ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

LUDVIK JANOS

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **55** (1973), n.6, p. 639–644. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_55_6_639_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1973.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 15 dicembre 1973 Presiede il Presidente della Classe Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Complementarity between nilpotent selfmappings and periodic autohomeomorphisms. Nota ^(*) di LUDVIK JANOS, presentata dal Socio G. SANSONE.

RIASSUNTO. — Sia (X, f) una coppia formata da uno spazio di Hausdorff compatto e da una trasformazione continua $f: X \to X$ tale che per qualche $n \ge I$ l'iterata f^n è idempotente, ossia, $f^{2n} = f^n$. Si mostra che la categoria C di tali coppie può essere immessa naturalmente e fedelmente nel prodotto $C_1 \times C_2$ delle due sotto-categorie piene $C_1 \in C_2$ dove C_1 consiste delle coppie nilpotenti $(f^n$ è costante per qualche $n \ge I)$ e C_2 degli autoomeomorfismi periodici $(f^n \in I'$ identità per qualche $n \ge I$).

I. INTRODUCTION

Let X be a compact Hausdorff space (all spaces considered here are compact Hausdorff) and $f: X \to X$ a continuous selfmapping of X. Considering f as an element of the topological semigroup X^X of all continuous selfmappings of X with respect to functional composition and compact open topology, we denote by $\Gamma(f)$ the closed subsemigroup of X^X generated by f. This semigroup has been thoroughly investigated by A. D. Wallace ([I] and [2]) who obtained the following important result, (Swelling Lemma), concerning those selfmappings for which $\Gamma(f)$ is compact:

THEOREM 1.1. (A. D. Wallace). Let X be a compact Hausdorff space and $f: X \to X$ a continuous selfmapping such that $\Gamma(f)$ is compact. Denoting by A the intersection of all iterates $f^{n}(X)$, i.e., $A = \cap \{f^{n}(X) \mid n \ge 1\}$ the following statements hold:

- (i) The restriction f | A of f to A is a homeomorphism of A onto itself.
- (ii) There exists a unique idempotent $r \in \Gamma(f)$ which is a retraction of X onto A.

(*) Pervenuta all'Accademia il 22 settembre 1973.

43. - RENDICONTI 1973, Vol. LV, fasc. 6.

We shall apply this theorem to the case where $\Gamma(f)$ is finite. In this case evidently the existing idempotent r is an iteration f^n of f for some $n \ge 1$. Let C denote the category whose objects Obj (C) consist of such pairs and whose morphisms $\varphi \in \text{Morph}[(X, f), (Y, g)]$ are such continuous mappings $\varphi : X \to Y$ for which $g \circ \varphi = \varphi \circ f$ for (X, f) and $(Y, g) \in \text{Obj}(C)$.

We denote by C_1 the full subcategory of C generated by nilpotent pairs $(f \text{ is such that } f^n \text{ is constant for some } n \ge 1)$ and by C_2 the full subcategory generated by pairs (X, f) where f is a periodic autohomeomorphism $(f^n \text{ is the identity mapping for some } n \ge 1)$.

Using Theorem 1.1. we shall construct functors $F_1: C \to C_1$ and $F_2: C \to C_2$ and using our previous results [3] we shall prove our main result:

THEOREM 1.2. The product functor $F = F_1 \times F_2$ provides a faithful embedding of the category C into the product $C_1 \times C_2$.

Thus in this sense the subcategories C_1 and C_2 can be viewed as complementary in the category C.

2. Construction of functors F_1 and F_2

Let $(X, f) \in \text{Obj}(C)$, we consider the relation R on X defined by $R = A \times A \cup \{(x, x) \mid x \in X\}$ with A defined as in Theorem I.I., and consider $X^* = X/R$. Thus the space X^* is obtained by shrinking A to a point and is obviously again compact Hausdorff. Observing that there is a unique continuous mapping $f^* \colon X^* \to X^*$ rendering the following diagram

(π being the natural projection), we obtain in this natural way a new pair (X^*, f^*) which is evidently nilpotent since f^{*^n} takes X^* to a point if f^n takes X onto A.

