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Sistem i differenziali a leatori. —  Asymptotically Self-invariant 
Sets and Random Functional Differential Systems. Nota di G. S. L a d d e , 
V. L ak sh m ik an th am  e P an —T a i L iu , presentata dal Socio 
G. S a n so n e .

RIASSUNTO. In questa Nota gli Autori studiano il comportamento di un insieme 
asintoticamente autoinvariante rispetto ad un sistema di equazioni funzionali differenziali 
aleatorie.

i . Introduction

The concept of an asymptotically self-in variant set was introduced in [3]. 
In [4] and [5], the stability behavior of an asymptotically self-invariant 
set with respect to nonlinear systems under constant perturbations was inve
stigated. In the present paper, we wish to do the same thing for a system  
described by stochastic functional differential equations. Our approach again 
depends on the construction of Lyapunovlike functional (section 3). The main 
results are given in section 4.

2. D efinitions and motivation for the main result

Consider the random functional differential system  

C2-1) x  (t) =  f  (t , Xt , (ù) Xia((ù) =  <p0 (to),

where /  e C [R+ x C p , R"], where

Cp =  [<P eC ” : Il ? Ilo <  P]- 

Here Çn =  C [[—  t  , o] , RM] and || 9 ||Q =  max || <p (j) ||, || • || being any norm
n . ~ t < j < 0

in R and t is a random delay defined on a complete probability space 
,P )  with values in [o , h]. We follow the standard notation for func

tional differential equations [3]. We shall assume, throughout this paper, 
that (2.1) has a least one solution {xt (tQ , <p0) , * <  t0} , which is a measurable 
and separable stochastic process.

D e fin it io n  2.1. A  function  X e C [R+, R+] is sa id  to belong to class 2 
i f  \ { f )  is decreasing in t  and  lim X(/) =  o.

t —> 00
DEFINITION 2.2. The random, set 9 =  0 is sa id  to be asymptotically self- 

invanant (ASI) with respect to system  (2.1) i f

(2-2) II (*0 » °) Ho F q ( t 0) ,  w.p.l., t > t 0 ,

where q e 2 and xt (tQ , o) is any solution of (2.1).

(*) Nella seduta del 12 gennaio 1974.
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For an equivalent definition of ASI sets and their stability properties, 
see [3, 4, 5].

We shall assume that the random set 9 =  o is ASI with respect to the 
system (2.1)

D e fin it io n  2.3. The ASI random set 9 =  0 of (2.1) is sa id  to be\
(i) Alm ost sure equi-stable, i f  fo r  each t0 € R+

ll^ (^ o .9o ) l l < K ( ^ o ^ ) l l9 llo +  ÿ(^)> w.p.l., t ^ t Q,

where K e C [R+ X R+, R+] and q e £;
(ii) Alm ost sure equi-exponentially asymptotically stable, i f

(2-3) l l^ (^ o -9o ) l lo < K (^o>T) l l 9o l l ^ a('’w +  H ( / , / 0) ,  w.p.l., t > t 0 ,

where K e C [R+ X R+, R+] , a > o ,  H e C [R+ X R+, R+], H ( / ,* )  =  o,
H ( t , lQ) <  p(/o)> P e ' an<t  lim [sup H ( t , /„)] =  o fo r  some positive num-

t- ôo jf0>T0
her T0 >  o.

Obviously (ii) implies (i), furthermore, if q(t0) = 0  and if H (t , t0) = 0 ,  
then the Definition 2.3 reduces to almost sure equi-stability and almost sure 
equi-exponential asymptotic stability of the trivial solution of (2.1) [2]. For 
the Definition 2.3, it is not necessary to assume that f ( t , o) =  o, w.p.l.

In the following, we will discuss an example to illustrate the meaning 
of the Definition 2.3 and to give the motivation of our main result in the sub
sequent sections. Consider the linear system with random delay

(2.4) x* (I) == A  (*) X (t) +  B (t) X (/ — t) + w ( t )

with the initial function <p0 at t  =  /0 , where A (f) , B(^) are n X n  continuous 
matrix functions and w t C [ R +, T ] .  { w ( t ) } t > t 0} is an «-dimensional

t
stochastic prqcess which is measurable and j  E \\w(t)\\d /<  oo, t  is random delay.

Analogous to the ordinary functional differential system, by following 
Bellman and Cook [i], let us introduce the random matrix function Y (s , t )  
having the initial conditions

Y ( t , f) =  I (unit matrix),

Y (s , t) = 0 ,  for t  <  s <  t  -f- t  ;

and Y ( s , t ) ,  as a function of s, satisfies the random matrix equation
,1Y

I T  (P , t )  =  -  Y ( s ., t) A (s) —  Y (s  +  r  , t) B (s  +  t), -, < t .

