## Atti Accademia Nazionale dei Lincei

## Classe Scienze Fisiche Matematiche Naturali Rendiconti

Enzo Barone

## The initial value problem for the neutron transport equation by the semi-group method

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 55 (1973), n.5, p. 429-436.<br>Accademia Nazionale dei Lincei<br>[http://www.bdim.eu/item?id=RLINA_1973_8_55_5_429_0](http://www.bdim.eu/item?id=RLINA_1973_8_55_5_429_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Fisica matematica. - The initial value problem for the neutron transport equation by the semi-group method ${ }^{(*)}$. Nota di Enzo Barone, presentata ${ }^{(* *)}$ dal Socio D. Graffi.

RiASSUnto. - Si studiano due problemi differenziali che si presentano nella teoria di trasporto dei neutroni in uno spazio di Sobolev dissimmetrico con peso con il metodo dei Semi-gruppi di operatori e si stabilisce l'esistenza e unicità della soluzione.

## § i. Introduction

In neutron transport theory [2], the following differential problems are of great interest:

$$
\begin{cases}\frac{\partial u}{\partial t}=-\mu \cdot \frac{\partial u}{\partial x}+\frac{c}{2} \int_{-1}^{1} u\left(x, \mu^{\prime} ; t\right) \mathrm{d} \mu^{\prime} & \text { where } c>0  \tag{I.2}\\ u(-a, \mu ; t)=0 & \text { if } 0<\mu \leq \mathrm{I}, t>0 \\ u(a, \mu ; t)=0 & \text { if }-\mathrm{I} \leq \mu<\mathrm{o}, t>0 \\ u(x, \mu ; \mathrm{o})=u_{0}(x, \mu) & \text { where } c>0 \\ \frac{\partial u}{\partial t}=-\mu \frac{\partial u}{\partial x}+\frac{c}{2} \int_{-1}^{1} u\left(x, \mu^{\prime} ; t\right) \mathrm{d} \mu^{\prime} & \text { if }|\mu| \leq \mathrm{I}, t>0 \\ u(-a, \mu ; t)=u(a, \mu ; t) & \\ u(x, \mu ; 0)=u_{0}(x, \mu) & \end{cases}
$$

where $u(x, \mu ; t)$ is defined in $\mathrm{I} \times \mathbf{R}_{+}, \quad \mathrm{I}=[-a, a] \times[-\mathrm{I}, \mathrm{I}]$ and $\mathbf{R}_{+}$ is the set of real numbers $\geq 0$. The unknown $u(x, \mu ; t)$ is related to the neutron density $\mathrm{N}\left(x, \mu ; t^{\prime}\right)$ (note [5], pp. 217) by the transformation:

$$
\mathrm{N}\left(x, \mu ; t^{\prime}\right)=\exp (-\sigma t) \cdot u(x, \mu ; t), \quad t=v t^{\prime}
$$

Problems (I.1) and (I.2) may be written more synthetically as follows

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\mathrm{A} u  \tag{I.3}\\
u(\mathrm{o})=u_{0}
\end{array}\right.
$$

(*) Work performed under the auspices of the C.N.R.
(**) Nella seduta del 26 novembre 1973.
provided that we consider $u$ as transformation from $\mathbf{R}_{+}$into $H$, where $H$ is an appropriate functional space and $A$ is an operator, whose domain $D(A)$ conglobates the boundary conditions appearing in (I.I) and (I.2).

There is a wide literature about the study of two problems synthesized by (I.3) where $\mathrm{H}=\mathrm{L}_{2}(\mathrm{I})$ (note [5], [6]; for further references see note [I]) by Semi-groups theory of boundedlinear operators (note [3]). But as far as we know, system (I.3) has never been studied by the Sobolev spaces theory (note [7]). This seems connected with the fact that, wanting to use Semigroups theory, it is impossible to face the problem if $H=W_{2}^{1}(\mathrm{I})$ : in fact, since the trace theorem holds in this case, $D$ (A) cannot be dense in $W_{2}^{1}$ (I) (note Hille-Yosida theorem, [3]). It nevertheless seems fairly natural to investigate the problem in a suitable unsymmetric Sobolev space $W_{*}(I)$, as we will specify in the next number.

