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Fisica matematica. —- Continuum thermodynamics and spatial 
interaction in fluids (* (**)}. N ota di M ario C arrassi e A ngelo M orro, 
p resenta ta {*#) dal Socio C. C attaneo .

RIASSUNTO. — Viene generalizzato un teorema di Coleman e Mizel prendendo in consi­
derazione materiali visco-elastici definiti da equazioni costitutive che ammettono un tipo 
molto generale d’interazione spaziale. Il teorema è usato per ricavare le notevoli restrizioni 
cui devono essere sottoposti il flusso di calore e il tensore degli sforzi in un fluido « Maxwel- 
liano ».

§ i. Introduction

A bout ten  years ago Coleman and Noll [i] m ade a basic approach to 
continuum  therm odynam ics, and gave the procedure for rigorous derivation 
of necessary and sufficient conditions on constitutive equations for the vali­
d ity  of the C lausius-Duhem  inequality. A fter this paper, Coleman and M i­
zel [2] applied the theory  to the generalized Fourier’s law of heat conduction, 
and to therm o-elastic m aterials [3], suppressing some unnecessary hypothe­
ses contained in the first version of the Coleman-Noll theory  and applying 
the r u le (1) of equipresence in its full generality. Indeed, one of the most 
interesting points in this last form ulation is the use w ithout restriction of the 
rule of equipresence according to which “ a quantity  present as independent 
variable in one constitutive equation of a m aterial m ust be so present in 
a l l” . However, the therm o-elastic m aterial analyzed by Coleman and Mizel 
is a simple m aterial characterized by constitutive equations which depend 
only on the following field variables: the tem perature 6, the deform ation 
gradient F, the tem perature gradient 0, and the velocity gradient L. This 
“ a p r io r i” restriction on the field variables does not allow a consideration of 
situations for which the “ long range effects ” of the spatial interactions are 
relevant, and does not perm it a com parison with other independent theories 
for which such interactions are taken  into account, like kinetic theory  of 
m oderately rarefied gases.

In  this paper, instead, we take as independent variables of the constitu­
tive equations the fields of tem perature, deform ation gradient, and velocity 
gradient together w ith their spatial gradients of all orders, i.e.

( g r a d /  0 , ( g r a d /  F  , (grad)1 L

(*) This work was supported by the “ Gruppo Nazionale per la Fisica Matematica; ” 
of C.N.R.

(**) Nella seduta 26 novembre 1973.
(1) As recently suggested by C. C. Wang and C. Truesdel! [4], we adopt the word 

“ rule ” instead of “ principle ” generally used in the past.
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where p  , q , s run  from  o to any  finite num ber. Thus, our starting  point 
is the following set of constitutive equations

e =  s (6 , F ,  L ,- • - , ( g r a d /  6 , ( g r a d /F ,  - • - , ( g r a d /L  , • • •)

^  ^  V) =  7) (0 , F ,  L ,• • -, ( g r a d /  6 ,- • - , ( g r a d /F , -  • - , ( g r a d /L  , - • •)

T  =  T (0 , F , L , • • •, ( g r a d /  0 , • • •, (g ra d /  F , • • •, (g ra d /  L , • • •)

« = ê ( 0 , F , L , - - - ,  ( g r a d /  0 ,• • - , ( g r a d /F ,  - • - , ( g r a d /L  , - • •)

where s denotes the specific internal energy, vj the specific entropy, T  the 
stress tensor, and q the heat flux vector. We rem ark here th a t we disregard 
long m em ory effects of the m aterial, in spite of the very interesting researches 
developed in these last years, concerned with m aterial having memory. 
Indeed the m ain purpose of this work will be to find the restrictions, on 
constitutive equations ( i . i ) ,  which follow from the second law of therm o­
dynam ics and the principle of m aterial fram e indifference when we assume 
the m aterial to be an isotropic fluid. The results, with the aid of further 
dimensional invariance argum ents, can be easily related to the Truesdell 
theory  of the “ M axwellian ’’ fluid [5], [6]. Thus, as in the spirit of T ruesdell’s 
theory, our results can be form ally com pared with those obtained at the 
second stage by the C hapm an-E nskog process in the kinetic theory  of gases: 
th a t is, the well known B urnett expression for the stress tensor and the corre­
sponding one for the heat flux [7]. This com parison is always interesting be­
cause the question whether there are additional consequences of the Boltzmann 
equation, beyond the Navier-Stokes level of hydrodynam ics, is still open. 
In  this regard it is interesting to m ention the effect discovered by Scott et 
al. [8], [9] which was analyzed by Levi and B eenakker [10] on the basis of 
the B urnett equation; in this analysis, the term  depending on (grad)2 0, which 
is just a term  th a t is not allowed in the continuum  therm odynam ic theory 
as w£ shall show below, plays a fundam ental role.

