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Geometria. — On a classical theorem concerning algebraic systems
of hypersurfaces in a projective space or in a projective variety ®.
Nota di UmserRTO BaRrTOCCI ™, presentata ™ dal Socio B. SEGRE.

. RIASSUNTO. — Viene stabilito in ogni caratteristica ’analogo del cosiddetto Zvorema
dell’ Indice per sistemi algebrici di ipersuperficie di uno spazio proiettivo o di una varieta
proiettiva (cfr. B. Segre [9] per il caso della caratteristica zero) e ne vengono tratte alcune
applicazioni.

I. — INTRODUCTION

We shall deal with a projective »—dimensional (» > 1) space P’ defined
over any algebraically closed field K of characteristic p > o, and choose once
for all a wniversal domain Q over K (we shall always use the language of
André Weil’s « Foundations of Algebraic Geometry » — quoted as FAG —
for varieties and cycles, generic points, general theory of intersection multipli-

city). PV, N = (” j 7) — 1, will designate the projective N-dimensional

space representing all hypersurfaces of P’ of degree » (>1), and L,C P, for
each point x € P’, will be the Veronese hyperplane corresponding to x in P, i.e.
the set of all hypersurfaces of degree # containing x [the hyperplanes L, form

an algebraic variety isomorphic to P” in the dual space P of P", the so-
called Veronese variety of indices (r, 7)]. Finally,  will indicate the K—closed
subset of P" representing all hypersurfaces of degree n with wmultiple
components.

DEFINITION 1. — Let V.C PN be any d-dimensional subvariety of P of
degree 7 defined over K. We shall call the algebraic system of hypersurfaces
associated with V, and denote it by £ = X(V), the set of all hypersurfaces of
P” corresponding to points of V. § and » will be, respectively, the dimension
and the degree of X.

Remart — For the sake of simplicity we shall always suppose throughout
the first three sections that X kas no fixed components. Furthermore, we recall
that such a system is often called an srreducible algebraic system (see [9] @

or [14]).
From now on we suppose 3 to be greater than zero.
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DEFINITION 2. — The éndex v of X is the number of distinct points in the
o—dimensional cycle Lg, N ngs) pyV—write v—:l:l:[(LE1 -NLz) V] —
where & X --- x5 is a generic point of P NE ><P over K

3 times

From this definition it follows that v << », and it may be shown that
there exist algebraic systems such that v <

Example 1. — Write the generic conic of the projective plane P? as
2 2
o %o+ gy ] - gy 25+ gy % %)+ a2y %, + @, x, 7, = o,

and consider the 1-dimensional algebraic system X associated with the variety
V of equations a,, = a, = @,, = 0, a%, —44a,, a;, = o (suppose p == 2). The
degree of X is 2 but its index is 1.

The so-called Index Theorem in the case K = C—complex number
field—asserts that the index v is equal to the degree 7 provided that V is not
contained in N, say X kas no variable multiple components (see for instance [9];
the first proofs are in [2], [4], [5], 10]). This theorem is generally proved by
means of differential methods. We want to give here a complete algebraic
proof of this proposition, which does not give any additional information
if p = o in view of the so-called Lefschetz principle (FAG, p. 306), but which
contributes also in the case of positive characteristic furnishing @ necessary
and suficient condition for the equality » = v.

Needless to say, the following is a rather elementary application of the
general methods of the theory of algebraic correspondences as developed by
André Weil in FAG and in the fundamental paper [14] and by Oscar Zariski
in many papers but specifically in the first chapter of [16].

II. — THE INDEX THEOREM FOR ALGEBRAIC SYSTEMS
OF HYPERSURFACES IN A PROJECTIVE SPACE

Before giving the more general statement of the Index Theorem in any
characteristic we need some further notation.

As before let X = X (V) be any algebraic system of hypersurfaces of
P’, and let § be equal to 1 (substantially only for typographical reasons, as

we shall see later). Consider the product variety P’ XP" and its subvariety
W defined by

W= {xxn e P XP" |x€|f]},
where f, is the hypersurface of P” corresponding to the point 4 € P" and | £ |
its support.