On the other hand Theorem 1.1. says that the restriction f|A is a homeomorphism of A onto itself which in our case is evidently periodic. Denoting A by X^{**} and f|A by f^{**} we just found two objects, $(X^*, f^*) \in Obj(C_1)$ and $(X^{**}, f^{**}) \in Obj(C_2)$ assigned in natural way to the object $(X, f) \in Obj(C)$. These objects are the values on Obj(C) of the functors F_1 and F_2 to be defined now. In order to extend their definition to morphisms of C let (Y, g) be another object in C and $\varphi: (X, f) \rightarrow (Y, g)$ a morphism from (X, f) to (Y, g)and let us denote by φ^* the mapping from X^{*} into Y^{*} induced by φ , i.e. the mapping $\varphi^*: X^* \to Y^*$ for which the diagram:

where π_f and π_g are the natural projections associated with the pairs (X, f) and (Y, g).

In order to prove that φ^* is a morphism we need the following.

LEMMA 2.1. Let (X, f) and (Y, g) be objects in C and $\varphi : (X, f) \to (Y, g)$ a morphism in C. Then the mapping φ^* constructed above is a morphism, i.e. $\varphi^* : (X^*, f^*) \to (Y^*, g^*)$.

Proof. We have to show that $g^* \circ \varphi = \varphi^* \circ f^*$. To this end observe the following four commutative diagrams labelled by (**I**), (**2**), (**3**), (**4**) as indicated:

Let $x^* \in X^*$, then there is $x \in X$ such that $\pi_f(x) = x^*$ and by (**1**) we have $f^*(x^*) = f \circ \pi_f(x) = \pi_f \circ f(x)$. Applying φ^* we have by (**2**) $\varphi^* \circ f^*(x^*) = \varphi^* \circ \pi_f \circ f(x) = \pi_g \circ \varphi \circ f(x)$ and by (**3**) we have $\pi_g \circ \varphi \circ f(x) = \pi_g \circ g \circ \varphi(x)$ and finally by (**4**) we get $\pi_g \circ g \circ \varphi(x) = g^* \circ \pi_g \circ \varphi(x)$ which by (**2**) equals $g^* \circ \varphi^*(x^*)$. Thus $\varphi^* \circ f^*(x^*) = g^* \circ \varphi^*(x^*)$ q.e.d.

The functor $F_1: C \to C_1$ is now defined simply by putting $F_1(X, f) = (X^*, f^*)$ and $F(\varphi) = \varphi^*$ for $(X, f), (Y, g) \in Obj(C)$ and $\varphi \in Morph[(X, f), (Y, g)]$.

Similarly in order to define the functor F_2 we need the following.

LEMMA 2.2. With (X, f), (Y, g) and φ as in Lemma 2.1. we have $\varphi(X^{**}) \subset Y^{**}$ where the meaning of X^{**} and Y^{**} was defined above.

Proof. Let $x \in X^{**} = \cap \{f^n(X) \mid n \ge I\}$. Since $\varphi \circ f = g \circ \varphi$ it follows that $\varphi \circ f^n = g^n \circ \varphi$ for every $n \ge I$. Since $f \mid X^{**}$ is a homeomorphism onto,

there exists for every $n \ge 1$ an element $x_1 \in X^{**}$ such that $x = f^n(x_1)$. Applying φ we get $\varphi(x) = \varphi \circ f^n(x_1) = g^n \circ \varphi(x_1) \in g^n(Y)$. Thus, since *n* is arbitrary we conclude that $\varphi(x) \in Y^{**}$, q.e.d.

This lemma finally shows that the assignment $F_2(X, f) = (X^{**}, f^{**})$ and $F_2(\varphi) = \varphi^{**} = \varphi | X^{**}$ is a functor from the category C into the category C₂.

Having defined the functors $F_1: C \to C_1$ and $F_2: C \to C_2$ we observe the trivial fact that both are onto (projecting the category C onto the subcategories C_1 and C_2 respectively). Next we shall show that the product functor $F = F_1 \times F_2: C \to C_1 \times C_2$ which takes the category C into the cartesian product $C_1 \times C_2$ is faithful. To achieve this we define the functor $P: C_1 \times C_2 \to C$ by putting $P[(X_1, f_1), (X_2, f_2)] = [(X_1 \times X_2), f_1 \times f_2]$ and $P[\varphi_1, \varphi_2] = \varphi_1 \times \varphi_2$ where $(X_1, f_1), (Y_1, g_1) \in Obj(C_1)$ $(X_2, f_2), (Y_2, g_2) \in Obj(C_2)$ and $\varphi_1: (X_1, f_1) \to (Y_1, g_1) = \varphi_2: (X_2, f_2) \to (Y_2, g_2).$