In two papers that are going to be published in "Ricerche di Matematica", we proved in detail that, in the $\mathrm{W}_{*}(\mathrm{I})$ space, the operators A (of each of the two problems) are infinitesimal generators of ( $\mathrm{C}_{\mathbf{0}}$ ) Semi-groups (note [3], [4], [8]). Therefore, for a result of Semi-groups theory, there exists and is unique the solution of both (I.I) and (I.2) for any choice of $u_{0}$ in $\mathrm{D}(\mathrm{A})$. More precisely, we proved that the operator $A$ of the $I^{\text {st }}$ problem is a $G(i, c)$ operator (note [4]); while the one of the $2^{\text {nd }}$ problem is a $G(M, I / a+M c)$ operator, where $\mathrm{M}>\mathrm{I}$.

The reason of the choice of the space $\mathrm{W}_{*}(\mathrm{I})$ lies in the greater regularity of the solution in such a space. Precisely, the solution belongs to $\mathrm{W}_{2}^{1}\left(\mathrm{I}_{1}\right)$, for each closed set $I_{1}^{\prime}$, contained in $I$, without points in common with the straight line $\mu=0$ (note in $\S 2 \mathrm{D}(\mathrm{B})=\mathrm{D}(\mathrm{A})$ definition).

## § 2. Notation and Results

Let $\mathfrak{g}(\mathrm{I})$ then be the set of the functions with complex values and of class $\mathrm{C}^{\infty}$ in I. In $\mathfrak{E}(\mathrm{I})$, we define the following scalar product:

$$
\begin{equation*}
(f \mid g)_{*}=(f \mid g)+\left(\mu f_{\mu} \mid \mu g_{\mu}\right) \quad \forall f, g \in \mathscr{G}(\mathrm{I}) \tag{2.I}
\end{equation*}
$$

where (.|.) is the usual scalar product in $L_{2}(\mathrm{I})$, ie., ,

$$
(f \mid g)=\int_{\mathrm{I}} f \bar{g} .
$$

Let $W_{*}(\mathrm{I})$ then be the completion of $\mathscr{E}(\mathrm{I})$ with respect to $(. \mid .)_{*}$; obviously $W_{*}(I)$ is a Hilbert space.

Let us consider following operators:

$$
\left\{\begin{array}{l}
\mathrm{B}_{*}=-\mu \frac{\partial}{\partial x} .  \tag{2.2}\\
\mathrm{D}\left(\mathrm{~B}_{*}\right)=\{f \in \mathscr{E}(\mathrm{I}) \mid f(-a, \mu)=\mathrm{o} \\
\text { if } \mu \in] \mathrm{o}, \mathrm{I}] \text { and } f(a, \mu)=\mathrm{o} \text { if } \mu \in[-\mathrm{I}, \mathrm{o}[ \}
\end{array}\right.
$$

in $I^{\text {st }}$ problem,
$(2.2)^{\prime} \quad\left\{\begin{array}{l}\mathrm{B}_{*}=-\mu \frac{\partial}{\partial x} . \\ \mathrm{D}\left(\mathrm{B}_{*}\right)=\{f \in \mathscr{G}(\mathrm{I}) \mid f(-a, \mu)=f(a, \mu) \text { where }|\mu| \leq \mathrm{I}\}\end{array}\right.$
in $2^{\text {nd }}$ problem, and in both problems

$$
\left\{\begin{array}{l}
J_{*}=\frac{\mathrm{I}}{2} \int_{-1}^{1} \cdot \mathrm{~d} \mu^{\prime}  \tag{2.3}\\
\mathrm{D}\left(\mathrm{~J}_{*}\right)=\mathfrak{G}(\mathrm{I}) .
\end{array}\right.
$$

It is evident that with said definitions $\mathrm{B}_{*}$ and $\mathrm{J}_{*}$ are linear operators in $\mathcal{E}(\mathrm{I})$ consequently in $\mathrm{W}_{*}(\mathrm{I})$.

Operator $\mathrm{B}_{*}$ is not bounded in $\mathrm{W}_{*}(\mathrm{I})$ but it may be closed. Then we can define B as smallest closed extension.