W is a non-singular subvariety of P”XP" of dimension » -+ N —1,
and it is clear that, for each 7 e PV,

7pr [(Pr XY}) * prx PN W] =f'n ’
where pry, is the projection map pro,: P xPY P
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Consider now the K-closed subset Zg = WN(P"XV) in P"xXP". It fol-
lows immediately from the fact that P”XV is not contained in W (and that
P” X PN is not singular) that Z has only r—dimensional irreducible components
(FAG, VI, Theorem 1, Corollary 1) and so W and P"XV meet properly in
P’ XP". Introduce the »—dimensional cycle

e
e [l
Z —_ H/ 'PrXPNC[’ >< \% ) _jzzll dj Z]’

where Zj,---,Z, are the ‘irreducible components of Z and of course
d;=1i(W-(P"XV),Z;; P"XP") (according to the notation of FAG, VI).

LEMMA 1. — With the previous notation, let v be a simple point of V (pos-
sibly defined over an extension of K). Then

9,‘ ,
fo= ]_}_4_1 d; p7p [B7X0) 5o, Z,].

Proof. P"Xn and Z; meet properly in P” XV provided that 7 is a simple
point of V, and so we get ‘

e g
2.41 djﬁrpr [(P’X"D'p’xvzj] = prpr [(PrXVD’p'xV Z‘i dj Zj] =
J= 7=

= p7 "[(P,Xn)'p”xv<w'p"xpN(Pr><V>>] = pfp” [(Prxn>'p”><pNW] :fn

(using FAG, VI, Theorem o).

From Lemma 1 it follows in particular that each map ¢, : Z; - P” induced
by the projection map pry,, is a finite morphism, because X has no fixed com-
ponents. We shall indicate with ¢ the corresponding map between the func-
tion fields, o K®") - K(Z), and we shall say that ¢ is separable if the
extension K(Z) D ¢f (K(P")) is separable.

We can now formulate the Index Theorem as follows:

INDEX THEOREM (case § = 1). — With the notation as before, the equality
m =V holds provided that: '
(i) 2 kas no variable multiple components,
(i) each morphism @; 1 Z; — P is separable.

Progf. Let us take a genéric point £ of P" over K and consider the
o—dimensional cycle Le-pnV = E i(Le-V, v, PN) 7;. The points #; ,---, 7,
=1

are v distinct generic points of V over K defined over K (&), the algebraic
closure of K(§) in Q, and so each of these, say 7,, is such that the point
§Xm, is a generic point over K of one—and then only one—of the varieties
Z;, say Z;q.

We shall prove without any assumption about ¥ [namely (i) and (ii)]
that the identity

(1) i(Lg-V, 5 PY) = dj p50
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holds, where pff(’) is the inseparability degree of K(Z;u) over o;u (K (®").
Then the conclusion will follow easily, because the hypothesis (i) implies that
each d; is equal to 1 (from Lemma 1, with 7 as the generic point 7, of V over
K), while the hypothesis (ii) implies that each p% is equal to 1.

In order to establish (1), we begin by proving that

i(Lg-V, 0,5 PY) = digy 4(EXPY)-Zip, EX1, 5 BT XPY),
In fact we have
iy 7 (EXPY)Zygy , EXN; 5 P XPY) =
= i(EXPY) - djy Ziy , Exng; PTXPY) =
— {(EXPY)-Z, Exn,; P XPY),

because & X, belongs only.to Z;; among the varieties Z;,---,Z,, and so
we get

i(EXPY)-Z, Exy, ; PTXPY) =
— F(EXPY)-(W-(P"X V), Exn,; P'XPY) =
= (EXPN)W)- (B X V), £, ; PP XPY) =
= i((EXLy)-(P"XV), Ex, ; P'XPY) =
=i(LeV, 15 PY)

(using FAG, VI, Theorem 8: ‘needless to say, the projection map &XL; ->L;
is an isomorphism, and so in particular is déregular in w,).

Finally we recall that we know that the o-dimensional cycle
(EXPY). pxpy 2 contains a number of points equal to the separabi-
lity degree of K(Z,,) over cpj(])(K(P)), write 4k [(EXPY)- —— /(1)]

= [K(Z. (1)) CPN) (K@ Neps moreover each of those points appears in this
cycle with multiplicity equal to 70, from the assumption that & is a
generic point of P” over K (FAG, VI, Theorem 12), and £ X%, is one of these
points, q.e.d.
We remark that the identity (1) implies

e

@ om=2d TR (K®D, = X 4 [KE) 9 K@,

1

<
Il

S
and so we get:

PROPOSITION 1. — With the notation as before, the equality m = v holds
if and only if Z is a simple cycle and each morphism ¢, is separable.