The functor P is simply the cartesian product of pairs and morphisms between them. It is easy to verify that its values are in C. Considering the composite functor $S = P \circ F : C \to C$ we shall exhibit a natural transformation $\tau : I_C \to S$ from the identity functor I_C to the functor S, and using our result [3] we will show that this natural transformation τ which assigns to each object (X, f) in C a morphism $\tau(X, f)$ from (X, f) to $S(X, f) = (X^* \times X^{**}, f^* \times f^{**})$, provides a topological embedding $\tau : X \to X^* \times X^{**}$. This means that two morphisms φ and ψ which are distinct and going from (X, f) remain distinct when transformed under S. But this means that S is faithful and a fortiori F itself is faithful.

3. The natural transformation from the identity functor to S

LEMMA 3.1. Let (X, f) and (Y, g) be objects in C and φ a morphism from (X, f) to (Y, g). Denoting by r_f and r_g the corresponding idempotents in $\Gamma(f)$ and $\Gamma(g)$ respectively we claim that the following diagram

Proof. We know that $r_f = f^n$ and $r_g = g^m$ for some n and $m \ge 1$. Since $r_f^2 = r_f$ and $r_g^2 = r_g$ we can write $r_f = f^k$, $r_g = g^k$ where k = mm, and since $g \circ \varphi = \varphi \circ f$ our assertion follows.

Now we give the promised definition of the natural transformation $\tau \colon \, I_C \to S.$

If (X, f) is an object in C, then $S(X, f) = P \circ F(X, f)$ is the pair $(X^* \times X^{**}, f^* \times f^{**})$. Defining $\tau : X \to X^* \times X^{**}$ by $\tau(x) = (\pi_f(x), r_f(x))$ where π_f is the natural projection $\pi_f : X \to X^*$ and r_f the abovementioned idempotent element in $\Gamma(f)$, the Theorem 2.1. of the paper [3] says that τ is a topological embedding of X into $X^* \times X^{**}$ and at the same time a morphism from (X, f) to S(X, f). To show that τ is a natural transformation it remains to verify that for any $(X, f), (Y, g) \in Obj(C)$ and any $\varphi : (X, f) \to (Y, g)$ the following diagram commutes:

But this diagram, written in explicit form is

and its commutativity follows easily from Lemma 3.1.

From what has been said at the end of section 2, this implies that F is faithful, proving thus our Theorem 1.2.

Remark. The functor $F: C \to C_1 \times C_2$ is not full. To show it, consider the finite pair $(X, f) \in Obj(C)$ consisting of three objects, say $\{a, b, c\}$ and the selfmapping f defined by arrows as follows:

There are exactly three morphisms from (X, f) to (X, f), namely the identity φ and ψ defined by:

$$\varphi = \begin{pmatrix} a , b , c \\ b , c , b \end{pmatrix} \qquad \qquad \psi = \begin{pmatrix} a , b , c \\ c , b , c \end{pmatrix}.$$

The value of F_1 on (X, f) can be similarly represented by the graph

and the value of F_2 on (X, f) by the graph

Since the number of morphisms in C_1 going from $F_1(X, f)$ into itself is two (one except the identity) and the number of morphisms in C_2 going from $F_2(X, f)$ into itself is also two (also one except the identity) it follows that the total number of morphisms in $C_1 \times C_2$ going from $F_1 \times F_2(X, f)$ into itself is four, showing that the functor $F = F_1 \times F_2$ is not full.

References

- [1] A. D. WALLACE, Inverses in Euclidean mobs, "Math. J. Okayama Univ.", 3, 23-28, MR 15, 933 (1953).
- [2] A. D. WALLACE, The Gebietstreue in semigroups, «Nederl. Akad. Wetensch. Pros. Ser. A 59 Indag. Math. », 18, 271-274, MR 18, 14 (1956).
- [3] L. JANOS, On representations of selfmappings, « Proceedings of A.M.S. », 529-533, November 1970.