We further assume as in [4], that 

(2-5) Il B (f) II <; Bo , h < t < t Qf - h

Il Y ( s  , t) K <  N exp [ßr —  a.(t— s)], w.p.l., N  >  1, a >  o , ß ^  o.
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By following the proof in [1] any solution of (2.4) satisfies the random integral 
equation

io

(2.6) *(/„ , <p0) 00 =  y  (t0 , i) cp0 (o) +  j Y 0  +  T , f) B (r +  t)  90(j) dr
i o - T

t

+  j Y (s , t) w  (s) d .̂
0̂

This, together with the foregoing assumptions, yields the estimate

II *  (*o . <P0) 00 II ^  t1 +  t B o *(“+ß)T] II To Ho +
t

+  j  £-<*(*—0 II w  {s) II ds, w.p.l., t  >  t0 .
io

which further implies
t

(2.7) II x t(t0 , cp0) ||0 <  K (/0 , t )  II <P0 1|0 +  je~a^ - s>y(s)  dr , w.p.l.,
io

where K (/0 , t) =  N*?ß/o+aT [i +  tB 0 £<a+ß)T] and y (t) =  ì$eah e& || w  (t) | | .
t

Setting H ( / ,^ 0) =  | e~a^~ŝ  y (s) ds and assuming that w(t )  is such that
io

i + 1

(2.8) j y (s) di* o as t  oo.
t

which follows easily that lim [sup H ( /,/„ )]  =  o and H ( t , t0) < p  (t0), t > t 0 ,
t —> 00 /„>]

For the proof of this assertion, see [3, vol. I, pp. 113]. Thus, we 
can conclude from (2.7) the random set 9 =  o is AS I with respect to the 
linear differential system (2.4) with random delay and it is almost sure equi- 
exponentially asymptotically stable.

Let xt (t0 , 9o) > %t (̂ 0 » ^0) solutions of (2.4), then we can obtain

(2-9) II xt (̂ o ’ T0) xt (̂ o > ^0) Ho — K (^0,T) H ‘ Ho , w.p.l., t > t 0 ,

on the basis of the assumptions (2.5).
Thus we have proved the following statement.

Lemma 2.1. Let us assume that the conditions (2.5) and  (2.8) are satisfied. 
Then, the random set 9 =  0 is  AS I relative to the linear differential systems w ith  
random delay (2.4) and it  is almost sure exponentially asymptotically stable. 
Furthermore, fo r  any two solutions xf (t0 , 90), xt (t0 , ^0), the relation (2.9) is 
valid.

Let us now introduce the concept of almost sure extreme equi-expo- 
nential asymptotic stability.
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DEFINITION 2.4. The stochastic functional differential system  (2.1) is 
sa id  to be almost sure extremely equi-exponentially asymptotically stable, i f

(2.10) K C V ^ o ) —  xt (t0 A 0) \ \ o <  K ( V  T) II ^0 —  ^0II , t ^ f

with probability one, where K e C  [R+ X R+, R+] , a >  o.

Remark 2.1. Assume that a solution xt (t0 , o) of (2.1) satisfies the relation 

C2-11) II xt (t0 , o)|| <  H (V, /0) , w.p.l., t > t 0

H e C [R+ x  R+, R+] , H ( t , t )  =  o , H ( t , t0) <  p ( t0) , p  e 2 

and lim [sup H ( / ,  t0)] — o, for some positive number T0 >  o.
/ - * o o  0̂> T 0

This, together with the Definition 2.2, and the relation (2.10), one can 
obtain the following inequality with probability one

(2-12) II * ,(/„ , ?o)Ho ^  K ('o • T) II? Hfl

which shows that the AS I random set 9 =  0 almost sure equi-exponentially 
asymptotically stable. Furthermore, notice that the relation (2.10) implies 
the uniqueness of solutions of (2.1) w.p.l.

3. Construction of L yapunov- like functional

In this section, we shall construct a Lyapunov functional which will be 
utilized later on.

T heorem  3.1. Assume that

(i) the stochastic functional differential system  (2.1) is almost sure extre
mely equi-exponentially asymptotically stable;

(ii) the solution xt (t0 ,0 )  of (2.1) satisfies the relation

l l* ,(* o * ° ) llo ^ H (*«*o>« w.p.l., t > t 0 ,

H e C [R+ x  R+, R+] , H ( t , t )  =  o , H ( t , Q < p ( t 0) ,  p e  2

and  lim [sup H ( t , t0)] =  o, fo r  some positive number T0 >  o and furthermore
t  —x°o  / 0> T 0

H ( t , tQ) is partia lly  differentiable w ith respect to t0 and  

(3 -0  sup —  —  (t +  a , t) e™ <  yj (t) ,
o>0 °̂ 0

where rj e C [R+, R+] .
Then there exists a functional V ( t , 9) with the follow ing properties'.

