## Atti Accademia Nazionale dei Lincei

## Classe Scienze Fisiche Matematiche Naturali RENDICONTI

## Ludvik Janos

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 55 (1973), n.6, p. 639-644.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1973_8_55_6_639_0](http://www.bdim.eu/item?id=RLINA_1973_8_55_6_639_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

# RENDICONTI 

DELLE SEDUTE

## DELLA ACCADEMIA NAZIONALE DEI LINCEI

# Classe di Scienze fisiche, matematiche e naturali 

Seduta del I5 dicembre 1973
Presiede il Presidente della Classe Beniamino Segre

## SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)


#### Abstract

Matematica. - Complementarity between nilpotent selfmappings and periodic autohomeomorphisms. Nota (*) di Ludvik Janos, presentata dal Socio G. Sansone.


Riassunto. - Sia ( $\mathrm{X}, f$ ) una coppia formata da uno spazio di Hausdorff compatto e da una trasformazione continua $f: \mathrm{X} \rightarrow \mathrm{X}$ tale che per qualche $n \geq \mathrm{I}$ l'iterata $f^{n}$ è idempotente, ossia, $f^{2 n}=f^{n}$. Si mostra che la categoria C di tali coppie può essere immessa naturalmente e fedelmente nel prodotto $\mathrm{C}_{1} \times \mathrm{C}_{2}$ delle due sotto-categorie piene $\mathrm{C}_{1}$ e $\mathrm{C}_{2}$ dove $\mathrm{C}_{1}$ consiste delle coppie nilpotenti ( $f^{n}$ è costante per qualche $n \geq$ I) e $\mathrm{C}_{2}$ degli autoomeomorfismi periodici ( $f^{n}$ è l'identità per qualche $n \geq \mathrm{I}$ ).

## i. Introduction

Let X be a compact Hausdorff space (all spaces considered here are compact Hausdorff) and $f: \mathrm{X} \rightarrow \mathrm{X}$ a continuous selfmapping of X . Considering $f$ as an element of the topological semigroup $\mathrm{X}^{\mathrm{x}}$ of all continuous selfmappings of X with respect to functional composition and compact open topology, we denote by $\Gamma(f)$ the closed subsemigroup of $\mathrm{X}^{\mathrm{x}}$ generated by $f$. This semigroup has been thoroughly investigated by A. D. Wallace ([1] and [2]) who obtained the following important result, (Swelling Lemma), concerning those selfmappings for which $\Gamma(f)$ is compact:

Theorem i.i. (A. D. Wallace). Let X be a compact Hausdorff space and $f: \mathrm{X} \rightarrow \mathrm{X}$ a continuous selfmapping such that $\Gamma(f)$ is compact. Denoting by A the intersection of all iterates $f^{n}(\mathrm{X})$, i.e., $\mathrm{A}=\cap\left\{f^{n}(\mathrm{X}) \mid n \geq \mathrm{I}\right\}$ the following statements hold:
(i) The restriction $f \mid \mathrm{A}$ of $f$ to A is a homeomorphism of A onto itself.
(ii) There exists a unique idempotent $r \in \Gamma(f)$ which is a retraction of X onto A .
(*) Pervenuta all’Accademia il 22 settembre 1973.

We shall apply this theorem to the case where $\Gamma(f)$ is finite. In this case evidently the existing idempotent $r$ is an iteration $f^{n}$ of $f$ for some $n \geq \mathrm{r}$. Let C denote the category whose objects $\mathrm{Obj}(\mathrm{C})$ consist of such pairs and whose morphisms $\varphi \in \operatorname{Morph}[(\mathrm{X}, f),(\mathrm{Y}, g)$ ] are such continuous mappings $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ for which $g \circ \varphi=\varphi \circ f$ for ( $\mathrm{X}, f$ ) and ( $\mathrm{Y}, g$ ) $\in \operatorname{Obj}(\mathrm{C})$.