On the contrary, $J_{*}$ is bounded with norm I and therefore we indicate by J its extension to $\mathrm{W}_{*}(\mathrm{I})$

Then, we define operator A as:

$$
\begin{equation*}
\mathrm{A}=\mathrm{B}+c \mathrm{~J} \tag{2.4}
\end{equation*}
$$

Evidently: $D(A)=D(B)$, since $D(J)=W_{*}(I)$.
Operator A may be considered as a perturbation of $B$ by the bounded operator $c \mathrm{~J}$. Hence, it is enough to prove that B is an infinitesimal generator of a ( $\mathrm{C}_{0}$ ) Semi-group (note [3], pp. 389).

More precisely, I proved the following theorems:
Theorem i. If $\left.\mathrm{I}^{\prime}=\right]-a, a[\times[-\mathrm{I}, \mathrm{I}]$ and

$$
\mathscr{D}\left(\mathrm{I}^{\prime}\right)=\left\{h \in \mathcal{G}(\mathrm{I}) \mid \exists \eta>0 \ni \ni^{\prime} h(x, \mu)=0 \quad \forall x \in[-a,-a+\eta] \cup[a-\eta, a]\right\}
$$

$\mathfrak{D}(\mathrm{I})$ is dense in $\mathrm{W}_{*}(\mathrm{I})$. Consequently, $\mathrm{D}(\mathrm{B})$ (in both cases) is dense in $\mathrm{W}_{*}(\mathrm{I})$ because $\mathfrak{D}\left(\mathrm{I}^{\prime}\right) \subset \mathrm{D}\left(\mathrm{B}_{*}\right) \subset \mathrm{D}(\mathrm{B})$.

Theorem 2. In the $I^{\text {st }}$ problem, we have:

$$
\forall \lambda>0: \lambda \in \rho(\mathrm{B}) \wedge\|\mathrm{R}(\lambda ; \mathrm{B})\|<\frac{\mathrm{I}}{\lambda} ;
$$

therefore $\mathrm{B} \in \mathrm{G}(\mathrm{I}, \mathrm{o})$.
Theorem 3. In the second problem, we have:

$$
\begin{equation*}
\forall \lambda>0: \lambda \in \rho(\mathrm{B}), \quad \forall \lambda>\frac{1}{a}:\left\|\mathrm{R}^{n}(\lambda ; \mathrm{B})\right\|<\frac{\mathrm{M}}{\left(\lambda-\frac{1}{a}\right)^{n}} \tag{2.5}
\end{equation*}
$$

for each positive integer $n$, where M is a constant $>_{\mathrm{I}}$. Therefore,

$$
\mathrm{B} \in \mathrm{G}\left(\mathrm{M}, \frac{\mathrm{I}}{a}\right) \text {. }
$$

## § 3. Summary of the proofs of the main theorems

Theorem I. First, we note that, since \&(I) is dense in $\mathrm{W}_{*}(\mathrm{I})$, it is enough to prove that $\mathfrak{D}\left(\mathrm{I}^{\prime}\right)$ is dense in $\mathfrak{E}(\mathrm{I})$ i.e.

$$
\begin{equation*}
\forall f \in \mathfrak{E}(\mathrm{I}) \quad \text { and } \quad \forall \varepsilon>0 \quad \exists h \in \mathfrak{D}\left(\mathrm{I}^{\prime}\right) \ni^{\prime}\|f-h\|_{*}<\mathrm{K} \varepsilon \tag{3.1}
\end{equation*}
$$

where K is a positive constant, independent of $\varepsilon$.
For this purpose, fixed $f$ and $\varepsilon$, we define:
$g(x, \mu)= \begin{cases}f(x, \mu) & \text { where } x \in[-a+2 \varepsilon, a-2 \varepsilon],|\mu| \leq \mathrm{I} \\ 0 & \text { where } x \in[-a,-a+\varepsilon] \cup[a-\varepsilon, a],|\mu| \leq \mathrm{I} \\ \frac{x+a-\varepsilon}{\varepsilon} f(-a+2 \varepsilon, \mu) & \text { where } x \in[-a+\varepsilon,-a+2 \varepsilon],|\mu| \leq \mathrm{I} \\ \frac{-x+a-\varepsilon}{\varepsilon} f(a-2 \varepsilon, \mu) & \text { where } x \in[a-2, a-\varepsilon],|\mu| \leq \mathrm{I}\end{cases}$
and we prove $\|f-g\|_{*}^{2} \leq \mathrm{K}_{1} \varepsilon$ if $\mathrm{K}_{1}$ is a constant $>0$.
Then, we consider the functions $g_{\lambda}(x, \mu)=g(\lambda x, \lambda \mu)$.
$\forall(x, \mu) \in \mathbf{R}^{2} \ni^{\prime}(\lambda x, \lambda \mu) \in \mathrm{I}$ where $\left.\lambda \in\right]$ o, I [ and we observe that they are the same kind of $g$ and that they are defined on