(a) V eC [R +xCp , R+] and  V is Lipschitzian in  9 fo r  the random  
function K .( t , t ); w.p.l.;

(,b) II 9 Ilo ^  v (̂ > ?) <  K ( / ,  t ) II 9 ||o , w.p.l., t  e R+, 9 e C p;
(e) D +V( t ,  9) =  lim sup — [V (t +  h , x t+k ( t , <p)) —  V  ( t , <p)] <

^  0 + n
<  —  ocV( t , 9) +  7] (if) , w.p.l., t  e R+, <p e Cp.

3. RENDICONTI 1974, Voi. LVI, fase. 1.
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Proof: Define*

(3.2) V(V, 9) =  sup [ II Xf+a( t , cp)||0 —  H 0  +  a , i)] e™.
o > 0

where x i+a( t , <p) is the solution of (2.1) for t e R+, <peCp, with probability 
one. Clearly, from (2.12), it follows that V ( t , 9) is defined on R+ x C p and 
satisfies the property (b) w.p.l. Moreover, using the uniqueness of solutions 
as mentioned in the Remark 2.1 and the assumption (ii), we get successively

D+V 9) < ^ m .suP -jr [sup {|| xt+o+A ( t + h , x f+k( t ,  9)) ||0 —

— H ( t +  h +  cr, t  +  k)} e«° — sup {\\xf+a(t , 9) ll„
o >  0

— H ( * + a ,*)}«” } =

=  lin* sup } [ s u p {  Il X ( t , 9)|| —  H (t +  a , t  +  h)} «“(»-*) —

—  sup {|| X ( t , 9)||0 —  H (t +  a , t)} e«°] —
o > 0

—  j j n .SUP X  [sup { IIx t+0( t , 9) Ilo —  H {t  +  5 , t  +  k)} ««(»-‘I —

—  sup { Il X ( t , 9) II —  H (t +  G , t )} e«°]
o > 0

<  V ( t , 9) lim sup ~  (e~ah —  1) -f-
k->o+ h

+  sup [ lim sup ~  { H ( t , cr, t) —  H (t +  a , t  +  h)} e ^ ~ h>> <  
o > 0  U - > 0 +  n

<  —  aV (/ , 9) +  sup I —  — - i t  +  cr, #)j <

<  —  aV ( t , 9) H- 7) (t)

which proves (c). To show V ( t , 9) is Lipschitzian in 9, let 9 , e Cp. Then, 
using the estimate (2.10), we have

|V ( * f 9 ) — V (* , <10 I =  I sup {\\x a( t ,  9) ||0 —  H ( / +  a , t ) } e aa
a > 0

— sup {|| Xt+g (t , <]>) ||0 — H (t +  (7 , t)} I
a > 0

^  sup I \*l+a( t . <p)— x t+a( t , «I») Ilo
a > 0

<  K (^, t) II9 — Ilio , w.p.l.

The continuity of V  ( t , 9) m ay be proved as in Theorem 7.2.1 [3]. The 
proof is complete.
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Remark 3.1. In the deterministic case, the converse theorem for the expo
nential asymptotic stability of the trivial solution is well known [3] and has 
been successfully employed in studying the behavior of solutions of perturbed 
systems [3]. Theorem 3.1 is a corresponding result establishing the existence 
of a Lyapunov functional when the AS I random set 9 =  o of (2.1) is almost 
sure equi-exponentially asymptotically stable. This generalization naturally 
is a powerful tool in discussing the almost sure equi-stability properties of the 
ASI random sets of random perturbed systems.

Remark J.2. If f  ( t , 9) is non-linear and satisfies a Lipschitz condition 
is <p for a constant L >  o, one might suspect that simply assuming almost 
sure equi-exponential asymptotic stability of the ASI random set 9 — 0, 
the proof of Theorem 7.2.2 [3] m ay be adapted without the almost sure extre
me equi-exponential asymptotic stability and the relation (2.11). This is not 
true, since the assumption that K ( t , t ) is bounded w.p.l., is crucial for the 
proof of Theorem 7.2.2 [3] to work and in our case, this is not the situation. 
See, for example, the definition of K ( t , t ) relative to the equation (2.4). This 
remark justifies the assumption that the system (2.1) is almost sure extremely 
equi-exponentially asymptotically stable, which is necessarily satisfied in 
the case of equation (2.4). Furthermore, as pointed out in the Remark 2.1 
we need not assume uniqueness conditions on f ( t , 9). Hence, weakening 
the hypotheses of Theorem 7.2.2 [3].