We denote by $\mathrm{C}_{1}$ the full subcategory of C generated by nilpotent pairs ( $f$ is such that $f^{n}$ is constant for some $n \geq \mathrm{I}$ ) and by $\mathrm{C}_{2}$ the full subcategory generated by pairs $(\mathrm{X}, f)$ where $f$ is a periodic autohomeoniorphism ( $f^{n}$ is the identity mapping for some $n \geq 1$ ).

Using Theorem I.I. we shall construct functors $F_{1}: C \rightarrow C_{1}$ and $\mathrm{F}_{2}: \mathrm{C} \rightarrow \mathrm{C}_{2}$ and using our previous results [3] we shall prove our main result:

TheOrem i.2. The product functor $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2}$ provides a faithful embedding of the category C into the product $\mathrm{C}_{1} \times \mathrm{C}_{2}$.

Thus in this sense the subcategories $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ can be viewed as complementary in the category C .

## 2. Construction of functors $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$

Let $(\mathrm{X}, f) \in \mathrm{Obj}(\mathrm{C})$, we consider the relation R on X defined by $\mathrm{R}=\mathrm{A} \times \mathrm{A} \cup\{(x, x) \mid x \in \mathrm{X}\}$ with A defined as in Theorem i.I., and consider $\mathrm{X}^{*}=\mathrm{X} / \mathrm{R}$. Thus the space $\mathrm{X}^{*}$ is obtained by shrinking A to a point and is obviously again compact Hausdorff. Observing that there is a unique continuous mapping $f^{*}: \mathrm{X}^{*} \rightarrow \mathrm{X}^{*}$ rendering the following diagram

commutative
( $\pi$ being the natural projection), we obtain in this natural way a new pair $\left(\mathrm{X}^{*}, f^{*}\right)$ which is evidently nilpotent since $f^{* n}$ takes $\mathrm{X}^{*}$ to a point if $f^{n}$ takes X onto A .

On the other hand Theorem i.i. says that the restriction $f \mid \mathrm{A}$ is a homeomorphism of A onto itself which in our case is evidently periodic. Denoting A by $\mathrm{X}^{* *}$ and $f \mid \mathrm{A}$ by $f^{* *}$ we just found two objects, $\left(\mathrm{X}^{*}, f^{*}\right) \in \mathrm{Obj}\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{X}^{* *}, f^{* *}\right) \in \mathrm{Obj}\left(\mathrm{C}_{2}\right)$ assigned in natural way to the object $(\mathrm{X}, f) \in \mathrm{Obj}(\mathrm{C})$. These objects are the values on $\mathrm{Obj}(\mathrm{C})$ of the functors $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$ to be defined now. In order to extend their definition to morphisms of C let $(\mathrm{Y}, g$ ) be another object in C and $\varphi:(\mathrm{X}, f) \rightarrow(\mathrm{Y}, g)$ a morphism from $(\mathrm{X}, f)$ to $(\mathrm{Y}, g)$ and let us denote by $\varphi^{*}$ the mapping from $\mathrm{X}^{*}$ into $\mathrm{Y}^{*}$ induced by $\varphi$, i.e. the
mapping $\varphi^{*}: \mathrm{X}^{*} \rightarrow \mathrm{Y}^{*}$ for which the diagram:

where $\pi_{f}$ and $\pi_{g}$ are the natural projections associated with the pairs ( $\mathrm{X}, f$ ) and ( $\mathrm{Y}, \mathrm{g}$ ).

In order to prove that $\varphi^{*}$ is a morphism we need the following.
Lemma 2.1. Let $(\mathrm{X}, f)$ and $(\mathrm{Y}, g)$ be objects in C and $\varphi:(\mathrm{X}, f) \rightarrow(\mathrm{Y}, g)$ a morphism in C . Then the mapping $\varphi^{*}$ constructed above is a morphism, i.e. $\varphi^{*}:\left(\mathrm{X}^{*}, f^{*}\right) \rightarrow\left(\mathrm{Y}^{*}, g^{*}\right)$.