We now proceed to establish the Index Theorem for any 3. We recall
that, when p = o, a proof may be given by using a simple induction argu-
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ment (see [9]). In fact, suppose § > 1 and that the theorem is true for the
dimension § — 1. Then the theorem is true in particular for the generic
hyperplane section V' = V.px L. of V, defined over some extension K’ of
K (recall that we know from the II»d Theorem of Bertini—see [o] or [17]—
that V' is an irreducible cycle), since V' is of course not contained in 9. Let
€ X+ - XE&5_1 be a generic point of P"X -+ - XP” over K’; by the inductive

—— o
8—1 times

hypothesis we know that v — Ly NN gy )-pnV'] is equal to
the degree of V', which is still 7. Consider then the 1—dimensional cycle
Vo= NN Lz, _)-pxV. It is clear that Vj is a simple cycle, because

# [Vopn L] = [Ty N Ly ) pu (V)] = 12,
and that Vo is not contained in %. So, again by induction, we get

H[Lzy  pxVol = m
and then
F[Tg NN Lga_lm Lgs)-PNV] =m,

for any generic point &5 of P” over K’ such that &1 X -+ XEs_1XE; is a generic
point of P - - - xP"XP" over K, q.e.d.
T8 times o

Remark. — In the previous argument we have used a more general
definition of algebraic system, by referring to simple cycles of PV; it is
straightforward to extend all the previous assertions to this case.

When p is positive, the single hypothesis that X has no variable multiple
components is not sufficient for the equality 7 = v, as seen above. Anyway
we can state and prove the Index Theorem in all generality employing the
same kind of argument given for the 1—dimensional case, with obvious slight
modifications.

In fact we have to consider the product variety P"X --. XP’ XP" and

then its subvariety W defined by T8 dmes
W= {a X X oy X € P XP P |1, €| £,| Vi3

W is a non-singular subvariety of P”x - - - X P” X P~ of dimension 78 - N— 3,
and we can introduce as before the 8 — dimensional cycle

p"i
Z=Wpr o prpx® X XPXV) = 2,1 d;7Z;.
=

- For each Z; we have a finite morphism ¢;: Z, - P X --- XP" induced
. . . ”r 7 N » r
by the projection map pr roypr t P X XPTXPT P X XP7, and
we can prove the:
INDEX THEOREM (General case). — With the notation as before, the equality
m =\ holds provided that:
() X has no variable multiple components.
(i) each morphism @;:Z; >P" X .- XP" is separable.
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Needless to say, one can extend the validity of formulae (2) and (3),
and so the d-dimensional formulation of Proposition 1 still holds.

Remark. — 1t is important to point out that the condition (ii) does 7ot
follow from the condition (i) and so the classical Index Theorem is no longer
true for positive characteristic.

Example 2. — For any 8 > 1 consider on the projective line the following
algebraic system depending on 3 independent parameters # ,- -, #

@+ D+ — G+ D+ 4T =0

‘The 1dent1ty 22— (¢t + ) x + 211 = (## — x) (t— x) shows that v = 28,
m=(p+ 1>y, in spite of the fact that the above system has no variable
multiple components [in other words, consider e.g. the case § = 1: the variety
V representing that sy%tem in a space P? is a rational curve of degree p 41

and its dual curve in P? is exactly the Veronese variety of indices (1,2)].

III. — FURTHER REMARKS AND APPLICATIONS

Formulae (2) and (3) provide some arithmetical criteria for the equality
m = v when p = 1: for instance, the equality holds provided that £ has no
variable multiple components and p does not divide 7, or else when 7 and
n are coprime and again p does not divide ». But we want to show that this
case p = I is really a special one, since:

PROPOSITION 2. — The equality m = v holds for any algebraic system
without variable multiple components and such that o = 1.

COROLLARY 1. — TVe equality m = v holds for any algebraic system % such
that its generic element is irreducible @,

COROLLARY 2. — Az algebraic system % of index v = 1 is either a linear
system or a power of a linear system.

[Because v =1 if and only if p = 1 and the extension K(Z) D ¢* (K (P"))
is purely inseparable—omitting the suffix 1 for simplicity].

Remark. — Corollary 2 is a well known property of algebraic systems (see
for instance [9] or [15]) to which we shall return at the end of Section IV.

Before giving the proof of Proposition 2 we need some additional inform-
ation about 1-dimensional algebraic systems.