Remark 3.3. We shall make a comment on the definition of V(V,<p) 
as given in (3.2). Had we started with the functional

V O , ?) =  sup \\xl+a(t ,  9) II e«°,
o > 0

and assumed that / ( / ,  9) is linear in 9, we could obtain, as in the proof of 
Theorem 7.2.1 in [3], all the properties of V ( t , 9) except the upper bound. 
For, in this càse, we could obtain

V(V, 9) <  K(V , t ) H 9 ||0 +  sup H ( / +  a , f) e™ , w.p.l.
o > 0

and we are not all sure that sup H (t T a , f) eaa exists. As an example, Con
ato

sider the function

H ( t , t0) =  j (s) di*
0̂

and suppose that yO) =  which certainly satisfies (2.8). However, 

sup H (t +  <r , t) em =  sup e~ai oea°
° > 0  o > 0

which, clearly, does not exist. This verifies our assertion.
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4. Main Result

Here we shall study the preservation of almost sure stability behavior 
of ASI random set 9 =  0 relative to (2.1) under constantly acting random 
perturbations. We consider the random functional perturbed system

(4 -1) y ' 00 = f ( t , yi)  +  R 0  > y t) . y t. =  % »

where R e C  [R+ x C p , R”]. Assume that (4.1) has unique solution throughout, 
given initial data.

THEOREM 4.1. Assum e that the hypotheses of Theorem 3.1 hold. Assume 
further that R ( / , 9) satisfies the estimate

(4 -2) URO*, 9) Il <  A(V), t e R +, <p e C p ,

where X e C [R+, R+] and moreover 
t+1

(4.3) J [K(j,T(w))X(j) +  Y](j)]dj-^o as t-^00
t

all co E Q, where K ( / ,  t) and v\(f) are as defined in the Theorem 3.1. Then

(i) the random set 9 =  0 is ASI with respect to the system  (4.1);

(ii) the ASI random set 9 — 0 of the system  (4.1) is almost sure equi- 
exponentially asymptotically stable.

Proof. Define
t

(4.4) H ( / , o  =  J [R - T) x (J) +  4 (*)]
 ̂0

where a, K ( t , t), \ ( f )  and v\(f) are as defined in the theorem. In view of the 
relation (4.3), it is easy to observe that the function H ( t , tf) has the desired 
properties. For details see [5]. Hence, we can choose t0 >  T(p) such that

(4*5) H (* > *0) <  y  . for * ^  (o ^  T (P) •

Let y t (to , 90) be any solution of the perturbed system (4.1) such that

(4-6) II To Ho <  2Kf c )  and 0̂ —T (p) ’ w-p-L

Setting 9 =  y t (i0 , 90) , we have

yt+*(t0 , 9o) = y t+k(t ,  9) , k > o ,

because of the uniqueness of solutions. Suppose now that x tJrh ( t , 9), h >  o 
is the solution of (2.1) through ( t , 9). As long as \\yt (t0 , 90) I l o  <  P W-P-1- 
for t  >  t0 >  T (p), we have, making use of the conclusions (a) and (c) of
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Theorem 3.1, a Lyapunov functional V ( t , 9) such that

D+ V(^ , 9) =  lim sup A  [V (7 -f h , y t+k ( t , 9)) —  V ( t  +  h , x t+h( t , 9)) +
(2.2) k-^0+ n

+  V  (t +  h , x t+h (t , 9)) —  V ( / ,  9)] <Ç

<  D+V(^ , 9) +  lim sup — [K(* +  h , t )  \\yt+h( t , 9) —
(2.1) /*->0+ n

— *,+*(*>?) U

<  _  « v ( * , 9) +  v )0  +  k (/ , t) n y  ( / ,  9) (*) —  * '( ' ,  ?) ( 0 II <

<  —  c N ( t , 9) +  v)(t) +  K(i , t )  II R(if, 9) II .

Since 9 =  y t (tQ, 90), using the assumption (ii) and the property (b) of Theo
rem 3.1, we obtain

D+V ( t , 9) <  —  a V (i , 9) +  7)(#) +  K(* , t )  X(f)
(2.2)

w.p.l. From this we get
t

(4.7) V ( t  , y t ( t , 90)) <  V ( /0 , 90) <>-«('-'.> + j  [X(j) +  K (j ,t )  X(r)] r ^ ' - l d s .
J10

This together with the property (b) of Theorem 3.1 (4.5) and (4.6), we have 

W o ’ VjWo < p  for ^ > / 0 > T ( p ) ,  w.p.l.

Thus the estimate

Il y  G  - 90) Ho ^  K (*o » T) II 90 II e-*«-** +  H t > t 0
w.p.l. This implies that the random set 9 =  0 is ASI with respect to (4.1) 
and it is almost sure equi-exponentially asymptotically stable. Hence the 
theorem is proved.
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