Proof. We have to show that $g^{*} \circ \varphi=\varphi^{*} \circ f^{*}$. To this end observe the following four commutative diagrams labelled by (1),(2),(3),(4) as indicated:


Let $x^{*} \in \mathrm{X}^{*}$, then there is $x \in \mathrm{X}$ such that $\pi_{f}(x)=x^{*}$ and by ( $\mathbf{r}$ ) we have $f^{*}\left(x^{*}\right)=f \circ \pi_{f}(x)=\pi_{f} \circ f(x)$. Applying $\varphi^{*}$ we have by (2) $\varphi^{*} \circ f^{*}\left(x^{*}\right)=$ $\varphi^{*} \circ \pi_{f} \circ f(x)=\pi_{g} \circ \varphi \circ f(x)$ and by (3) we have $\pi_{g} \circ \varphi \circ f(x)=\pi_{g} \circ g \circ \varphi(x)$ and finally by (4) we get $\pi_{g} \circ g \circ \varphi(x)=g^{*} \circ \pi_{g} \circ \varphi(x)$ which by (2) equals $g^{*} \circ \varphi^{*}\left(x^{*}\right)$. Thus $\varphi^{*} \circ f^{*}\left(x^{*}\right)=g^{*} \circ \varphi^{*}\left(x^{*}\right)$ q.e.d.

The functor $\mathrm{F}_{1}: \mathrm{C} \rightarrow \mathrm{C}_{1}$ is now defined simply by putting $\mathrm{F}_{1}(\mathrm{X}, f)=$ $=\left(\mathrm{X}^{*}, f^{*}\right)$ and $\mathrm{F}(\varphi)=\varphi^{*}$ for $(\mathrm{X}, f),(\mathrm{Y}, g) \in \operatorname{Obj}(\mathrm{C})$ and $\varphi \in \operatorname{Morph}[(\mathrm{X}, f)$, ( $\mathrm{Y}, g$ )].

Similarly in order to define the functor $\mathrm{F}_{2}$ we need the following.
Lemma 2.2. With $(\mathrm{X}, f),(\mathrm{Y}, g)$ and $\varphi$ as in Lemma 2.I. we have $\varphi\left(\mathrm{X}^{* *}\right) \subset \mathrm{Y}^{* *}$ where the meaning of $\mathrm{X}^{* *}$ and $\mathrm{Y}^{* *}$ was defined above.

Proof. Let $x \in \mathrm{X}^{* *}=\cap\left\{f^{n}(\mathrm{X}) \mid n \geq \mathrm{I}\right\}$. Since $\varphi \circ f=g \circ \varphi$ it follows that $\varphi \circ f^{n}=g^{n} \circ \varphi$ for every $n \geq \mathrm{I}$. Since $f \mid \mathrm{X}^{* *}$ is a homeomorphism onto,
there exists for every $n \geq \mathrm{I}$ an element $x_{1} \in \mathrm{X}^{* *}$ such that $x=f^{n}\left(x_{1}\right)$. Applying $\varphi$ we get $\varphi(x)=\varphi \circ f^{n}\left(x_{1}\right)=g^{n} \circ \varphi\left(x_{1}\right) \in g^{n}(\mathrm{Y})$. Thus, since $n$ is arbitrary we conclude that $\varphi(x) \in \mathrm{Y}^{* *}$, q.e.d.

This lemma finally shows that the assignment $\mathrm{F}_{2}(\mathrm{X}, f)=\left(\mathrm{X}^{* *}, f^{* *}\right)$ and $\mathrm{F}_{2}(\varphi)=\varphi^{* *}=\varphi \mid \mathrm{X}^{* *}$ is a functor from the category C into the category $\mathrm{C}_{2}$.

