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Fisica matematica. — 7%e¢ initial value problem for the neutron
transport equation by the semi—group method M. Nota di ENzo BARONE,
presentata @ dal Socio D. GRAFFI.

RIASSUNTO. — Si studiano due problemi differenziali che si presentano nella teoria
di trasporto dei neutroni in uno spazio di Sobolev dissimmetrico con peso con il metodo dei
Semi-gruppi di operatori e si stabilisce D’esistenza e unicitd della soluzione.

§ 1. INTRODUCTION

In neutron transport theory [2], the following differential problems are
of great interest:

1

o .0y C > '
il A qu(x,y.,t)dp. where ¢ >0
21
(1.2) Cu(—a,p;t)=o0 if o<u<Lr1, z2>o0
'u(a,y.;z‘)=o if —1<p<o, >0

Lu(x,p;0)=1u(x, W

/ 1

w _ ou ¢ f .. ,
S 95;+2Ju(x,g,t)du where ¢ > o
(1.2) / ~1
(u.(—a,p.;t):u(a,y.;t) if l[u|<1,2>0
(1 0) = uo (%, @)

where u(x, u;#) is defined in IXR;, I =[—a,a]X[—1,1] and R,
is the set of real numbers >o. The unknown # (¥, u;?#) is related to the
neutron density N (x, u;#) (note [5], pp. 217) by the transformation:

!

N(x,p.;z")=exp(—0't)-u(x,p.;t), = uot.
Problems (1.1) and (1.2) may be written more synthetically as follows

S %=Au

(1.3)

[ o) =

(*) Work performed under the auspices of the C.N.R.
(**) Nella seduta del 26 novembre 1973.
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provided that we consider # as transformation from R, into H, where H is
an appropriate functional space and A is an operator, whose domain D (A)
conglobates the boundary conditions appearing in (1.1) and (1.2).

There is a wide literature about the study of two problems synthesized
by (1.3) where H = L, (I) (note [5], [6]; for further references see note [1])
by Semi-groups theory of boundedlinear operators (note [3]). But as far as
we know, system (1.3) has never been studied by the Sobolev spaces theory
(note [7]). This seems connected with the fact that, wanting to use Semi-
groups theory, it is impossible to face the problem if H = W3 (I): in fact,
since the trace theorem holds in this case, D (A) cannot be dense in Wj (I)
(note Hille-Yosida theorem, [3]). It nevertheless seems fairly natural to
investigate the problem in a suitable unsymmetric Sobolev space W, (I), as
we will specify in the next number. .

In two papers that are going to be published in ““ Ricerche di Matematica ”,
we proved in detail that, in the W, (I) space, the operators A (of each of the
two problems) are infinitesimal generators of (Cy) Semi-groups (note [3], [4],
[8]). Therefore, for a result of Semi-groups theory, there exists and is unique
the solution of both (1.1) and (1.2) for any choice of 2, in D(A). More pre-
cisely, we proved that the operator A of the 1%t problem is a G (1, ¢) operator
(note [4]), while the one of the 2 problem is a G (M, 1/a - Mc¢) operator,
where M > 1.

The reason of the choice of the space W, (I) lies in the greater regularity
of the solution in such a space. Precisely, the solution belongs to Wi (I,),
for each closed set Ij, contained in I, without points in common with the
straight line w=o0 (note in §2 D (B)=D(A) definition).

§ 2. NOTATION AND RESULTS

Let & (I) then be the set of the functions with complex values and of
class C* in I. 1In 8 (I), we define the following scalar product:

(2.1) (f18)e = (f18) + W/l vgw) v/, ges(l)
where (. | .) is the usual scalar product in L,(I), ie., ,
19 = [

I

Let W, (I) then be the completion of &(I) with respect to (.|.),;
obviously W, (I) is a Hilbert space.
Let us consider following operators:

'SB*.=——y.9—i-
(2.2) ZD(B*)={f65<I)If<—a,u-)=0
[ if uelo, 1] and f(a,w)=o0 if pe[—1,0[}
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in 1% problem,

(2.2) sB*'z_“L@?'
DB)={feed) | f(—a,w=f(a,w) where |p| <1}

in 22¢ problem, and in both problems

(2:3) g Te =;/ dw’

-1
e Do =86®D.