Let X be any 1-dimensional algebraic system, and introduce non-homo-
geneous coordinates x = (%;-- -+, x,) in P” and the corresponding non-homo-

(2) So we have that the Index Theorem is true in particular in any characteristic for
the general algebraic system X (when » > 2). Moreover, observe that in Example 2 we have
p=120>1.
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geneous coordinates @ = (@, .,,) in PV, so that the variety W is represented
by the relation

Y3 %
Zakl...érxll'--x/—l—lzo (;a(k)xw—l—lzo,
) ) '

k>0 , (B==() , ;Zl,éign

(where we suppose that V is not contained in the «infinite hyperplane»

defined by our choice of coordinates). Let = @(1;)) be a generic point of V

over K, and write £, : Zv)(k) 2® 41 = 0 as the generic element of T over
@

K. Consider the factorization of £, (x) in K(y) (x), write f,(x)=;(x)™--

RN E; "% where m; =1, j=1,"-+,0, and @(x),- -, ¢, (¥) are distinct
prime elements of K (u) [«].

LEMMA 2. = 0y 4s equal to ¢, and we can dispose of the suffix j in such a
way that m; =d;, j=1,---,¢.

Proof. Suppose that ®,(z) € K[a],a=1,---,s5, generate the prime
ideal of V over K. Then it is clear from the natural isomorphism

K[a,x]/(<1>a<a>, a2 + 1) = K fy] [x]/(‘g; Mgy 2+ I)

that there exists a' 1—1 correspondence between the factors ¢, (%) ,- - -, @p, (%)
and the varieties Z; ,- - -, Z, for which ¢ = Po- Then the identities 7z; = d;
follow from Lemma 1, because the cycle (P”X7) “proy Ly 18 rational over K (n).

After Lemma 2, we can interpret the correspondence /> ; &),
[=1,--+,v, j({)=1,---,p, in Section II as follows: the point & X, belongs
to the variety Z; which corresponds to the unique factor ¢; (x) for which
9, () =o [it is clear from £, () = ¢, (E)dl- R (E)dp: o that at least one
of those factors must be o in £, and the unicity of such a factor follows from
the hypothesis that £ is a simple point of | f£,|].

Furthermore, it is useful to point out that from Lemma 2 it follows that
the cycle Z is simple if and only if all the exponents #; are equal to 1, and
so that Z can be simple also in the case of variable multiple components.
Accordingly, the equality #» = v can hold also for algebraic systems such
that V is contained in :

Example 3. — Suppose p > o0, and consider on the projective line the
linear system X, depending on a parameter #,x? +¢= 0. Now we have
m =v = = I, in spite of the fact that X has multiple variable components.

Of course a similar occurrence may no longer present itself if p = o,
because if f, () has no multiple components in K () [#] then it has no mul-
tiple components in K(9)[#] either.

This remark provides the converse of the Index Theorem when p = o
(and of course for any & > 1):

PROPOSITION 3. — When p =0 the equality m =" holds if and only if 3 has
no variable multiple components.
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This proposition has an obvious geometric interpretation in the space PV,
furnishing a relation between the tangent spaces to the K-closed set © (in
its simple points) and the hyperplanes L, of the Veronese variety of indices
(r , 7). For instance, in the case » = 1, # = 3, 9 is a surface in P® with a
multiple curve, representing those cycles of type 3% in P'; the tangent plane
to 9 in a simple point 7, representing a cycle of the type 2x;+ x5, 215 2y,
coincides with L, .

Furthermore, one can observe that from Proposition 3 it follows a well
known property of linear systems in a projective space, namely that a linear
system—wzthout fixed components—cannot have multiple variable compo-
nents. This is a consequence of the 15t Theorem of Bertini (see for instance [9]
or [18]), and the hypothesis p = 0 is now of course essential.

After these remarks, we proceed with the proof of Proposition 2.

