asymptotic stability and the relation (2.11). This is not 
true, since the assumption that K ( t , t ) is bounded w.p.l., is crucial for the 
proof of Theorem 7.2.2 [3] to work and in our case, this is not the situation. 
See, for example, the definition of K ( t , t ) relative to the equation (2.4). This 
remark justifies the assumption that the system (2.1) is almost sure extremely 
equi-exponentially asymptotically stable, which is necessarily satisfied in 
the case of equation (2.4). Furthermore, as pointed out in the Remark 2.1 
we need not assume uniqueness conditions on f ( t , 9). Hence, weakening 
the hypotheses of Theorem 7.2.2 [3].

Remark 3.3. We shall make a comment on the definition of V(V,<p) 
as given in (3.2). Had we started with the functional

V O , ?) =  sup \\xl+a(t ,  9) II e«°,
o > 0

and assumed that / ( / ,  9) is linear in 9, we could obtain, as in the proof of 
Theorem 7.2.1 in [3], all the properties of V ( t , 9) except the upper bound. 
For, in this càse, we could obtain

V(V, 9) <  K(V , t ) H 9 ||0 +  sup H ( / +  a , f) e™ , w.p.l.
o > 0

and we are not all sure that sup H (t T a , f) eaa exists. As an example, Con­
ato

sider the function

H ( t , t0) =  j (s) di*
0̂

and suppose that yO) =  which certainly satisfies (2.8). However, 

sup H (t +  <r , t) em =  sup e~ai oea°
° > 0  o > 0

which, clearly, does not exist. This verifies our assertion.
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4. Main Result

Here we shall study the preservation of almost sure stability behavior 
of ASI random set 9 =  0 relative to (2.1) under constantly acting random 
perturbations. We consider the random functional perturbed system

(4 -1) y ' 00 = f ( t , yi)  +  R 0  > y t) . y t. =  % »

where R e C  [R+ x C p , R”]. Assume that (4.1) has unique solution throughout, 
given initial data.

THEOREM 4.1. Assum e that the hypotheses of Theorem 3.1 hold. Assume 
further that R ( / , 9) satisfies the estimate

(4 -2) URO*, 9) Il <  A(V), t e R +, <p e C p ,

where X e C [R+, R+] and moreover 
t+1

(4.3) J [K(j,T(w))X(j) +  Y](j)]dj-^o as t-^00
t

all co E Q, where K ( / ,  t) and v\(f) are as defined in the Theorem 3.1. Then

(i) the random set 9 =  0 is ASI with respect to the system  (4.1);

(ii) the ASI random set 9 — 0 of the system  (4.1) is almost sure equi- 
exponentially asymptotically stable.

Proof. Define
t

(4.4) H ( / , o  =  J [R - T) x (J) +  4 (*)]
 ̂0

where a, K ( t , t), \ ( f )  and v\(f) are as defined in the theorem. In view of the 
relation (4.3), it is easy to observe that the function H ( t , tf) has the desired 
properties. For details see [5]. Hence, we can choose t0 >  T(p) such that

(4*5) H (* > *0) <  y  . for * ^  (o ^  T (P) •

Let y t (to , 90) be any solution of the perturbed system (4.1) such that

(4-6) II To Ho <  2Kf c )  and 0̂ —T (p) ’ w-p-L

Setting 9 =  y t (i0 , 90) , we have

yt+*(t0 , 9o) = y t+k(t ,  9) , k > o ,

because of the uniqueness of solutions. Suppose now that x tJrh ( t , 9), h >  o 
is the solution of (2.1) through ( t , 9). As long as \\yt (t0 , 90) I l o  <  P W-P-1- 
for t  >  t0 >  T (p), we have, making use of the conclusions (a) and (c) of
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Theorem 3.1, a Lyapunov functional V ( t , 9) such that

D+ V(^ , 9) =  lim sup A  [V (7 -f h , y t+k ( t , 9)) —  V ( t  +  h , x t+h( t , 9)) +
(2.2) k-^0+ n

+  V  (t +  h , x t+h (t , 9)) —  V ( / ,  9)] <Ç

<  D+V(^ , 9) +  lim sup — [K(* +  h , t )  \\yt+h( t , 9) —
(2.1) /*->0+ n

— *,+*(*>?) U

<  _  « v ( * , 9) +  v )0  +  k (/ , t) n y  ( / ,  9) (*) —  * '( ' ,  ?) ( 0 II <

<  —  c N ( t , 9) +  v)(t) +  K(i , t )  II R(if, 9) II .

Since 9 =  y t (tQ, 90), using the assumption (ii) and the property (b) of Theo­
rem 3.1, we obtain

D+V ( t , 9) <  —  a V (i , 9) +  7)(#) +  K(* , t )  X(f)
(2.2)

w.p.l. From this we get
t

(4.7) V ( t  , y t ( t , 90)) <  V ( /0 , 90) <>-«('-'.> + j  [X(j) +  K (j ,t )  X(r)] r ^ ' - l d s .
J10

This together with the property (b) of Theorem 3.1 (4.5) and (4.6), we have 

W o ’ VjWo < p  for ^ > / 0 > T ( p ) ,  w.p.l.

Thus the estimate

Il y  G  - 90) Ho ^  K (*o » T) II 90 II e-*«-** +  H t > t 0
w.p.l. This implies that the random set 9 =  0 is ASI with respect to (4.1) 
and it is almost sure equi-exponentially asymptotically stable. Hence the 
theorem is proved.
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