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Fisica matematica. — Continuum thermodynamics and spatial
interaction in flurds . Nota di MArR1io CARRASST e ANGELO MORRO,
presentata @ dal Socio C. CatTANEO.

RIASSUNTO. — Viene generalizzato un teorema di Coleman e Mizel prendendo in consi-
derazione materiali visco-eclastici definiti da equazioni costitutive che ammettono un tipo
molto generale d’interazione spaziale. Il teorema & usato per ricavare le notevoli restrizioni
cui devono essere sottoposti il flusso di calore e il tensore degli sforzi in un fluido « Maxwel-
liano ».

§ 1. INTRODUCTION

About ten years ago Coleman and Noll [1] made a basic approach to
continuum thermodynamics, and gave the procedure for rigorous derivation
of necessary and sufficient conditions on constitutive equations for the vali-
dity of the Clausius-Duhem inequality. After this paper, Coleman and Mi-
zel [2] applied the theory to the generalized Fourier’s law of heat conduction,
and to thermo-elastic materials [3], suppressing some unnecessary hypothe-
ses contained in the first version of the Coleman-Noll theory and applying
the rule @ of equipresence in its full generality. Indeed, one of the most
interesting points in this last formulation is the use without restriction of the
rule of equipresence according to which “ a quantity present as independent
variable in one constitutive equation of a material must be so present in
all”. However, the thermo-elastic material analyzed by Coleman and Mizel
is a simple material characterized by constitutive equations which depend
only on the following field variables: the temperature 0, the deformation
gradient F, the temperature gradient 0, and the velocity gradient L. This
‘““a priori”’ restriction on the field variables does not allow a consideration of
situations for which the « long range effects ”’ of the spatial interactions are
relevant, and does not permit a comparison with other independent theories
for which such interactions are taken into account, like kinetic theory of
moderately rarefied gases.

In this paper, instead, we take as independent variables of the constitu-
tive equations the fields of temperature, deformation gradient, and velocity
gradient together with their spatial gradients of all orders, i.e.

(grad)”® , (grad)’F , (grad)’L

(*) This work was supported by the “ Gruppo Nazionale per la Fisica Matematica ”
of C.N.R.

(¥*) Nella seduta 26 novembre 1973.

(1) As recently suggested by C.C. Wang and C. Truesdell [4], we adopt the word
‘rule” instead of ‘“ principle ” generally used in the past.
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where p,¢,s run from o to any finite number. Thus, our starting point
is the following set of constitutive equations

=z¢(®,F,L, -, (grad)’6,---, (grad)’F,- -, (grad)’L, - - -
n=%0,F,L, -, (grad)’0,---, (grad)’F,- -, (grad)’L ,- - -
T=T(@,F,L, -, (grad)?0,---, grad)’F,- -, (grad)’L,- -
a=q®,F,L, -+, (grad)’6,---, (grad)’F,- - -, (grad)'L ,- - -

(1.1)

N RN N

where ¢ denotes the specific internal energy, 7 the specific entropy, T the
stress tensor, and g the heat flux vector. We remark here that we disregard
long memory effects of the material, in spite of the very interesting researches
developed in these last years, concerned with material having memory.
Indeed the main purpose of this work will be to find the restrictions, on
constitutive equations (1.1), which follow from the second law of thermo-
dynamics and the principle of material frame indifference when we assume
the material to be an isotropic fluid. The results, with the aid of further
dimensional invariance arguments, can be easily related to the Truesdell
theory of the “Maxwellian ” fluid [5], [6]. Thus, as in the spirit of Truesdell’s
theory, our results can be formally compared with those obtained at the
second -stage by the Chapman-Enskog process in the kinetic theory of gases:
that is, the well known Burnett expression for the stress tensor and the corre-

sponding one for the heat flux [7]. This comparison is always interesting be-
~ cause the question whether there are additional consequences of the Boltzmann
equation, beyond the Navier-Stokes level of hydrodynamics, is still open.
In this regard it is interesting to mention the effect discovered by Scott ez
al. [8], [9] which was analyzed by Levi and Beenakker [10] on the basis of
the Burnett equation; in this analysis, the term depending on (grad)? 0, which
is just a term that is not allowed in the continuum thermodynamic theory
as we shall show below, plays a fundamental role.