$$
\mathrm{I}_{\lambda}=\left[-\frac{a}{\lambda}, \frac{a}{\lambda}\right] \times\left[-\frac{\mathrm{I}}{\lambda}, \frac{\mathrm{I}}{\lambda}\right] \supset \mathrm{I} .
$$

We then prove (note also [7], Chapt. 2, § 3)

$$
\left.\exists \lambda^{\prime} \in\right] \mathrm{I}-\frac{\varepsilon}{a}, \mathrm{I}\left[\ni^{\prime}\left\|g_{\lambda^{\prime}}-g\right\|_{*}<\varepsilon .\right.
$$

Finally, we denote by $g_{\lambda^{\prime}, \eta}$, where $\eta>0$, the mean (averaged) function for $g_{\lambda^{\prime}}$.

These are of class $C^{\infty}$ and such that $g_{\lambda^{\prime}, \eta}(x, \mu)=0$

$$
\forall x<-\frac{a+\varepsilon}{\lambda^{\prime}}-\eta \quad, \quad \forall x>\frac{a-\varepsilon}{\lambda^{\prime}}+\eta .
$$

Among these, we may find a $g_{\lambda^{\prime}, n^{\prime}}$ where $\left.\eta^{\prime} \epsilon\right]$ o, $a-\frac{a-\varepsilon}{\lambda}[$ such that $\left\|g_{\lambda^{\prime}, \eta^{\prime}}-g_{\lambda^{\prime}}\right\|_{*}<\varepsilon$. This $h=g_{\lambda^{\prime}, \eta^{\prime}}$ function belongs to $\mathfrak{D}\left(\mathrm{I}^{\prime}\right)$ and verifies the (3.1) where $K=K^{\prime}+2$.

Theorem 2. Let be $\lambda>0$. In order to prove that $\lambda \in \rho(\mathrm{B})$, as $\mathfrak{D}\left(\mathrm{I}^{\prime}\right)$ is dense in $\mathrm{W}_{*}(\mathrm{I})$, it is enough to show that, $\forall g \in \mathfrak{D}\left(\mathrm{I}^{\prime}\right)$, the equation (in $f$ ):

$$
\begin{equation*}
(\lambda \mathrm{I}-\mathrm{B}) f=g \tag{3.2}
\end{equation*}
$$

admits a unique $f \in \mathrm{D}(\mathrm{B})$ solution.

Then, in order to prove that $\mathrm{R}(\lambda ; \mathrm{B})$ is a bounded operator with norm $<\mathrm{I} / \lambda$, we have to show that

$$
\begin{equation*}
\|f\|_{*}<\frac{\mathrm{I}}{\lambda}\|g\|_{*}, \quad \text { where } \quad f=\mathrm{R}(\lambda ; \mathrm{B}) g \tag{3.3}
\end{equation*}
$$

The bounded operator $R(\lambda ; B)$ is defined on $\mathscr{D}\left(I^{\prime}\right)$ and it may be prolonged over the whole $W_{*}(I)$. Consequently, (3.3) will be valid $\forall g \in W_{*}$ (I).

We begin studying the problem:

$$
\begin{cases}\lambda f(x, \mu)+\mu \frac{\partial}{\partial x} f(x, \mu)=g(x, \mu)  \tag{3.4}\\ f(-a, \mu)=0 & \mu \in] \mathrm{O}, \mathrm{I}] \\ f(a, \mu)=0 & \mu \in[-\mathrm{I}, \mathrm{O}[ \end{cases}
$$

in $\mathrm{I}^{\prime \prime}=[-a, a] \times([-\mathrm{I}, \mathrm{o}[\cup] \mathrm{O}, \mathrm{I}])$ if $g \in \mathscr{D}\left(\mathrm{I}^{\prime}\right)$ and $\lambda>0$.
We obtain the solution

