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Calcolo delle probabilita. — 7%e Kuratowsk: funcrion and some
applications to the probabilistic metric spaces. Nota ) di GHEORGHE
Bocsan e GHEORGHE CONSTANTIN, presentata dal Socio G. SANSONE.

RIASSUNTO. — Gli Autori estendono il numero di Kuratowski allo spazio metrico pro-
babilistico introdotto da K. Menger e danno alcune caratterizzazioni degli insiemi probabi-
listici precompatti.

1. The compactness in topological spaces offers techniques for the proof
of certain basic theorems in analysis. In order to generalize the compactness
the notion of measure of noncompactness was introduced. Actually there
are two such measures one introduced by Kuratowski and one by Haus-
dorff.

Let (X, d) be a complete metric space and A a bounded subset of X. It
is known that the Kuratowski’s number « (A) is the greatest lower bound of
the set of positive real numbers e such that A can be covered by a finite family
of subsets of X whose diameters are less than or equal to ¢ [6]. It is of inte-
rest to emphasize that this concept is the origin of a great number of recent
generalizations of some fixed points theorems [1], [3], [4], [5], [0], [12].

Our purpose in this Note is to generalize this notion to probabilistic metric
spaces introduced by K. Menger [7], to define the precompactness and to
give some important properties.

2. Let A be the set of nondecreasing, left continuous functions
F:R —[o, 1] such that F(o) =o0 and lim F(x) = 1. We recall that a

probabilistic metric space is an ordered pair (S, F) where S is an arbitrary
set and F is a A-valued function defined on SxS. In what follows F(p,¢)
will be denoted by F,, [7], [9].

DEFINITION 2.1. [2]. Let A be a nonempty subset of S. The function
D, (+) defined by

D,(x) = sup inf F,, (¢)
t<x pgeh

is called the probabilistic diameter of A. A is called bounded if sup D, (x) = 1.

DEFINITION. 2.2. Let A be a bounded subset of S. The mapping o, (x) =
=sup{e>o0: I{A};c5, J=finite, A= U A, Dy (e) =e} ds called the

Kuratowsks’s probabilistic number or Kumtowsiaz s function.

(*) Pervenuta all’Accademia il 25 settembre 1973.
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PROPOSITION 2.1. The Kuratowski's function has the following properties
1) o, €A,
2) ay(x) =D, (),
3) if @FACBCS then o, (x) = ag(x),

4) oaus (¥) = min {a, (1), ag ()},
5) let A be the closure of A in the (e, N~topology of S.
Then o, (x)= oz (x).

Proof. 1) Clearly, if x = 0, D, (0) = o for every A C S. Therefore «, (0) = 0.
To prove that a,(-) is nondecreasing, let us observe that if x; < x, then
DA].(xl) < Dy, (xp) for each j€ ] which implies that o, (x;)) < o, ().

Since A is bounded then there exists a partition {A;};c; such that
lim D, (x) = 1. Thus for every u € (0o, 1) there exists x; such that

X—>00

Dy;(x) =1—m. If x= max x; then Dy ((x, 00)) C [1—m, 1] which
. el
implies that lim a, (x) = 1. ’ '

It remains to prove that o, (-) is left continuous. For this let K, =

Aox
={e>o0: 3{A;};c5, ] = finite, A= UA,, DAj(x) >ce}, xy€ (0, 00) and
gt
e€ Ka,,,. If m>o0 then by the left céntinuity of D, there exists 3; >o0
such that Dy (x,) — Dy, (x) < if o <xy—2x<3;.

Let 8= min 3, and suppose that 7 <e. If o<x,—x < 3§ then

e
Dy(x) >« —-—'Y]J. Thus e-—mn € Ky, which implies that e—=n < a, (x).
Hence a,(xg) — a,(x)<< 7 for every x€(x,—3,x,) which proves the left
continuity of o, .

To prove 2) let x € R and € > o such that D, (x) >¢. Since {A}is a
cover of A then ¢ € K, , and therefore o, (x) > D, (x).

3) is obvious by the inclusion K, . D Kg, for every x € R.