Proof. It will be sufficient to prove the assertion in the case § =1 (and
p >0). Let & be a generic point of | | over K(y) @ (so that £ is also a ge-
neric point of P” over K), and p/ be the inseparability degree of K(Z) over
¢* (K (P"))—here omitting again the suffix 1 for simplicity—, i.e. of the ex-
tension K (§,7) 2 K(§). Then we have that K (&, 7" ) is separable over K (&)
whence the equality

degree of p/¥ = index of p/%
where p/% is the algebraic system defined by the generic element over K

Z n&fx(k)ﬁf +1=o0 (with the notation as before).
%) '

In fact it is clear that condition (ii) is fulfilled for /% by construction.
Moreover also the condition of simplicity of the cycle associated with p/X
is fulfilled, in spite of the fact that /% could have @ priori multiple variable
components. (this however is not the case @ posteriori since p/ = 1), because
%, ¢ 2®#/ 4 1 is irreducible in K (n#) [+#'] and then also in K (y#) [];
V(Vii can therefore use Lemma 2 in order to obtain the required conclusion
(recall that necessarily K(v]f’f)=l=K(v;1’f)?, ie. K(y?) is not perfect).

Finally it is sufficient to observe that

degree of p/X = m, ‘index of p/X =v, to get m =y, q-e.d.

We'end this Section by recalling that the Index Theorem in the case v=1
is used in the classical proof of Zuroth’s Theorem (see for instance [6], [9] or
[11]), and remarking that Prop. 2 allows us to repeat the same kind of
argument also in the case p > o (we get in this way a rather different proof,
similar for instance to those given in [3] or [12] but in a slightly more
general version).

(3) We mean of course a generic point of one of the irreducible components of | f|.
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Proposition 4 (Luroth's Theorem). — Let k be any field contained in Q,
k&) =k, -, &) a pure transcendental extension of k in Q of transcendence
degree 7, k() = k(ny -+, n,) any subfield of k(E) of transcendence degree 1
over k. Then k() is still a pure transcendental extension of k.

Proof. Suppose that & ,---,& 1 is a transcendence basis of Z(£) over
£(n), ie. that £(£) is a simple algebraic extension of Z(q,&1,---, ;).
Consider a minimal polynomial H(x,) of &, over A(q, &1, -, £,-1), which is
a prime element of £(n) [&1,- - -& 1] [#,]. The corresponding prime polynomial
H@E)=H(y, 21, x)€k(m)[x, -, 2_1,x] = £@)[x] — under the
natural isomorphism between these two rings — defines, as a generic element
over £, a I-dimensional algebraic system X of hypersurfaces in a projective
space P” (such that £ is one of its generic points over £). By construction,
3 has the index v = 1; we claim also that the degree of ¥ is 1. In fact,
according to Lemma 2, it will be sufficient to prove that H(x) is still prime
as an element of K () [x], where K is the algebraic closure of 4 in Q; i.e.,
that H(x,) is still prime as an element of K(v)[&1,- -, & _1][#,], namely
[KE:KMm,&, & )]=[kE) :£(x0,%, -+, &_1)]. The last equality holds
because the extension £(§) D £ is regular, i.e. £(E) and K are Lnearly disjoint
over %, hence £(§) and K(n,&1,- - -, &,_y) are linearly disjoint over £(q, &, - -
v+, &—1) ([9], Prop. IV, p. 290), whence the conclusion ([9], Prop. I, p. 290).
We have thus proved that there exist elements v € £(n), F(x), G(x) € £[x]
such that H(x) = F(x) 4+ ©G (x). Then it is clear that

[’é@):'é(y),&;"'»‘ir—l)] = [é(£>:é<7yg.>1 ;"‘)&7——1)]’

whence £2(n, &1, -+, &) = k(v,&, -, &_1) [because £(n,&1,...,&_ 1) 2D
Dk(v,8,+,&-1)]. The conclusion is now easy, since £(t,%1, -, £-1)
and £() are linearly disjoint over £(t) and so it follows as before that

I = [/é(’l) ’ ‘51 1ty ar—1> : 'é<T’£1:' ) Er—l)] = ['é<7]> : 'é<T>]7 qed

IV. — THE INDEX THEOREM FOR ALGEBRAIC SYSTEMS
OF HYPERSURFACES IN A PROJECTIVE VARIETY

Let UCP’ (» >2) be a d-dimensional projective variety (1<d <r—1)
defined over the field K, and suppose for the sake of simplicity that U is zor-
mal. The (d—1)-dimensional positive cycles of P” whose support is contained
in U (we call them the Aypersurfaces of U) and having a fixed degree p. are
represented by the points of a K-closed subset Ch' “*(U) of the Chow
scheme @ Ch'™“*(P"), representing all (d— 1)-dimensional cycles of degree

(4) The word scheme is now generally used instead of the word variety because
Chd"l’“(Pr) may well be reducible. For all that concerns these preliminaries about alge-
braic systems of-cycles look for instance at [1] or [7], in addition to the works already
quoted in section I.
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u of P”. For each point v in Ch’™""*(U) we shall indicate by Ju the hyper-
surface of U corresponding to v, and call v the Chow point of f,.