$$
\begin{equation*}
f(x, \mu)=\int_{ \pm a}^{x} \frac{\exp \left[-\frac{\lambda}{\mu}(x-t)\right]}{\mu} g(t, \mu) \mathrm{d} t \tag{3.5}
\end{equation*}
$$

where we take the + if $\mu<0$ and the - if $\mu>0$.
Then, defining $f(x, 0)=\frac{I}{\lambda} g(x, 0)$, we prove that $f \in \mathscr{E}(\mathrm{I})$ by induction.
Thus, problem (3.4) and equation (3.2) coincide and, therefore, we have only to prove (3.3).

We notice that, if $\mu \neq 0$ :

$$
f(x, \mu)=\int_{-\infty}^{+\infty} \mathrm{K}(x-t, \mu) \cdot g_{0}(t, \mu) \mathrm{d} t=\mathrm{K} * g_{0}
$$

where $g_{0}$ is the $g$ prolonged to zero if $x<-a, x>a$ and

$$
\mathrm{K}(z, \mu)= \begin{cases}0 & z<0, \quad \mu>0 \\ \frac{\mathrm{I}}{\mu} \exp \left(-\frac{\lambda}{\mu} z\right) & z>0, \quad \mu>0 \\ \frac{-\mathrm{I}}{\mu} \exp \left(-\frac{\lambda}{\mu} z\right) & z<0, \quad \mu<0 \\ 0 & z>0, \quad \mu<0\end{cases}
$$

Denoting by $\hat{g}=\frac{\mathrm{I}}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp (i x t) g(t) \mathrm{d} t$ the Fourier transformation (of the $g$ ), as $\mathrm{K}(,, \mu)$ and $g_{0}(., \mu)$ are some functions that may be added in $\mathbf{R}$, we have:

$$
\hat{\mathrm{K}}(x, \mu)=\frac{\mathrm{I}}{\sqrt{2 \pi}} \cdot \frac{\mathrm{I}}{\lambda-i x}
$$

then, by using Parseval equality, we get

$$
\begin{aligned}
& \int_{-a}^{a}|f(x, \mu)|^{2} \mathrm{~d} x \leq \int_{-\infty}^{+\infty}\left|\mathrm{K} * g_{0}\right|^{2} \mathrm{~d} x=\int_{-\infty}^{+\infty}\left|\hat{\mathrm{K}} \cdot \hat{g_{0}}\right|^{2} \mathrm{~d} x \leq \\
& \quad \leq \frac{\mathrm{I}}{2 \pi \lambda^{2}} \int_{-\infty}^{+\infty}\left|\hat{g_{0}}\right|^{2} \mathrm{~d} x=\frac{\mathrm{I}}{2 \pi \lambda^{2}} \int_{-a}^{a}|g(x, \mu)|^{2} \mathrm{~d} x
\end{aligned}
$$

then

$$
\begin{equation*}
\|f\| \leq \frac{1}{\sqrt{2 \pi}} \cdot \frac{\mathrm{I}}{\lambda}\|g\| . \tag{3.6}
\end{equation*}
$$

In order to evaluate $\left\|\mu f_{\mu}\right\|$, notice that, by deriving with respect to $\mu$ and by multiplying (3.4) by $\mu$, we have:

$$
\begin{cases}\lambda\left(\mu f_{\mu}\right)+\mu \frac{\partial}{\partial x}\left(\mu f_{\mu}\right)=\mu g_{\mu}+\lambda f-g \\ \mu f_{\mu}(-a, \mu)=0 & \mu>0 \\ \mu f_{\mu}(a, \mu)=0 & \mu<0\end{cases}
$$

which means that $\mu f_{\mu}$ has the form (3.5), where, instead of $g$, there is $\mu g_{\mu}+\lambda f-g$. By the same argument used to obtain (3.6), it follows:
$\left\|\mu f_{\mu}\right\| \leq \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\lambda}\left\|\mu g_{\mu}+\lambda f-g\right\| \leq \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\lambda}\left[\left\|\mu g_{\mu}\right\|^{2}+\left(\frac{\mathrm{I}}{\sqrt{2 \pi}}+\mathrm{I}\right)\|g\|\right]$.
Hence our assertions are completely proved.
Theorem 3. As for Theorem 2, we first prove that, if $\lambda>0$ and $g \in \mathscr{D}\left(\mathrm{I}^{\prime}\right)$, then the (3.2) functional equation is equivalent to the problem:

$$
\left\{\begin{array}{l}
\lambda f(x, \mu)+\mu \frac{\partial}{\partial x} f(x, \mu)=g(x, \mu)  \tag{3.7}\\
f(-a, \mu)=f(a, \mu)
\end{array}\right.
$$

by showing that its solution:

$$
f(x, \mu)= \begin{cases}\frac{1}{\exp \left(\frac{2 a \lambda}{\mu}\right)-\mathrm{I}} \cdot & {\left[\int_{-a}^{x} \frac{\exp \frac{\lambda}{\mu}[2 a-(x-t)]}{\mu} g(t, \mu) \mathrm{d} t+\right.}  \tag{3.8}\\ & \left.+\int_{x}^{a} \frac{\exp \left[\frac{-\lambda}{\mu}(x-t)\right]}{\mu} g(t, \mu) \mathrm{d} t\right] \quad \mu \neq 0 \\ \frac{\mathrm{I}}{\lambda} g(x, 0) \quad & \text { where } \mu=0\end{cases}
$$

is of $\mathrm{C}^{\infty}$ class, by induction.

Secondly we prove inequality (2.5) as follows.
We put:

$$
\mathrm{K}(z, \mu)=\left\{\begin{array}{lll}
0 & \text { if } Z<-2 a & \text { or } Z>2 a \\
\frac{1}{\exp \left(\frac{2 a \lambda}{\mu}\right)-\mathrm{I}} & \frac{\exp \left[\frac{\lambda}{\mu}(2 a-Z)\right]}{\mu} & \text { if } Z \in[0,2 a]  \tag{3.9}\\
\frac{1}{\exp \left(\frac{2 a \lambda}{\mu}\right)-1} & \frac{\exp \left(-\frac{\lambda}{\mu} Z\right)}{\mu} & \text { if } Z \in[-2 a, o]
\end{array}\right.
$$

then we put $g=0$ if $x<-a$ and if $x>a$. As before, we then have that $f=\mathrm{K} * g$ and by calculating the Fourier transformation of K , we get:

$$
\hat{\mathrm{K}}(x, \mu)=\frac{\mathrm{I}}{\sqrt{2 \pi}} \cdot \frac{\mathrm{I}}{\lambda-i x \mu} \cdot\left[(\mathrm{I}+\cos 2 a x)+i(\operatorname{sen} 2 a x) \frac{\mathrm{I}+\exp \frac{2 a \lambda}{\mu}}{\mathrm{I}-\exp \frac{2 a \lambda}{\mu}}\right]
$$

On the other hand, if $\lambda>\mathrm{I} / a$ we then have $\forall \mu \in[-\mathrm{I}, \mathrm{I}]-\{0\}$

$$
\left(\frac{1+\exp \frac{2 a \lambda}{\mu}}{1-\exp \frac{2 a \lambda}{\mu}}\right)^{2} \leq 2 \quad \text { and, consequently, } \quad|\hat{\mathrm{K}}|^{2} \leq \frac{2}{\pi} \frac{\mathrm{I}}{\lambda^{2}}
$$

By the same method used in Theorem 2, we prove that:

$$
\|f\|_{*}^{2}=\|f\|^{2}+\left\|\mu f_{\mu}\right\|^{2} \leq \frac{2}{\pi} \cdot\left[\frac{6}{\pi}+4\right] \cdot \frac{1}{\lambda^{2}} \cdot\|g\|_{*}^{2} .
$$

To prove the assertion fully, it is enough to show (note [3], p. 37) that:
(3.Io) $\quad \exists \mathrm{M}>0, \quad \forall \lambda>\frac{1}{a} \quad$ and $\quad \forall n \in \mathbf{N}:\left\|\frac{\partial^{n} f}{\partial \lambda^{n}}\right\|_{*}^{2} \leq \frac{\mathrm{M}^{2}(n!)^{2}}{\lambda^{2(n+1)}} \cdot\|g\|_{*}^{2}$.

