ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

A note on semi-continuous mappings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **55** (1973), n.5, p. 400–403.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_55_5_400_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Topologia.** — A note on semi-continuous mappings. Nota di TAKASHI NOIRI, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — Se X ed Y sono spazi topologici, un'applicazione $f: X \to Y$ dicesi semicontinua [3] se, per ogni insieme aperto V di Y, $f^{-1}(V)$ risulta un insieme semiaperto di X. Qui si studiano tali applicazioni e si dànno tre loro caratterizzazioni.

I. INTRODUCTION

In 1963, N. Levine [3] has defined a subset A of a topological space X to be *semi-open* if there exists an open set U of X such that $U \subset A \subset Cl(U)$, where Cl(U) denotes the closure of U in X. He has also defined a mapping f of a topological space X into a topological space Y to be *semi-continuous* if for each open set V of Y, $f^{-1}(V)$ is a semi-open set of X. In 1970, N. Biswas [1] has given several characterizations of semi-continuous mappings. The purpose of the present Note is to give three characterizations of semi-continuous mappings.

Throughout the present Note, X and Y will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. By $f: X \to Y$ we denote a mapping (not necessarily continuous) f of a topological space X into a topological space Y. When A is a subset of a topological space, we denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. Furthermore, we shall denote the family of all semi-open sets in X by SO(X).

2. CHARACTERIZATIONS

DEFINITION 1. A subset A of X is said to be *semi-closed* if there exists a closed set F of X such that $Int(F) \subset A \subset F$ [1].

LEMMA I (Biswas [1]). Let A be a subset of X. Then, the following are equivalent:

(I) A is a semi-closed set of X;

- (2) $X A \in SO(X);$
- (3) Int $(Cl(A)) \subset A$.

THEOREM 1. Let $f: X \rightarrow Y$ be a mapping. Then, the following are equivalent:

- (I) f is semi-continuous;
- (2) Int $(Cl(f^{-1}(B))) \subset f^{-1}(Cl(B))$ for each subset B of Y;
- (3) $f(Int(Cl(A))) \subset Cl(f(A))$ for each subset A of X.

(*) Nella seduta del 26 novembre 1973.

Proof. (1) \Rightarrow (2): Suppose that f is semi-continuous, and let B be an arbitrary subset of Y. Then $f^{-1}(Cl(B))$ is a semi-closed set of X. Since we have always $Cl(B) \supset B$, by Lemma I, we obtain $f^{-1}(Cl(B)) \supset$ \supset Int $(Cl(f^{-1}(Cl(B)))) \supset$ Int $(Cl(f^{-1}(B)))$.

 $(2) \Rightarrow (3)$: Suppose that (2) holds, and let A be an arbitrary subset of X. Let us put B = f(A), then $A \subset f^{-1}(B)$. Therefore, by hypothesis, we have Int (Cl(A)) \subset Int (Cl($f^{-1}(B)$)) $\subset f^{-1}(Cl(B))$. Consequently, we obtain $f(Int(Cl(A))) \subset Cl(f(A))$.

 $(3) \Rightarrow (I)$: Suppose that (3) holds, and let F be an arbitrary closed set of Y. Let us put $A = f^{-1}(F)$, then $f(A) \subset F$. Therefore, by hypothesis, we have $f(Int(Cl(A))) \subset Cl(f(A)) \subset Cl(F) = F$. Since we have always $f^{-1}(f(E)) \supset E$ for each subset E of X, we obtain $f^{-1}(F) \supset Int(Cl(f^{-1}(F)))$. Therefore, by Lemma I, $f^{-1}(F)$ is a semi-closed set of X. This implies that f is semi-continuous.

LEMMA 2 (Levine [3]). A mapping $f: X \to Y$ is semi-continuous if and only if for any point $x \in X$ and any open set V of Y containing f(x), there exists $U \in SO(X)$ such that $x \in U$ and $f(U) \subset V$.

THEOREM 2. Let $f: X \to Y$ be a mapping and let $g: X \to X \times Y$, given by g(x) = (x, f(x)), be the graph mapping of f. Then, f is semi-continuous if and only if g is semi-continuous.

Proof. Necessity. Suppose that f is semi-continuous. Let x be an arbitrary point of X and W be any open set of $X \times Y$ containing g(x) = (x, f(x)). Then there exist open sets $G \subset X$ and $V \subset Y$ such that $(x, f(x)) \in G \times V \subset W$. Since f is semi-continuous, by Lemma 2, there exists $U_0 \in SO(X)$ such that $x \in U_0$ and $f(U_0) \subset V$. Let us put $U = U_0 \cap G$, then we have $x \in U \in SO(X)$ [4, Lemma 1]. Furthermore, we have $g(U) \subset G \times V \subset W$. Therefore, by Lemma 2, we see that g is semi-continuous.

Sufficiency. Suppose that g is semi-continuous. Let x be an arbitrary point of X and V any open set of Y containing f(x). Then $X \times V$ is an open set of $X \times Y$ containing g(x). Since g is semi-continuous, by Lemma 2, there exists $U \in SO(X)$ such that $x \in U$ and $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. Hence it follows from Lemma 2 that f is semi-continuous.