ILet V be a d-dimensional (§ > 1) subvariety of Chd-1.%(U) defined over
K; the set of all hypersurfaces of U corresponding to points of V will be
called the d-dimensional (irreducible) algebraic system associated with V,
write 2 = X (V) ®),

As in Section I, the sndex v of X is defined as the number of distinct hyper-
surfaces of % which pass through & generic points £;1,---,&5 of U over
K(.e., &1 X --XE& has to be a generic point of UX--- XU over K).

From now on, suppose that X zs fotally contained in a linear system
of hypersurfaces of U. There exists then some (d—1)-cycle g in U — not necess-
arily positive — such that 8- g, the set of all cycles of U of the type /4 ¢
where f€ &, is a set of hypersurfaces of U ¢## out on U by some linear system
8" of hypersurfaces of P’; i.e., no hypersurface of &' contains U, and f'. .U
describes £+ ¢ while /" describes &'. Correspondingly, there exists some alge-
braic system X'C € which cuts out X + g on Uj; we shall call it an algebraic
system associated with X. Let v’ be the index of X' and ' its degree; the
classical Index Theorem for algebraic systems of hypersurfaces of U asserts
that 7' = Vv'=v provided that X, and hence also X + g and X', have no variable
multiple components (now we mean of course with the possible exception of
Jixed components). This theorem is usually proved when p = o by means
of differential methods (see for instance [9]); we want to give here a complete
algebraic proof of it in any characteristic. Needless to say, when p > 0 we
shall need some further assumptions, for in this case the single hypothesis
that X has no multiple variable components does not necessarily imply either
m'=1V or v =v even when ' = v'. Furthermore, as we shall show, such

an algebraic system on U may be derived from distinct associated systems
in P” with different indices.

Example 4. — Take on the projective line P' the algebraic system
S — QG+ x+ =0
we have previously met (Example 2), and consider in the projective plane

with non-homogeneous coordinates x,y the following two algebraic systems
associated with X,

2 —(+ D)+ =0,
Sty —@+ N+ =o.

With obvious notation, it is clear that v/ = 2, »’ = P+ 1 while w'" = V"' =
= p+ L.

Before giving the more general form of the Index Theorem, it is conven-
ient to recall that we can get any s-dimensional (s > 1) linear system £ on

(5) Each of the systems we consider in this section may have fixed components.
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U in the following way (FAG, IX, Theorem 14; in Section II we have used the
same construction in a special case). Let P’ be the projective s—dimensional
space associated with 8 and ¢ be the corresponding rational map from U

to the dual space P’ of P’ (the so-called projective image of €). Take a gene-
ric point & of U over K and a generic point v of the hyperplane ¢ (%) CP*
over K(&), and then consider the (d 4 s — 1)~dimensional subvariety W of
U XP’ defined by the generic point £ X7 over K. One can easily prove that
for any point n € P* the cycle (UX%)-, psW is defined [ie, UxXn and W
meet properly in U along any component of (U X%) N W; actually, any such
component is simple in UXP], and that (UXn)-y,, pW =f, X7 where
Jo = prul(UXm) -y, ps W] is the cycle in & corresponding to the point 7 € P’
(we employ here the natural isomorphism between P° and the subvariety re-
presenting £ in the suitable Chow scheme of U).

We are now in the position to tackle our problem. Given = C &, suppose
that € is defined as before by the irreducible cycle W in the product variety
U XP’; since X is contained in &, it is represented in P' by some subvariety
V. We can introduce the cycle Z = W., .,(UXYV), which has its support
contained in U XV, and we see as in Lemma 1 that /= pr[(UX7)-, vZ]
for any simple point n € V (perhaps defined over an extension of K). Suppose
now that & = 1 (for the same typographical reasons as in Section I), and
call 7 the degree of V as a curve in P’ and Z ,- - -, Z, the irreducible compo-
nents of Z such that their geometric projection over U is U itself (there may
exist further irreducible components of Z, corresponding to the fixed compo-
nents ' of X). After having then defined ¢;,---, ¢, as the restrictions of
prg:UXV—=>U to Zy, -+,Z,, we can prove:

PROPOSITION 4. — With the notation as before, the equality m = v holds
provided that X has no variable multiple components and eack morphism
90,:2Z; U, ,j=1,---,9, is separable.