For this purpose, by deriving (3.7) $n$ times with respect to $\lambda$ we have by Leibnitz rule:

$$
\left\{\begin{array}{l}
\lambda \frac{\partial^{n} f}{\partial \lambda^{n}}+\mu \frac{\partial}{\partial x} \frac{\partial^{n} f}{\partial \lambda^{n}}=-n \frac{\partial^{n-1} f}{\partial \lambda^{n-1}}  \tag{3.1I}\\
\left(\frac{\partial^{n} f}{\partial \lambda^{n}}\right)(-a, \mu)=\left(\frac{\partial^{n} f}{\partial \lambda^{n}}\right)(a, \mu) .
\end{array}\right.
$$

Then, just as the solution of (3.7) may be put into the form $f=\mathrm{K} * g$, $\frac{\partial^{n} f}{\partial \lambda^{n}}$, solution of a problem similar to the (3.7), where instead of $g$ there is $-n \frac{\partial \lambda^{n-1} f}{\partial \lambda^{n-1}}$, may be written as follows

$$
\frac{\partial^{n} f}{\partial \lambda^{n}}=-\mathrm{K} *\left(n \frac{\partial^{n-1} f}{\partial \lambda^{n-1}}\right)
$$

Thus, for recursion and for Parseval equality, we have

$$
\left\|\frac{\partial^{n} f}{\partial \lambda^{n}}\right\|^{2}=(n!)^{2} \cdot\left\|\hat{\mathrm{~K}}^{n+1} \cdot \hat{g}\right\|^{2} \leq(n!)^{2} \cdot\left(\frac{2}{\pi}\right)^{n+1} \cdot \frac{\mathrm{I}}{\lambda^{2(n+1)}} \cdot\|g\|^{2}
$$

Again, by deriving with respect to $\mu$ and by multiplying by $\mu$ we have easily from (3.1I):

$$
\left\|\mu \frac{\partial}{\partial \mu} \frac{\partial^{n} f}{\partial \lambda^{n}}\right\|^{2} \leq[(n+1)!]^{2} \cdot\left(\frac{2}{\pi}\right)^{n+1} \cdot \frac{3}{\lambda^{2(n+1)}}\left(\frac{2}{\pi}+\mathrm{I}\right)\left[\|g\|^{2}+\left\|\mu g_{\mu}\right\|^{2}\right] .
$$

Then:

$$
\left\|\frac{\partial^{n} f}{\partial \lambda^{n}}\right\|_{*}^{2} \leq(n!)^{2} c^{\prime} \cdot \frac{(n+\mathrm{I})^{2}}{\left(\frac{\pi}{2}\right)^{n+1}} \frac{\mathrm{I}}{\lambda^{2(n+1)}} \cdot\|g\|_{*}^{2} \quad \text { where } \quad c^{\prime}=6\left(\frac{2}{\pi}+\mathrm{I}\right)
$$

that leads to the (3.Io) since the sequence $\left(\frac{(n+1)^{2}}{\left(\frac{\pi}{2}\right)^{n+1}}\right)_{n}$ is infinitesimal
hence bounded.

## References

[I] A. Belleni-Morante, The Initial Value Problem for Neutron Transport in a Slab with Perfect Reflection Boundary Conditions, "Journal of Mathematical Analysis and Applications", 30 (2) (1970).
[2] G. I. Bell and S. Glasstone, Nuclear Reactor Theory. Van Nostrand Reinhold Company, New York 1970.
[3] E. Hill and R. S. Phillips, Functional Analysis and Semi-groups, "American Mathematical Society, Pub. Col.», 3I, Providence (1957).
[4] T. Kato, Perturbation Theory for Linear Operator, Springer-Verlag, New York 1966.
[5] J. Lehner and G. M. Wing, On the Spectrum of a unsymmetric Operator arising in the Transport Theory Neutrons, "Communications on Pure and Applied Mathematics», 8, 217-234 (1955).
[6] J. Lehner and G.M. Wing, Solution of the Linearized Boltzman Equations for the Slab Gedmetry, "Duke Mathematical Journal», 23, 125-142 (1956).
[7] J. Nečas, Les methodes direct en théorie des Equations Elliptiques, Masson, Paris (1967).
[8] K. Yosida, Functional Analysis. Springer-Verlag (1965).