§ 2. Outline of the thermodynamic theory

We consider a body cB with m aterial points labelled by their position X 
in a fixed reference configuration and denote by Ü the region occupied by  cB 
ih this reference configuration. A  therm odynam ic process is described by 
eight functions of X and tim e t\ the spatial position x  =  /  (X , t)\ the stress 
tensor T  =  T  (X , t), the body force b == h (X , t), the specific internal energy 
£ =  s (X , t), the heat f lu x  vector q =  q (X , t), the heat supply r  =  r  (X , t), 
the specific entropy 73 — y) (X , t), the local temperature 0 =  0 (X , t). Such 
set of eight functions is called a thermodynamic process if it is com patible with 
the laws of conservation.

T he m ain feature of the therm o-m echanic theory, as suggested by Co­
lem an, Mizel and Noll, is th a t the principles of conservation of mass, linear
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m om entum , m om ent of m om entum , and energy impose no restriction on the 
constitutive equations. Indeed, these laws can be w ritten in the form: 

C onservation of mass

(2.1) p =  p d i v / .

Balance of linear m om entum

(2.2) . PX =  div T -j~ pb .

Balance of m om ent of m om entum

(2.3) T =  T t .

Balance of energy 

(2.4) p s '=  tr {TD} —  div q +  pr

where p is the mass density  and D =  — (L +  LT) is the stretching tensor. 
Equation (2.1) is equivalent to

P =  I det F I p0

where F  =  F  (X , t) =  V / (X , t) and p0 is a positive num ber equal to the 
mass density  in the reference configuration cit.

If  we ask for the to tality  of all conceivable processes, we see th a t if any 
sm ooth m otion and stress field w hatever are given, the equation of linear 
m om entum  determ ines a body force b such as to balance their effects; if we 
prescribe any sm ooth internal energy and heat flux field, the equation of energy 
determ ines a heat absorption r  such as to balance them , too.

T he key of the new therm odynam ics, as stressed by Truesdell [11], is 
the following rem ark: the principle of growth of entropy, called Clausius- 
D uhem  inequality, determines no new quantity uniquely. T he entropy, unlike 
the other fields of therm o-m echanics, cannot be given arb itrarily  even by 
the most artificial adjustm ent of forces and supplies of heat. Indeed, the 
principle of growth of entropy yields

C2*6) PV) >  — div j-f-) +  y  pr.

U sing the equation of energy to elim inate the heat supply r  (2.6) can be 
w ritten in the form

(2*7) p (0Y) — s) +  tr  { T D } -----~ -grad 0 > 0 .

I f  we substitute for £ , rj , T  and q, the response functions given in (1.1) we 
obtain an inequality  which m ust be satisfied identically for a rb itra ry  con­
figurations *  =  y (X , t) and- arb itra ry  tem perature fields 0 =  6 (X , /). In

29. — RENDICONTI 1973, Voi. LV, fase. 5.
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/
this context, the principle of growth of entropy together with the principle 
of m aterial fram e indifference m ust be considered as restrictions upon the 
constitutive equations.

§ 3. Consequences of th e  Clausius-Duhem in e q u a lity

On the basis of the C lausius-Duhem  inequality, we have dem onstrated [12] 
the following theorem  which is a generalization of the one stated by Coleman 
and Mizel [3].

Theorem. Consider a body oB and assume only that constitutive equations 
o f the general fo rm  (1 .1) hold at each X in  oB. Under this assumption, a neces­
sary and  sufficient condition that the inequality  (2.7) hold fo r  a ll admissible 
processes in  cB is that the fo llow ing  statements be true at each X in  cB#

I) £ and Y) are functions of 0 and F alone; i.e.

(3-0 S =  s ( 0 , F )  , Y] =  Yj(0,F).

II) The entropy is given by the relation

(3.*)

where ^ =  s — 07],

I I I)  The stress T can always be w ritten as T =  T° +  T e where T° 
is gi ven by the “ equilibrium  stress relation ”

(3-4) T° (6 , F) =  PF [-3-D ’F) ] T .