It is evident that with said definitions B, and ], are linear operators in & )
consequently in W, (I).

Operator B, is not bounded in W, (I) but it may be closed. Then we can
define B as smallest closed extension.

On the contrary, J, is bounded with norm 1 and therefore we indicate
by J its extension to W, (I)
Then, we define operator A as:

(2.4) A =B+ (].

Evidently: D (A) = D (B), since D(]) = W,(I).

Operator A may be considered as a perturbation of B by the bounded
operator ¢]J. Hence, it is enough to prove that B is an infinitesimal generator
of a (Co) Semi-group (note [3], pp. 389).

More precisely, I proved the following theorems:

THEOREM 1. If I'=1—a,a[x[—1, 1} and
@(I’):{h66(1)|37]>09‘}L(x,y,)=o Vx€[—a,—a+n]U[a—n,a]}

D) is dense in W, (1). Consequently, D (B) (in both cases) is dense in W ()
because D (1'yCD(B,)CD(B).

THEOREM 2. /In the 1% problem, we have:
VA>o:rep(B)A RO B <5 ;
therefore B € G(1,0).

THEOREM 3. [n the second problem, we have:
M

Sfor each positive integer n, where M is a constant >1. T herefore,

(2.5) VA>o0:rep(B), VA>—:||R"(;B)| <

BEG(M,-;—).
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§ 3. SUMMARY OF THE PROOFS OF THE MAIN THEOREMS

‘THEOREM 1. First, we note that, since &(1) is dense in W, (1), it is enough
to prove that D(1') is dense in &(1) i.e.

(3.1) Vfe 8 (D) and Ve >o0 IeD()> Wf—7],< Ke

where K is a positive constant, independent of «.
For this purpose, fixed f and ¢, we define:

JFlx,w where xe[—a+2c,a—2¢], |p| <1
o where x€[—a,—a+tc]U[a—¢a], |p| <1
glx,u)= X——{_::;sf<——a—|—2€,p,> where xe€[—a-+te, —atz2¢e], |pn] <1
—x+a—e¢

—————f(a—2¢c,u) where x€[a—2,a—c¢], |u|<1

and we prove || f—g []i < Kje if K; is a constant > o.

Then, we consider the functions g, (x, p) = g(\x, Ap).

V (x, ) €R?5' (v, )€l where A€]o, 1] and we observe that they
are the same kind of ¢ and that they are defined on

1A=(;% a

X [— 1 421

We then prove (note also [7], Chapt. 2, § 3)
Welt —=, 1[5 g, —gl,<e.

Finally, we denote by & where 7 > o0, the mean (averaged) function
for g,,.

These are of class C* and such that &y (@, 1) =0

a-+¢
)\I

a—¢

Ve < — —n Vx>—)\,——-|—71.

a;? " such that
| &5 —&wlly <e This % = &, function belongs to D (1) and verifies
the (3.1) where K=K’ + 2.

Among these, we may find a &y Where '€ |0, a—

THEOREM 2. Let be N> o0. In order to prove that h€p(B), as (1) is
dense in W, (1), it is enough to show that, Vg €D (1'), the equation (in f):

(3.2) W —B)f=g

admits a unigue [ €D (B) solution.
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Then, in order to prove that R (A; B) is a bounded operator with norm
< 1/A, we have to show that

(3.3) I/l <+ llgl,,  where f=R(;B)g

The bounded operator R (A ; B) is defined on 9 (I') and it may be prolonged
over the whole W, (I). Consequently, (3.3) will be valid Vg€ W, (I).
We begin studying the problem:

M@ w e f, =g, w)
(3-4) ? f(—a,w=o0 welo, 1]
fl@a,w=o0 me[—r1,0[
in I"=[—a,a]x([—1,0[u]o, 1]) if geDI") and r>o.
We obtain the solution

x

(3:5) Few=|

+a

exp [— (x — i)‘

's;';]y

g, wde

where we take the + if u <o and the — if u > o.
Then, defining f(x,0)= %g(x , 0), we prove that f€&(I) by induction.