Since by 3) «, (x) > a,yp (¥) and oy (x) = ayyp(x) for the proof of 4)
it suffices to show that min {a, (), ag(¥)} < ayup(x). By the Definition
2.2 for every §>o0 there exists g5 € Ky, and a cover {A}}; .y of A such that
ap(x) — 3 <e5 < D,s(x). Similarly, there exists 1;€ Kg, and {Bf} such

v

that oy(x) — 8 <M< Dys (x). Let us suppose that o, (x) < oy (x). Then
oy (%) — 8 < ap () — 8 < D 5(x). Thus we obtain a cover {C,,},em of AUB

such that D¢ (¥) > «, (x) — 3. Therefore o, (x) — 8 € Kyyus,, which implies
that a, (x) < @aus(x) and the property 4) is proved.

5) Since A CA it follows that a, (¥) > oz(x) and for the converse
inequality, we observe that if e € K, ,, then there exists {A,};c; with the
property ACUA,; and D,,(x) =& Also since ACUA; and Dz x) =
= Dy, (#) = ¢ [2], it follows that € K; which implies that a,(x) < oz (%)
and the proposition is proved. ’
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PROPOSITION 2.2. Let K, be the set of functions F€ A such that there exists
a finite cover of A, A= UA,, ] = finite, with Dy, (x) = F(x) for every
©Je]

JET. 1 Ba@) = sup (F@)} then B () = a,(2).

Proof. 1f F € K, then F(x) € Ky.. Thus F(x) < a,(x) which implies
that B, (&) < oy (x).

To prove that o,(x) < Ba(¥) let e> 0, x> 0. By the definition of a,(x)
there exists ¢’ € Ky, such that «,(x) —e <<e'. Since ¢’ € Ky, then there
exists A;, j=1,2,---, such that Dy;(x) =<' Let Foo(y) = in< Dy (9)-

<7;<n

Clearly F,. € K, which implies that F,o(y) <B,(»). Since Dy(x) =¢
then F,o(x) = ¢'. Hence o, (x) —e <& < F,o(x) < B,y(x). Thus
ap(x) —e < B, (x) for every € > o, which proves the proposition.

It is known that the Kuratowski number in a metric space X defines
a measure of noncompactness of a subset A C X. For the probabilistic me-
tric spaces we give the following.

DEFINITION 2.3. We say that a probabilistic metric space S is a proba-
bilistic precompact space if for every € >0, N> 0 there exists a finite cover
of S, S =.UI A;, 1= finite, such that D,,(e) > 1 —

1€

THEOREM 2.1. If S is a probabilistic precompact space then for every
€,A> 0 there exists a finite subset A, of S such that for each p €S there exists
g7 = q (p) € Aoy such that F,(e) >1—

Proof. Let Dj(x) = inf {F,,(x): p,g€A}. Then clearly we have
D, (%) = lim Dj(x) < Da(x) < Fy(x). If we take € = 1/%, A = 1/m then

X >y
x < %,
we obtain a finite cover of S, S= U A" such that DA’”" (%) >1— -;;— which
iel . 7 /

implies that F,, (—:1—>> I —;I-Z‘ for every p,g€A7”. Pick a point p/"e€ A

and let A,,, = {p7"};c1. If » €S then »€ A7” and therefore F, (%) >1— % .

Finally let e,A>o0 and #,m €N such that 1/z <e, 1/m <A The set
A,y = A, is seen to satisfy the theorem. »
In the case of Menger spaces we can prove the converse of Theorem 2.1.

THEOREM 2.2. Let S be a Menger space with the t-morm T such that

sup T(x,x) = 1. If for every e ,\> 0 there exists a finite subset A, of S
<1

as in Theorem 2.1 then S is a probabilistic precompact space.

Proof. Let Ay = {p;}:ic1 and p€S. Then by hypothesis there exists
g €Ag such that Fy, (&) >1—02. Lete' =¢/2 and )’ such that T (1—2', 1—2") >
>1-—A Let

S,(e,N)={g€S: Fy(e)>1—21}, €e>0, A>oO0.

Clearly S = U S;,(¢/, \'). It remains to prove that D, () > 1 —\ where
iel
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A; =S, (E,N). If r,g€A;, then F, (&) >T (Fopi(e2) , Fy g (e]2)) =
=T (1 —%, 1—2") which implies that D, (¢',\) =T (1—n, 1 — A') > 1 —X.