IV) The extra stress T e and the heat flux q obey the dissipation ine­
quality

(3 - 5) tr  { T ' - D . } - g r a d  0 >  o

for all the values of 0 , F, L, and all the values of the spatial gradients of these 
quantities.

We rem ark  here th a t the theorem  quoted above has a general validity 
for visco-elastic m aterials with any sort of spatial interaction (without memory). 
One of us [13], indeed, has shown th a t an analogous theorem  m ust hold 
also if one assumes the constitutive equations in the form

(3-6) Ç ( X , O  =  r [ 0 ( - , O , x ( - , O , x ( - , C l

where Ç stands for the four quantities e , yj ,T , and q. A ccording to (3.6) it 
is assum ed th a t s , rj , T, and q , at a point X and tim e t , a re functionals  
of the tem perature field 0 ( •, f), of the configuration / ( • ,£ ) . ,  and of its 
tim e derivative x ( - , 0  over the entire body, at the same tim e /.
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§ 4. F lu ids. F u r th e r  re s tr ic t io n s  on T and  q

We say th a t a m aterial is a f lu id  if the tensor F occurs in (1.1) only 
through the absolute value | det F  | of its determ inant det F  or, equiva­
lently, if the constitutive equations (1.1) depend on F only through the 
specific volume v .=  i/p. T aking  into account the assertion II I)  of the 
theorem , the equilibrium  stress 1 can now be w ritten in the form

(4.1) i ° ( 6  ,») =  — /  (0, *01

where p  =  p  (0 , v) is a scalar function of 0 and v defined by p  (0 , v) =  

— L~  * Of course, we can choose, as independent variable, p  instead

of v if is a sm oothly invertible function in the variable v. Furtherm ore, 
we m ust take into account the restrictions upon the response functions T and 
q due to the principle of m aterial fram e indifference. W ithout any  further 
discussion we take the  results reported by Truesdell and Noll [6] according 
to which the response functions T and q depend on the velocity gradients 
only through D and (g ra d / L. U sing this result, the dissipation inequality  
(assertion IV  of our theorem ) m ust now be w ritten

(4.2) T =  0 / f { f D }  —  q • grad 0 >  o

where T e aqd q are given by

T  =  T  (0 , p  , D , grad 0 , grad p  , grad L , • • •)
(4.3)

q =  q (0 , P , D , grad 0 , grad p  , grad L , • • •) .

The dissipation inequality  (4.2) tells us th a t F has a m inim um  at D — O 
and grad 0 — 0 . Thus, it is a consequence of the C lausius-D uhem  inequality  
that, when D =  O and grad 0 =  0 , both T e and q m ust vanish, regardless 
of the values of all the other variables which appear in (4.3). This means 
tha t if we consider approxim ation form ulas for T e and q for small values of 
the variables, it does not m atter here if we have no “ a priori ” criteria about 
the “ smallnéss ” of the variables, all term s of the expansion m ust include 
(D)m and/or (grad 0)w as a factor, where m  and n run  from 1 to any  finite 
num ber. This result is the m ain point of our analysis which derives from  the 
theorem  stated above; in the next section we will show explicitly its m eaning 
when we specify the definition of first and second order term s in the expansion 
of T e and q. There is another restriction th a t will be very useful in the 
following. This is a consequence of the principle of m aterial fram e indiffer­
ence or, in a more simple way, it is a consequence of the invariance of the 
physical laws under spatial inversion. Indeed, under a change of fram e 
defined by the transform ation

yp =  Qoc
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where Q is an orthogonal tensor, the therm o-m echanic effects are indiffe­
rent, i.e.

z =  z YJ =  YJ , T =  QTQ , q =  Qq

and all constitutive equations are indifferent, too. If  we put Q =  — I, we 
obtain two identities which m ust be fulfilled by the stress tensor T and the 
heat flux q, i.e.

(4.4) T (6 , p  , D , —  grad 6 , —  grad p  , —  grad L , • • •) =

=  T (0 , p  , D , grad 0 , grad p  , grad  L , • • •)
and

(4-5) q (0 , P , D , —  grad 0 , —  grad ^  , —  grad L ,• • •) =

—  q (0 , p  , D , grad 0 , grad p  , grad L , • • *) .