§ 2. OUTLINE OF THE THERMODYNAMIC THEORY

We consider a body ® with material points labelled by their position X
in a fixed reference configuration and denote by & the region occupied by B
in this reference configuration. A thermodynamic process is described by
eight functions of X and time #: the spatial position x = y (X, £); the stress
tensor T = T (X, #), the body force b = b (X, ¢), the specific internal energy
e=¢e(X,?), the keat flux vector q = q (X, ?), the heat supply r =r (X, ?),
the specific entropy m = (X, #), the local temperature 6 = 0 (X ,£). Such
set of eight functions is called a thermodynamic process if it is compatible with
the laws of conservation.

The main feature of the thermo-mechanic theory, as suggested by Co-
leman, Mizel and Noll, is that the principles of conservation of mass, linear
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momentum, moment of momentum, and energy impose no restriction on the
constitutive equations. Indeed, these laws can be written in the form:
Conservation of mass

(2.1) 6 =p divy.
Balance of linear momentum

(2.2) oy = divT + pb.
Balance of moment of momentum

(2.3) T=T"
Balance of energy

(2.4) pe = tr {TD} —div g + pr

where p is the mass density and D = % (L + L") is the stretching tensor.
Equation (2.1) is equivalent to

I
(2-5) ® = TdecE] Po

where F =F (X,#) = Vy (X,#) and g, is a positive number equal to the
mass density in the reference configuration &.

If we ask for the totality of all conceivable processes, we see that if any
smooth motion and stress field whatever are given, the equation of linear
momentum determines a body force b such as to balance their effects; if we
prescribe any smooth internal energy and heat flux field, the equation of energy
determines a heat absorption 7 such as to balance them, too.

The key of the new thermodynamics, as stressed by Truesdell [11], is
the following remark: the principle of growth of entropy, called Clausius-
Duhem inequality, determines no new quantity uniquely. The entropy, unlike

~the other fields of thermo-mechanics, cannot be given arbitrarily even by
the most artificial adjustment of forces and supplies of heat. Indeed, the
principle of growth of entropy yields

(2.6) o > — div (_‘g) + 5 or

Using the equation of energy to eliminate the heat supply » (2.6) can be
written in the form

(2.7) 9(97]—5) —I—Zr{TD}—%‘q'gradGZO.

If we substitute for ¢, %, T and g, the response functions given in (1.1) we
obtain an inequality which must be satisfied identically for arbitrary con-
figurations x = y (X, #) and arbitrary temperature fields 0 = 6 X,?. In

29. —— RENDICONTT 1973, Vol. LV, fasc. 5.
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/
this context, the principle of growth of entropy together with the principle
of material frame indifference must be considered as restrictions upon the
constitutive equations.

§ 3. CONSEQUENCES OF THE CLAUSIUS-DUHEM INEQUALITY

On the basis of the Clausius-Duhem inequality, we have demonstrated [12]

the following theorem which is a generalization of the one stated by Coleman
and Mizel [3].

THEOREM. Consider a body % and assume only that constitutive equations
of the general form (1.1) hold at each X in B. Under this assumption, a neces-
sary and sufficient condition that the inequality (2.7) hold for all admissible
processes in B is that the following statements be true at each X in $B.,

I) € and % are functions of 0 and F alone; i.e.
(3.1) » =c(0,F) n=17(0,F).

IT) The entropy is given by the relation

. 30 (0, F
(32) 70, F)=— 200,

where ¢ = ¢ — 0.