It is known that if (S, F) is a Menger space with the #norm T such that
sup T (x,x)=1 then the family U of the sets U(e,x) = {(p, ¢) € SXS such

that F, (e)>1-—2} is a basis of a uniformity %, on S. We give the following

THEOREM 2.3. S is a probabilistic precompact space if and only if S is
precompact rvelatively to the uniformity 9.

Progf. We note that S is precompact relatively to & if and only if for
every >0, A > o there exists Ay ={p;,---, p,} such that S = U S, (e, ).
Let ¢ >0, A >0 and take ' > o, 7)>OSuChthatT<I—Y) I—'Y])>
>1—N>1-—A Then there exists p,,---, p, such that S = U Sy, (el4,m).

We will show that D, () =1—2 where A, —.Sh(s/4 7). By

the definition D,,(e) = sup inf F,, () = sup inf F,,(#). But F,,(#) >
t<e b,qui e2<t<e /),quz'

T (Fy, (112) ) Fryo (t12)) = T(Fp(eld) , Fpoefa) = T(1— 7, 1—1) > 1 — N
which implies that D, (e) > 1 —N >1—Xx.

Conversely, by the Theorem 2.1 there exists Ay = {p,,---, p,} such
that for every pcS there exists p, = p,(p) € A,, with Fup(e) >1—0

Obviously S = US (&, W),

It is known - that every metric space (S, ) is a probabilistic metric space
with F,, (x) = H (x —d (p, ¢)) where
(o, <o
H(x) =
( I, x>o0.

A characterization of the probabilistic precompact subsets is given by

THEOREM 2.4. Let A C(S, F), then A is a probabilistic precompact subset
if and only if o,(x) = H (x).

Proof. Let o<n<1,e=x>0 and A= 1-—1. Then there exists
{A;}ic1, with '

~ Dy@>1—r=1—(0—9) =n
and therefore 1€ Ka., n <o, (x). Since supn < a, (x) it follows that
1=<< oy (%) for every x > o0 and by the fact that «,(x) € A we conclude that
oy (x) = H ().

Conversely, if «, (x) = H (x) we consider A > 0 and ¢ > o then «, () = 1
and there exists ¢, € Ky, with the property o, (e) —A<c¢, and 1 — A <e¢,.
But =, € Ky, which implies that there exists a family {A,};c1 with
Dy, =e>1—N

PROPOSITION 2.3. Let (S,d) be a metric space and (S, F .) the generated
probabilistic metric space. Then

ap(®) = H (x — a (A)).
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Proof. Let B CS; then for every x> S(B) = sup 4(p,¢) we have

$,9€B
x> inf {y: F,(y) =1} and therefore F, (x)=1 for all p,9€B and
#,9€B
Dy(®) = sup { inf F(©)} =1. If x > «(A) it follows that there exists {A,;};cr
t<x p,geB

with §(A;)<x for all 7€1 and therefore D, (¥) = 1>¢ foralle, o <e<1
and thus ¢ € Ky , and a, (¥) = 1. If x = §(B) it is easy to see that Dy(x) = o
and if x < 3(B) there exists p, ¢ € B with the property that x <d (p,¢) =
=inf{y: F,(y) =1} and therefore F,, (x) <1 which implies that F,, () = o
and Dg(x) =o0. If x <o(A)it follows that there exists { A;};c1 with 3(A,) > x,
Dy, (x) = o and therefore for all x, x < & (A) and € > 0 do not exist {A};c1
with Dy, (%) > e >0 and thus o, () =0 for every x < a(A) and
oy (%) = H (x — a (A)).

COROLLARY. As a precompact set of (S,d) if and only if A is a proba-
bilistic precompact set of (S, F,).

Proor. It is known that A is a precompact set of (S, ) if and only if
a (A) = o and therefore a,(x) = H(x) and by Theorem 2.4, A is a proba-
bilistic precompact set. If A is a probabilistic precompact set in (S, F,) we
have «,(x) = H (x) and by Proposition 2.3, o, (¥) = H(x — « (A)) which
‘implies « (A) = o.

From this corollary and Theorem 2.3 it follows the importance of proba-
bilistic precompacity introduced by Definition 2.3 and of Kuratowski function.
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