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Geometria. — On chain geometry of a projective line over a field
of characteristic > 2 and quadratic order ®. Nota ™ di VINCENZO
Dicvonzo, presentata dal Socio E. Bowmpiani.

R1assUNTO. — In questa Nota, mediante le cosiddette « catene» di certe rette proiet-
tive finite, viene costruita una classe di spazi metrici finiti.

In this paper a class of finite metric spaces is constructed by the chains
of certain finite projective lines.

Let » be a projective line over a field K of characteristic p > 2 and order
g = p? and denote by % an involutorial automorphism of K; in this way
K contains a subfie/d K' of order ¢’ = p" consisting of the autoconjugate ele-
ments of K.

Introducing a nonhomogeneous coordinate system on 7 and denoting by
¥ the conjugate of x € K, the following equations

(1) ay X'+ ayp % + ag &'+ agp = 0
and
(2 a1 2%+ a1 x + an X'+ agy = 0,

with @, € K and ;) agy — a5 @g; == 0, represent a projectivity and an anti-
projectivity on 7, respectively; moreover we call antiinvolution an involu-
torial antiprojectivity, as an involutorial projectivity is called znvolution.

Now let us denote by #' the subline of », defined over K'; it is said to be
chain of » any subset of 7, whose points are images of the ones of ' by a pro-
jectivity of 7 (see bibliography [1], p. 31 and [2], p. 94). Every chain contains
¢'-+ 1 points and there are ¢'(¢ - 1) chains on » (see [1], pp. 110, I11).

We denote by I zke set of all chains of ». For each element & of I', there
is an antiinvolution, whose fixed points are precisely the ones of &. A unique
chain passes through any three distinct points of 7 (see [1], p. 111). It follows
that, if & and @ are two distinct chains, |&N&B|=o0,1 or 2. According to
these possibilities, we say that & and & are disjoint, tangent or intersecting,
respectively. Two distinct chains are said to be orthogonal, if the corresponding
antiinvolutions. commute with one another.

We shall be concerned with some particularly important types of subsets
of T' later on: we introduce these now.

(*) Lavoro eseguito nell’ambito del Gruppo Nazionale per le Strutture Algebriche e
Geometriche (sez. n. 4) del C.N.R., presso I'Istituto di Matematica Applicata della Facolta di
Ingegneria dell’Universita di Roma.

(**) Pervenuta all’Accademia il 24 settembre 1973.
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A hyperbolic pencil of T' is the set of all chains through two distinct points
of 7; a parabolic pencil of T' is the set of all chains, mutually tangent, through
a common point; an e/liptic pencil of T" is the set of all chains, such that the
corresponding antiinvolutions transform two distinct points of » onto one
another. A pencil of I' contains ¢'+ 1,4, or ¢'— 1 chains, ‘according as
it is hyperbolic, parabolic or elliptic (see [1], pp. 111, 112). The chains, ortho-
gonal to the ones of a pencil &, form another pencil §*, which is hyperbolic,
parabolic or elliptic, according as § is elliptic, parabolic or hyperbolic
(see [1], p. 115): § and §" are said to be orthogonal to one another. There are

%g(g—l— 1) hyperbolic pencils of I', as many as the unordered pairs of

points on 7, and therefore %g(q—l— 1) elliptic pencils of I'; moreover there

are (g + 1) (¢'+ 1) parabolic pencils, since there are ¢ -+ 1 points on » and
for every point P ¢'+ 1 parabolic pencils relative to P.

At last we call nonsingular bundle of T the set of all chains, orthogonal
to a same chain, and singular bundle of T the set of all chains through a point
of 7; there are ¢’ (¢ + 1) nonsingular and ¢ -+ 1 singular bundles and each
of them contains ¢ or ¢+ ¢’ chains respectively.

In order to construct a metric space X, we assume e elements, the pencils
and the bundles of ' as planes, lines and points of the space 3, respectively.
As a pencil of T, a Zne of ¥ can be hyperbolic, parabolic or elliptic; as a bundle
of I, a point of X is called nonsingular or singular.

A point P of X is said to belong to a line @ or a plane a, if the bundle of
I', corresponding to P, contains the pencil or the chain corresponding to a
or a respectively; a line @ of X belongs to a plane 8, if the pencil corresponding
to ¢ contains the chain corresponding to .