IIT) The stress T can always be written as T = T® + T° where T°
is given by the ‘ equilibrium stress relation ”

R > T
(34) (0, F) = oF [HED ]

IV) The extra stress T° and the heat flux g obey the dissipation ine-
quality

(3-5) z‘r{T’D}——%q-gradﬁzo

for all the values of 0, F,‘\L, and all the values of the spatial gradients of these
quantities.

We remark here that the theorem quoted above has a general validity
for visco-elastic materials with any sort of spatial interaction (without memory).
One of us [13], indeed, has shown that an analogous theorem must hold
also if one assumes the constitutive equations in the form

(3'6) C(X,t>:Cx[e("t)’X<"t)’)%(’:f>]

where { stands for the four quantities €, n,T, and g. According to (3.6) it
is assumed that ,%,T, and g, at a point X and time # are jfunctionals
of the temperature field 0 (-,#), of the configuration y (-,#), and of its
time derivative )'((-,t) over the entire body, at the same time 2
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§ 4. FLUIDS. FURTHER RESTRICTIONS ON T AND ¢

We say that a material is a fuid if the tensor F occurs in (I1.1) only
through the absolute value |detF| of its determinant det F or, equiva-
lently, if the constitutive equations (1.1) depend on F only through the
specific volume v = 1/p. Taking into account the assertion III) of the
theorem, the equilibrium stress T° can now be written in the form

(4.1) T°0,0)=—25(0,0)1

where p = 5 (0,0) is a scalar function of 0 and v defined by 2 0,2) =
_14’%’0_& Of course, we can choose, as independent variable, p instead

of v if % is a smoothly invertible function in the variable . Furthermore,

we must take into account the restrictions upon the response functions T and
q due to the principle of material frame indifference. Without any further
discussion we take the results reported by Truesdell and Noll [6] according
to which the response functions T and g depend on the velocity gradients
only through D and (grad)’'L. Using this result, the dissipation inequality
(assertion IV of our theorem) must now be written

(4.2) F=0#{T'D}—g-gradf>o0
where T° and g are given by

T"=T(®6,p,D,grad 0, grad p,gradL,---)

*3) q =q(b,p,D,grad 0,grad p,gradL,.--).

The dissipation inequality (4.2) tells us that I has a minimum at D = O
and grad 6 = O. Thus, it is a consequence of the Clausius—Duhem inequality
that, when D= O and grad 6 = O, both T° and g must vanish, regardless
of the values of all the other variables which appear in (4.3). This means
that if we consider approximation formulas for T¢ and g for small values of
the variables, it does not matter here if we have no “ a priori ”’ criteria about
the “smallness ’ of the variables, all terms of the expansion must include
(D)” and/or (grad 0)" as a factor, where 7 and # run from 1 to any finite
number. This result is the main point of our analysis which derives from the
theorem stated above; in the next section we will show explicitly its meaning
when we specify the definition of first and second order terms in the expansion
of T and g. There is another restriction that will be very useful in the
following. This is a consequence of the principle of material frame indiffer-
ence or, in a more simple way, it is a consequence of the invariance of the
physical laws under spatial inversion. Indeed, under a change of frame
defined by the transformation
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where Q is an orthogonal tensor, the thermo-mechanic effects are indiffe-

rent, i.e.
* *

f=c , 7'=n , T'=QIQ , ¢ =0Qq
and all constitutive equations are indifferent, too. If we put Q = —1, we
obtain two identities which must be fulfilled by the stress tensor T and the
heat flux g, i.e.

(4.4) T®,p,D,—grad6,—grad p,—gradL,---) =
=T(®,p,D,grad 6,grad p,gradL,---)

and

<45) Q(G’P>D,—grade»”‘“gradpy'—gradln“‘>=

—q(0,p,D,grad 6,grad p,gradL,---).

Equations (4.4) and (4.5) imply that if we use some series expansion — whatever
the physical meaning of the parameter selected to justify the series expansion —
the response function T can depend only on those terms which do not change
sign under inversion whereas the response function g can depend only on
the terms that change sign under inversion.