Thus, problem (3.4) and equation (3.2) coincide and, therefore, we have
only to prove (3.3).
We notice that, if p=Fo:

+ 00
flw = [ Ker—r, w8, ¢, 0 d =Ko,

—00

where &, 1s the g prolonged to zero if x < —a, x >a and

o 2<0, Ww>o0
Lexp(-——Lz) g >0, iL>O
A o W
K (3 ’ y‘) - —1 / by

( m exp(mrz) z2<o0, pm<o
o >0, w<o.

~—!‘-oo

Denoting by &= —V—I: / exp (#xf) g (#) d¢ the Fourier transformation (of
2m | :

the £), as K (., p) and &, (., w) are some functions that may be added in
R, we have:

I
A—ix
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then, by using Parseval equality, we get

2 +o00 +00
176wl < [ [Kag,Fav=[ |R-g,Fdr <

(o9

’ a
ﬁ—zixzjlfolzdx:zﬁflg(xy v 1% dx
then
I I
(36 Il < 5 lgl

In order to evaluate || uf,||, notice that, by deriving with respect to p and
by multiplying (3.4) by @, we have:

) )

‘ A (wfu) + “”é;(“‘fu) =ugu +N—g

| Wha(—a,m=o0 w >0

L Wha(a,w)=o0 w<o

which means that pf, has the form (3.5), where, instead of g, there is
ugy + A —g. By the same argument used to obtain (3.6), it follows:

lofull £ o= - Sl + 0 =gl < 5 lwalP (= 4 1) el -

~ Vawm Var
Hence our assertions are completely proved.

THEOREM 3. As for Theorem 2, we first prove that, if \> o and g€ D (1').
then the (3.2) functional equation is equivalent to the problem.

(3.7) [ G, Wt u e, w=g,w
| fl—a,w)=F(a,w

by showing that its solution:

. - expl[za—-(x——z‘)]
2 an : [ / £ g(l‘y P‘) dz +
exp( )—I Y. W
(38> f(x) “Q = { : exp —* (.r—t)J i :
' + / m g(t,v&dz“ w==0
%g (x,0) where p=o0

is of C® class, by induction.
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Secondly we prove inequality (2.5) as follows.

We put:
o) ifZ<—2a or Z>2a
)
L exp [—- (za——‘Z)]
— & . if Ze[o, 24]
6o Kew=) =)
A

' xp(— 7] .
N if Ze[—2a, 0]

exP( M >_I ’

i

then we put ¢ =o0 if x <—a and if x >a. As before, we then have
that /= K«g and by calculating the Fourier transformation of K, we get:

2 a\

R . . I + exp
K(x,y,):—fﬁ~m- (1 4 cos 2ax) + 7 (sen 2 ax) o

I — exp

On the other hand, if A >1/a we then have Vpe[— 1, 1] — {0}

2 ah

2
Y ) <2 and, consequently, |K|*< ;2:—

/

1 - exp

I
2 A2
I — exp

By the same method used in Theorem 2, we prove that:
6
A=A leflP <2 [+ 4] 55 - gl

To prove the assertion fully, it is enough to show (note [3], p. 37) that:

2 Mz(%!)2 9
= 520t ) Hg”*
* . .

(310) IM>o0, Vai>L  and VneN:H ;f

For this purpose, by deriving (3.7) 7 times with respect to A we have by
Leibnitz rule:

' f o 'f TS
)\ — e = —— n R
g o\ T x vt

? ( E;;‘f)(—a, u)=(—z;{*>(a, w .

Then, just as the solution of (3.7) may be put into the form f= Kxg,
" f

o solution of a problem similar to the (3.7), where instead of g there is

P \GaE A .
_”—*—ax,,ﬂ' , may be written as follows

(3.11)

7 7—1
'/ =—K*(n3—{> VreN.
oA N
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Thus, for recursion and for Parseval equality, we have

f
"

= IR S G (2T g

Again, by deriving with respect to w and by multiplying by u we have easily
from (3.11):

9" il
“‘L;:‘ 9”{ ( >+ Tfﬁ)( +I)[Hgll + llugau ]
Then:
7 2 9
991{ *£<n!)2£f_ zz;”i)l )\2(;_1) llgl?  where £’=6<%—|-1)
2

2
that leads to the (3.10) since the sequence % is infinitesimal
hence bounded. (‘{) "
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