A line a and a plane B are called incident or parallel, according as a non-
singular or singular bundle of I' contains the chain and the pencil corresponding
to 3 and a respectively: likewise two lines of X are said to be incident or parallel.

As orthogonality between two planes of T we assume the orthogonality bet-
ween the corresponding chains. It follows that the planes through a line @ of
2 are orthogonal to the ones through another line ', which is called the polar
line of a; a' is elliptic, parabolic or hyperbolic, according as a is hyperbolic,
parabolic or elliptic. Moreover from the definition of nonsingular bundle
of I' it follows that the planes, orthogonal to the same plane «, pass through
a nonsingular point A, which is called ke pole of «; conversely, the planes
through a nonsingular point A are orthogonal to a plane «, which is called
the polar plane of A.

We must observe that ke incidence structure of 2 is weak, because there
can be no plane through three noncollinear points A | B , C. In fact this happens
either when A, B,C are poles of planes represented by chains belonging
to a singular bundle, or when A is singular and B , C are poles of planes through
A. In order to obtain a space with the incidence structure of the projective
three-space S(3,¢') over K’ we construct the so-called isotropic planes.
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Let P be a singular point of X: we call isotropic plane relative to P, the
set T consisting of P and the poles of the planes through P; as pole of n we assume
the singular point P relative to it. By adding the isotropic planes, as it is easy
to prove, the incidence structure of S (3,¢’) is given to the space Z.

Since two orthogonal chains of 7 are either disjoint or intersecting (see [1],
p. 113), two orthogonal planes of X intersect in a line, which is either elliptic
or hyperbolic.

If 2 and &' are two nonparabolic polar lines of X, « and $ orthogonal
planes through «, and ¥ and 3§ orthogonal planes through o', «, B, v, 8 form
an awutopolar tetrahedron.

Since » with its chains is an egglike inversive plane 9T (see [1], p. 112),
because of a particular property of O (see [3], n. 1), with respect to the types
of quadruplets of mutually orthogonal chains, the projective lines over jfields
of characteristic > 2 and quadratic order q'° may be divided into two classes,

. I . . . . ,
according as 7(q'+ 1) ¢s odd or evem. Precisely, if 4,8 ,¢€,9 are four

chains mutually orthogonal, three pencils of I', belonging to a nonsingular
bundle and determined by unordered pairs of &, , €, 9D, are hyperbolic
or elliptic, according as é—(q’ + 1) is odd or even; correspondingly the other
pencils are of different type and contain a common chain.

Now let us consider the antiinvolution J (&) relative to the chain & repre-
senting a plane «. As is known, J(&) fixes. & pointwise, leaves the chains
orthogonal to & invariant and transforms chains, pencils and bundles of I
onto chains, pencils and bundles of the same type respectively, preserving
the orthogonality. This means that J(€) transforms planes, lines and points
of X onto planes, lines and points of the same type respectively, leaving all
points and lines of « fixed and all planes and lines orthogonal to « invariant.

We call 3(Q) plane veflection of X and assume any product of plane
reflections as motion of 2.

Since » with its chains is an egglike inversive plane over K', eack motion
of X may be rvepresented as product of at most five plane reflections (see [3], n. 1).

Because of the last property of [3] n. 1, ke space 2 is the so-called metric-
projective space of first type over K': therefore we refer to [4] n. 1 for other
properties of X.

In order to represent a plane 11 of %, independently, we now consider a
bundle & of I and assume the chains and the pencils of R as lines and points
of 1L respectively. In this way, according as R is singular or nonsingular, 11 is
Euclidean or hyperbolic. ,

If &K is singular and relative to a point E of », we denote the corresponding
plane of 2 by Ilg. Since a pencil of & (E) is either parabolic or hyperbolic,
a point of Ilg is called either singular or nonsingular respectively.