Having defined the functors $\mathrm{F}_{1}: \mathrm{C} \rightarrow \mathrm{C}_{1}$ and $\mathrm{F}_{2}: \mathrm{C} \rightarrow \mathrm{C}_{2}$ we observe the trivial fact that both are onto (projecting the category C onto the subcategories $C_{1}$ and $C_{2}$ respectively). Next we shall show that the product functor $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2}: \mathrm{C} \rightarrow \mathrm{C}_{1} \times \mathrm{C}_{2}$ which takes the category C into the cartesian product $\mathrm{C}_{1} \times \mathrm{C}_{2}$ is faithful. To achieve this we define the functor $\mathrm{P}: \mathrm{C}_{1} \times \mathrm{C}_{2} \rightarrow \mathrm{C}$ by putting $\mathrm{P}\left[\left(\mathrm{X}_{1}, f_{1}\right),\left(\mathrm{X}_{2}, f_{2}\right)\right]=\left[\left(\mathrm{X}_{1} \times \mathrm{X}_{2}\right), f_{1} \times f_{2}\right]$ and $\mathrm{P}\left[\varphi_{1}, \varphi_{2}\right]=\varphi_{1} \times \varphi_{2}$ where $\left(\mathrm{X}_{1}, f_{1}\right),\left(\mathrm{Y}_{1}, g_{1}\right) \in \operatorname{Obj}\left(\mathrm{C}_{1}\right)\left(\mathrm{X}_{2}, f_{2}\right),\left(\mathrm{Y}_{2}, g_{2}\right) \in \operatorname{Obj}\left(\mathrm{C}_{2}\right)$ and $\varphi_{1}:\left(\mathrm{X}_{1}, f_{1}\right) \rightarrow$ $\rightarrow\left(\mathrm{Y}_{1}, g_{1}\right) \quad \varphi_{2}:\left(\mathrm{X}_{2}, f_{2}\right) \rightarrow\left(\mathrm{Y}_{2}, g_{2}\right)$.

The functor P is simply the cartesian product of pairs and morphisms between them. It is easy to verify that its values are in C. Considering the composite functor $\mathrm{S}=\mathrm{PoF}: \mathrm{C} \rightarrow \mathrm{C}$ we shall exhibit a natural transformation $\tau: I_{C} \rightarrow S$ from the identity functor $I_{C}$ to the functor $S$, and using our result [3] we will show that this natural transformation $\tau$ which assigns to each object ( $\mathrm{X}, f$ ) in C a morphism $\tau(\mathrm{X}, f)$ from ( $\mathrm{X}, f)$ to $\mathrm{S}(\mathrm{X}, f)=\left(\mathrm{X}^{*} \times \mathrm{X}^{* *}, f^{*} \times f^{* *}\right)$, provides a topological embedding $\tau: \mathrm{X} \rightarrow \mathrm{X}^{*} \times \mathrm{X}^{* *}$. This means that two morphisms $\varphi$ and $\psi$ which are distinct and going from (X,f) remain distinct when transformed under $S$. But this means that $S$ is faithful and a fortiori F itself is faithful.

## 3. The natural transformation from the identity functor to S

Lemma 3.I. Let $(\mathrm{X}, f)$ and $(\mathrm{Y}, g)$ be objects in C and $\varphi$ a morphism from (X,$f$ ) to $(\mathrm{Y}, g)$. Denoting by $r_{f}$ and $r_{g}$ the corresponding idempotents in $\Gamma(f)$ and $\Gamma(g)$ respectively we claim that the following diagram


Proof. We know that $r_{f}=f^{n}$ and $r_{g}=g^{m}$ for some $n$ and $m \geq 1$. Since $r_{f}^{2}=r_{f}$ and $r_{g}^{2}=r_{g}$ we can write $r_{f}=f^{k}, r_{g}=g^{k}$ where $k=m m$, and since $g \circ \varphi=\varphi \circ f$ our assertion follows.