§ 5. THE “ MAXWELLIAN ”’ FLUID. CONCLUSIONS

The Truesdell theory of the “ Maxwellian” fluid was an attempt to con-
struct a model reflecting some of the properties of rarefied gases. Truesdell
proposed constitutive equations for the stress tensor T and the heat flux
vector g taking as independent variables the fields of velocity, pressure, and
temperature, and their spatial gradients of all orders. Using the principle of
equipresence for the first time, both T and g were assumed to be analytic
functions of the same variables and of two fundamental physical dimensional
constants, namely a natural viscosity t, and a natural thermal conductivity
Xo- Thus, from this starting point, Truesdell was able to show, by means of
dimensional analysis, that p, emerges as a possible ordering parameter and
in this way it was possible to compare the results with those of the kinetic
theory; particularly with first and the second approximations for the stress
and the heat flux obtained by the Chapman-Enskog process for the solution
of the Boltzmann equation.

Coming back to our thermodynamic theory of a fluid, we must now make
an’ assumption which allows us to give a physical definition of “ first ”’ and
“second ”’ approximations in the expansion of T and g. We suppose, as
Truesdell does, that the constitutive equation for the stress tensor T and the
heat ﬂux vector g depend upon the viscosity coefficient p and the heat conduc-
tion coefficient y,. Then we can develop the stress T and the heat flux ¢ in a
power series in the variables which appear in (4.3). Hence, with the aid of
the previous assumption, we can order, using the same dimensional analysis



M. CARRASSI e A. MORRO, Continuum thermodynamics and spatial, ecc. 443

employed by Truesdell, the terms of the power series according to the power
of the viscosity coefficient. In this way we shall find just the restrictions which
the second law of thermodynamics imposes on the ‘ Maxwellian” fluid.
Instead of p, and %,, we use py and the ratio R, = %,/i which is related to
the dimensionless ratio f = X,/ ¢, whose value is nearly a constant with the
same value 5/2 for all monoatomic gases (in this case, hence, R, is propor-
tional to the ideal gas constant R). The whole expansion of T and g can
be written

T—Or O L O .
(5.1)

q:(o)q+(1)q—l_(2)q+...

where the upper index on the left means now the power of w, which appears in
the expansion. Thus, if we simply limit ourselves to writing out all the terms
of order o, 1 and 2 in the viscosity coefficient we obtain, for the stress tensor

O, — — 3

(1) _ 1
Tz‘j = Mo Tym Dy

o R

2 2
/ Op _ *oom D. D O 0.0 "2 g
g T Tijnﬁl: rs “hk a7 Tirs Y,y Ui _I— 2 Tz’jr: v ]) ’s

2 20
and for the heat flux

0
( )gz = Q

My, = uy R, 'K, 0,
(53> gz (“‘0 n 77 Vsj

% 2T
( <2)9;‘ = R, Zleh D, 0,, + _&9321(1 zzKirsh D, 2.1
? ?

where “7t.... and "K.... are functions only of dimensionless variables. For
a full comparison with the theory of the “ Maxwellian”’ fluid and with
the results obtained at the second stage by the Chapman-Enskog process
in the kinetic theory of gases, we must impose the isotropy of the fluid. These
detailed calculations are carried out in ref. [12]. Here we want to stress that
equations (5.2) and (5.3) manifest all the consequences of the thermodynamic
theory. Indeed, we have applied all the restrictions which can be derived
from the Clausius-Duhem inequality, the principle of material frame indif-
ference including the invariance under the inversion operator. Thus the main
results of this analysis can be summarized as follows:

@) The T expression for the stress tensor T cannot contain terms of
the type (grad)® 0, (grad)® p, and grad p ® grad p owing to the Clausius-
Duhem inequality or second law of thermodynamics.

) Likewise, in the Wg expression for the heat flux g, a term depending
on grad p, called by Truesdell the ““ Brillouin effect ”’, is not allowed, and, in
the ®q expression, terms depending on grad L cannot appear because of the
Clausius-Duhem inequality.
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