Progf. One can repeat the same argument given for the Index Theorem
(case § = 1) in Section II, with obvious modifications because the hypothesis
that X has no variable multiple components implies that Z is a simple cycle and
there exists a natural isomorphism from P° into the suitable Chow scheme of U.

From Proposition 4 the new form of the Index Theorem follows easily,
namely:

INDEX THEOREM (case 8 = 1). — With the notation as before, let X' be any
algebraic system in P’ associated with X. Then the identities m' = V' = v hold,
provided that

(1) X has no variable multiple components;

(ii) each morphism ¢;:Z2;,~U ,j=1,---,p, is separable ©.

(6) This condition has of course an intrinsic meaning with respect to the given
system X,
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Proof Let X' be represented by a curve V in the suitable projective
space PV, and €' by a linear subspace P* of P". Then there exists a natural
K-linear isomorphism between P’ and P”, in Which V corresponds to V',
and thus it follows from Prop. 4 that 7’ = v, q.e.d. on account of the inequal-
ities 7' > v' > v. '

Remark. — A simple alternative proof can now be given when p = o.
Let us introduce, with the same notation as in Section II, the variety W'

in P"XPY, the cycle LZ =W 5. PN'(P XV') and the maps

<p;:z}—>P’, F=1,00, 0, 1nduced by pre: P'XPY P @ For any
J=1,--+,0, we define the K-closed subset A of P as the locus of the
points x € P” such that

[ XPY) o, g Z7] < [K(Z)) : ¢ (K (P7))]

(A; is the so-called discriminant of e). A= U A; is a pure K—closed subset

of P” of codimension 1; and it is clear that v <jv if and only if U is contained
in A". Now let £ be a generic point of U over K, and 7 be a point of V' such
that 7(Le- V', 7 ; P" )> I, one can easily check that the hypersurface of P”
corresponding to 7 has the same tangent hyperplane ® as A’ at £, and thus
2’ cuts out on U a system with variable multiple components.

It is straightforward to extend the above statement to the case 8 > 1,

as we have done in Section II. We have just to consider the cycle ZX - - - X Z

75 dmes

in (U><V)>< - X(UXV), identify (UXV)X .. X(UXV) with Ux..-xUXx
T8 times

XV X ... xV, and then introduce in the last variety the subvariety UX - - -

XU XAy, where Ay is the dZagonal subvariety of VX --- XV, and the cycle
ZX++XZ ux..xUxvx...xvUX -+ X UXAy. We shall indicate this cycle
again by Z and identify UX .- xUXAy with UX--- XUXV; then, if
Z1,- -, Z, are the irreducible components of Z having the geometric projec-
tion UX -+ XU under pryx..xy:UX:--XUXV -UX---xU, we intro-
duce the finite morphism ¢;:Z; >UX.-- XU, j=1,--+,p, induced by
the projection map pryx...xu, and we finally prove:

INDEX THEOREM (General case). — With the notation as before, the identities
m' = V'=v hold, provided that
(i) X has no variable multiple components,
(ii) each morphism ¢;:Z;~UX.+- XU ,j=1,--+,0 is separable.
It would be easy to extend to the general case of an algebraic system of
hypersurfaces on U the considerations made in Section III, for instance Pro-
position 2 and its two corollaries, but we do not insist on this point. We only

(7) Suppose for the sake of simplicity that ¥’ has no fixed components.
(8) Possibly undetermined, i.e. £ is a singular point of that hypersurface.

25. — RENDICONTI 1973, Vol. LV, fasc. 5.
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wish to point out that the hypothesis that £ is totally contained in a linear
system is of course essential throughout the present Section, even for the
validity of the last of the two corollaries just recalled. In fact it is well
known that there exist some algebraic surfaces (see for instance [4], [9], [14])
carrying an zrrational pencil/ (i.e., an algebraic non-linear system of curves
of index 1), the generic element of which is irreducible.

Remark. — A Theorem of Enriques ([4]) asserts that any 8—dimensional
algebraic system on U with index 1, the generic element of which is irredu-
cible, is necessarily linear whenever 8 > 2. The two hypotheses are now both
essential, because one can find for any 8 > 2 8-dimensional algebraic non-
linear systems of index 1 free from variable multiple components.
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