A Zine a of Il is said to pass #hrough a point P of llg, if the chain, corre-
sponding to a, belongs to the pencil corresponding to P. 7wo /ines @ and &
of Iy are called zncident or parallel, according as the point @ N 4 is nonsin-
gular or singular.
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Two lines of 1k are said to be orthogonal, if the corresponding chains are
orthogonal too. Because of the property that the chains of & (E) orthogonal
to a chain & of % (E) form a parabolic pencil, which is orthogonal to the para-
bolic pencil containing &, ke lines of Iy, orthogonal to a line a, are parallel
and each of them is orthogonal to the lines parallel to a. It follows that there
are rectangles in 1lg.

We now consider a line @ of IIg, the corresponding chain @ and the antiin-
volution J(Q) relative to &. As we saw for the plane reflections of X, J@) .
leaves the line @ pointwise fixed and the lines orthogonal to « invariant, and
moreover transforms lines and points of ITg onto lines and points of the same
type respectively. Because of these properties we call 3 (Q) Zine reflection of .

Any product of line reflections is called motion of 1.

As we know, » with its chains is the egglike inversive plane O over K':
this means that #4e motion group G (E) of Il is isomorphic to the group, whose
generators are the inversions of 9T leaving a point of 9R fixed, and therefore
G (E) @5 isomorphic to the motion group of Euclidean plane over K' (see [3],
n. 2). For other properties of G (E) we refer to [4], n

Lastly, in order to construct the hyperbolic plane ITy over K’ we consider
a nonsingular bundle % () of I, that is the bundle of chains orthogonal to a
same chain .

As lines and points of Ty we assume the chains and the pencils of R 0
respectively. Since, with respect to X, & (J) contains %q’ (¢'+ 1) inter-

secting and' —¢' (¢'— 1) disjoint chains, we call the lines of My Ayperbolic
g > 79 J :

or elliptic correspondingly. Moreover a point of Iy is called kyperbolic, ellip-
tic or singular, according as the corresponding pencil of & (J) is hyperbolic,
elliptic or parabolic.

A line of ITy is said to pass through a point P, if the corresponding chain
belongs to the pencil representing P.

Two distinct Znes of My, passing through a singular point, are called pa-
rallel. Two lines of Iy are said to be orthogonal, if the corresponding chains
are orthogonal too.

The chains of & (¥) orthogonal to a given chain & of R (I) form a non-
parabolic pencil; conversely the chains of a nonparabolic pencil of & (X)
are orthogonal to a chain of & (J). This means that the Znes, orthogonal
to a line a, pass through a nonsingular point A, whick is called the pole of a;
conversely the lines through a nonsingular point A are orthogonal to a line a
which is. called the polar line of A.

We must observe that #he incidence structure of Ty is weak, because there
can be no line passing through two distinct points A and B: in fact this happens
when A and B are two nonsingular points, poles of two parallel lines @ and
6, or when A is a singular point and B is the pole of a line through A.

In order to avoid this fact we introduce some new lines, which will be
called isotropic lines.

26. — RENDICONTI 1973, Vol. LV, fasc. 5.
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Let P be a singular point of Ily: we define Zsotropic line relative to P, the
set consisting of P and the poles of the (hyperbolic) lines through P.

We saw that there are two types of quadruplets of mutually orthogonal
chains of . Correspondingly tie triples of mutually orthogonal chains of & (1)

may be of four types and there are two of these, if %(q’—!— 1) is odd, while the

other two if %(g’—l— 1) Zs even: precisely, if &, & , € are three mutually ortho-
gonal chains of & (J), &, &, © determine three pencils &1, 2, Fs and the
number of the hyperbolic ones is odd or even, according as %(q’—i— 1) is
odd or even. This means that, with respect to the three-right-angled triangles,

the planes 1l may be divided into two classes, according as %(g’—{— 1) is odd
or even: precisely, the number of the hyperbolic sides of an above triangle
is odd or even, according as 7;7 (¢'+ 1) is odd or even.

We now consider a line @ of Ily, the corresponding chain & and the
antiinvolution J (&) relative to &. As for ITg, we call 3(Q) Zine reflection of
Il and define motion of Ilu any product of line reflections.

The motions of 1lu form a group Gu isomorphic to the group G, whose
generators are the inversions of a nonsingular bundle of the egglike inversive
plane 9 over K’ and therefore (see [3], n.3) Gu is dsomorphic to the motion
group of the hyperbolic plane over K'; it follows that amy motion of lu may
be represented as product of two line reflections.
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