Now we give the promised definition of the natural transformation $\tau: \mathrm{I}_{\mathrm{C}} \rightarrow \mathrm{S}$.

If $(\mathrm{X}, f)$ is an object in C , then $\mathrm{S}(\mathrm{X}, f)=\mathrm{P} \circ \mathrm{F}(\mathrm{X}, f)$ is the pair $\left(\mathrm{X}^{*} \times \mathrm{X}^{* *}, f^{*} \times f^{* *}\right)$. Defining $\tau: \mathrm{X} \rightarrow \mathrm{X}^{*} \times \mathrm{X}^{* *}$ by $\tau(x)=\left(\pi_{f}(x), r_{f}(x)\right)$ where $\pi_{f}$ is the natural projection $\pi_{f}: \mathrm{X} \rightarrow \mathrm{X}^{*}$ and $r_{f}$ the abovementioned idempotent element in $\Gamma(f)$, the Theorem 2.I. of the paper [3] says that $\tau$ is a topological embedding of X into $\mathrm{X}^{*} \times \mathrm{X}^{* *}$ and at the same time a morphism from ( $\mathrm{X}, f$ ) to $\mathrm{S}(\mathrm{X}, f)$. To show that $\tau$ is a natural transformation it remains to verify that for any $(\mathrm{X}, f),(\mathrm{Y}, g) \in \mathrm{Obj}(\mathrm{C})$ and any $\varphi:(\mathrm{X}, f) \rightarrow(\mathrm{Y}, g)$ the following diagram commutes:


But this diagram, written in explicit form is

and its commutativity follows easily from Lemma 3.I.
From what has been said at the end of section 2, this implies that $F$ is faithful, proving thus our Theorem I.2.

Remark. The functor $\mathrm{F}: \mathrm{C} \rightarrow \mathrm{C}_{1} \times \mathrm{C}_{2}$ is not full. To show it, consider the finite pair $(\mathrm{X}, f) \in \mathrm{Obj}(\mathrm{C})$ consisting of three objects, say $\{a, b, c\}$ and the selfmapping $f$ defined by arrows as follows:


$$
f=\binom{a, b, c}{b, c, b}
$$

There are exactly three morphisms from $(\mathrm{X}, f)$ to $(\mathrm{X}, f)$, namely the identity $\varphi$ and $\psi$ defined by:

$$
\varphi=\binom{a, b, c}{b, c, b} \quad \psi=\binom{a, b, c}{c, b, c}
$$

The value of $\mathrm{F}_{1}$ on $(\mathrm{X}, f)$ can be similarly represented by the graph

and the value of $\mathrm{F}_{2}$ on $(\mathrm{X}, f)$ by the graph


Since the number of morphisms in $\mathrm{C}_{1}$ going from $\mathrm{F}_{1}(\mathrm{X}, f)$ into itself is two (one except the identity) and the number of morphisms in $\mathrm{C}_{2}$ going from $\mathrm{F}_{2}(\mathrm{X}, f)$ into itself is also two (also one except the identity) it follows that the total number of morphisms in $\mathrm{C}_{1} \times \mathrm{C}_{2}$ going from $\mathrm{F}_{1} \times \mathrm{F}_{2}(\mathrm{X}, f)$ into itself is four, showing that the functor $\mathrm{F}=\mathrm{F}_{1} \times \mathrm{F}_{2}$ is not full.

## References

[I] A. D. Wallace, Inverses in Euclidean mobs, «Math. J. Okayama Univ.», 3, 23-28, MR I5, 933 (1953).
[2] A. D. Wallace, The Gebietstreue in semigroups, "Nederl. Akad. Wetensch. Pros. Ser. A 59 Indag. Math.», 18, 271-274, MR 18, 14 (1956).
[3] L. Janos, On representations of selfmappings, "Proceedings of A.M.S.», 529-533, November 1970.