3. HAUSDORFF SPACES AND SEMI-CONTINUOUS MAPPINGS

Let $f: X \to Y$ be a mapping. The subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is called the *graph* of f and is denoted by G(f). It is well known that G(f) is a closed set of $X \times Y$ whenever f is continuous and Y is Hausdorff. The following theorem is a modification of this fact.

THEOREM 3. If $f: X \to Y$ is semi-continuous and Y is Hausdorff, then G(f) is a semi-closed set of $X \times Y$.

Proof. Let (x, y) be an arbitrary point of $X \times Y - G(f)$. Then we have $y \neq f(x)$. Since Y is Hausdorff, there exist disjoint open sets W and V such that $f(x) \in W$ and $y \in V$. Moreover, by Lemma 2, there exists $U \in SO(X)$ such that $x \in U$ and $f(U) \subset W$ because f is semi-continuous. Therefore, we obtain $(x, y) \in U \times V \subset X \times Y - G(f)$. Since V is an open set of Y and $U \in SO(X)$, we have $U \times V \in SO(X \times Y)$ [3, Theor. 11]. Hence we obtain $X \times Y - G(f) \in SO(X \times Y)$ [3, Theor. 2]. Thus, it follows from Lemma 1 that G(f) is a semi-closed set of $X \times Y$.

THEOREM 4. If $f: X \to Y$ is semi-continuous and Y is Hausdorff, then the set $\{(x_1, x_2) \mid f(x_1) = f(x_2)\}$ is semi-closed in the product space X × X.

Proof. Let Δ be the diagonal of $Y \times Y$. Since Y is Hausdorff, Δ is a closed set of $Y \times Y$, as is well known. Since f is semi-continuous, the product mapping $f \times f : X \times X \to Y \times Y$ is also semi-continuous [3, Theor. 14]. Therefore, $(f \times f)^{-1}(\Delta)$ is a semi-closed set of $X \times X$. It follows from a simple calculation that $(f \times f)^{-1}(\Delta) = \{(x_1, x_2) \mid f(x_1) = f(x_2)\}$. This completes the proof.

DEFINITION 2. The intersection of all semi-closed sets containing a set A is called the *semi-closure* of A and is denoted by $C_{S}(A)$ [1].

Remark. A set A is semi-closed if and only if $C_{s}(A) = A$.

DEFINITION 3. Let x be a point of X and N be a subset of X. N is called a *semi-neighborhood* of x in X if there exists $U \in SO(X)$ such that $x \in U \subset N$ [2].

LEMMA 3. Let A be a subset of X. Then, $x \in C_S(A)$ if and only if for any semi-neighborhood Nx of x in X, $A \cap Nx \neq \emptyset$.

Proof. Necessity. Suppose that $x \in C_S(A)$. If there exists a semineighborhood N of x in X such that $N \cap A = \emptyset$, then there exists $U \in SO(X)$ such that $x \in U \subset N$. Therefore, we have $U \cap A = \emptyset$, so that $A \subset X - U$. By Lemma 1, X - U is semi-closed and hence $C_S(A) \subset X - U$. Since $x \notin X - U$, we obtain $x \notin C_S(A)$ which is contrary to the hypothesis.

Sufficiency. Suppose that every semi-neighborhood of x in X meets A. If $x \notin C_S(A)$, then there exists a semi-closed set F of X such that $A \subset F$ and $x \notin F$. Therefore, by Lemma 1, we have $x \in X - F \in SO(X)$. Hence X - F is a semi-neighborhood of x in X, but $(X - F) \cap A = \emptyset$. This is contrary to the hypothesis.

DEFINITION 4. Let A be a subset of X. A mapping $\gamma: X \to A$ is called a *semi-continuous retraction* if γ is semi-continuous and the restriction $\gamma \mid A$ is the identity mapping on A.

THEOREM 5. Let A be a subset of X and $\gamma : X \to A$ be a semi-continuous retraction. If X is Hausdorff, then A is a semi-closed set of X.

Proof. Suppose that A is not semi-closed. Then there exists a point x in X such that $x \in C_S(A)$ but $x \notin A$. It follows that $\gamma(x) \neq x$ because γ is a semi-continuous retraction. Since X is Hausdorff, there exist disjoint open sets U and V in X such that $x \in U$ and $\gamma(x) \in V$. Now let W be an arbitrary semi-neighborhood of x. Then $W \cap U$ is a semi-neighborhood of x [4, Lemma 1]. Since $x \in C_S(A)$, by Lemma 3, we have $(W \cap U) \cap A \neq \emptyset$. Therefore, there exists a point y in $W \cap U \cap A$. Since $y \in A$, we have $\gamma(y) = y \in U$ and hence $\gamma(y) \notin V$. This implies that $\gamma(W) \notin V$ because $y \in W$. This is contrary to the semi-continuity of γ . Consequently, A is a semi-closed set of X.

References

- [I] N. BISWAS, On characterizations of semi-continuous functions, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. », (8) 48, 399-402 (1970).
- [2] E. BOHN and J. LEE, Semi-topological groups, «Amer. Math. Monthly», 72, 996–998 (1965).
- [3] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, «Amer. Math. Monthly », 70, 36-41 (1963).
- [4] T. NOIRI, On semi-continuous mappings, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.» (to appear).