Equations (4.4) and (4.5) im ply tha t if we use some series expansion -  whatever 
the physical m eaning of the param eter selected to justify the series expansion -  
the response function T can depend only on those term s which do not change 
sign under inversion whereas the response function q can depend only on 
the term s th a t change sign under inversion.

§ 5. The “ Maxwellian ” fluid . Conclusions

The Trues dell theory  of the “ M axwellian ” fluid was an attem pt to con­
struct a model reflecting some of the properties of rarefied gases. Truesdell 
proposed constitutive equations for the stress tensor T and the heat flux 
vector q tak ing  as independent variables the fields of velocity, pressure, and 
tem perature, and their spatial gradients of all orders. U sing the principle of 
equipresence for the first time, both T and q were assum ed to be analytic 
functions of the same variables and of two fundam ental physical dim ensional 
constants, nam ely a natu ral viscosity and a natural therm al conductivity 
X0 . Thus, from  this starting  point, Truesdell was able to show, by m eans of 
dim ensional analysis, th a t [x0 emerges as a possible ordering parameter and 
in this w ay it was possible to com pare the results with those of the kinetic 
theory; particu larly  w ith first and the second approxim ations for the stress 
and the heat flux obtained by  the Chapm an-Enskog process for the solution 
of the Boltzm ann equation.

Coming back to our therm odynam ic theory  of a fluid, we m ust now m ake 
an assum ption which allows us to give a physical definition of “ first ” and 
“ second ” approxim ations in the expansion of T and q. W e suppose, as 
Truesdell does, th a t the constitutive equation for the stress tensor T and the 
heat flux  vector g depend upon the viscosity coefficient and the heat conduc­
tion coefficient / 0 . T hen we can develop the stress T and the heat flux g in a 
power series in the  variables which appear in (4.3). Hence, with the aid of 
the previous assum ption, we can order, using the sam e dim ensional analysis
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em ployed by Truesdell, the term s of the power series according to the power 
of the viscosity coefficient. In  this w ay we shall find just the restrictions which 
the second law of therm odynam ics imposes on the “ M axwellian ” fluid. 
Instead of [x0 and X0, we use [x0 and the ratio =  X0/m*o which is related to 
the dimensionless ratio f  =  70/(x0 cv whose value is nearly  a constant w ith the 
sam e value 5/2 for all m onoatom ic gases (in this case, hence, is propor­
tional to the ideal gas constant R). The whole expansion of T and q can 
be written

y _(^T -j- (2)T j

q =  (°)g +  0)q +  Wq H-----

where the upper index on the left means now the power of (x0 which appears in 
the expansion. Thus, if we sim ply limit ourselves to writing out all the term s 
of order o, 1 and 2 in the viscosity coefficient we obtain, for the stress tensor

(5-2)
(1) 'X'   1 T\

-*-*>■ — f*o Tijkl ^ kl

(2) np _ ^0 21 p \ p .
^ i j  p  ^ ijrsh k  ^ r s  kk

0̂ 0̂ 23
6 ,rA ,

and for the heat flux

o

ip0

~ l  R«21K ^  D 9,7i +  22K d  a
P p2

where " t .... and "K .... are functions only of dimensionless variables. For 
a full com parison with the theory  of the “ M axwellian ” fluid and with 
the results obtained at the second stage by the Chapm an-Enskog process 
in the kinetic theory  of gases, we m ust impose the isotropy of the fluid. These 
detailed calculations are carried out in ref. [12]. Here we w ant to stress th a t 
equations (5.2) and (5.3) m anifest all the consequences of the therm odynam ic 
theory. Indeed, we have applied all the restrictions which can be derived 
from  the Clausius-Duhem  inequality, the principle of m aterial fram e indif­
ference including the invariance under the inversion operator. Thus the main 
results of this analysis can be sum m arized as follows:

a) The (2)T expression for the stress tensor T cannot contain term s of 
the type (grad)2 0 , (grad)2 p, and grad p  ® grad p  owing to the Clausius- 
Duhem  inequality  or second law of therm odynam ics.

U) Likewise, in the ^ q  expression for the heat flux q, a term  depending 
on grad p i called by Truesdell the “ Brillouin effect ” , is not allowed, and, in 
the (2)g expression, term s depending on grad L cannot appear because of the 
C lausius-Duhem  inequality.

(5-3)

%  =  

%  =

(%  =
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