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Equazioni differenziali ordinarie. — Bowundedness theorems for
certain third order differential equations. Nota ® di James O.C. Ezeiro
e H. O. Tejumora, presentata dal Socio G. SANSONE.

RIASSUNTO. — Sono dimostrati due teoremi di limitatezza e di asintotica limitatezza
per le soluzioni di due classi di equazioni differenziali non lineari del terzo ordine.

1. INTRODUCTION

We shall be concerned here with the uniform ultimate boundedness of
solutions of the differential equation

(1.1) ¥ Fax +g@)x+hlx)=p®),

where @ > 0 is a constant and g, %, p depend only on the arguments shown.
The function % (x) is assumed differentiable and g (x), %' (¥), p (¢) are conti-
nuous for all x and 2

The boundedness of solutions of (1.1) has been the subject of much study
by several authors (see Chapter IV of [1] for a fairly comprehensive account
of this). Lately Swick [2] generalizing a number of previously known results

2
for the case in which P (¢) = f 2(s)ds is bounded for all #, established uniform
0

ultimate boundedness for solutions of (1.1) subject to the condition, only,
that there are positive constants 4, ¢ with a6 > ¢ such that %' (x) < ¢ for
all x and such that, also,

(1.2) G@)x=06 and /Z(x)sgnx =1, (lx] = R)

where G (x) Efg (s)ds and v is a constant such that
0

(1.3) ) >%ca‘1.

Note that, as a result of the inequality @b > ¢, the condition on G in (1.2)
is equivalent to saying that there is a constant y > o such that

(1.4) {aG (x) — cx} sgn x> v 7] (lx| = R).

Our main object in the present note is to show that the restriction (1.3) can
be dispensed with altogether for the general equation (1.1), but we shall also

(*) Pervenuta all’Accademia il 10 ottobre 1973.
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show, separately, for the special case
(1.5) ¥ +ax +g@)x +ex=p@

(corresponding to % = cx in (1.1)), with ¢ = constant, that the condition (1.4)
can be replaced by the much weaker condition:

(1.6) {aG (x) —cx}sgnzx— 4+ o0 as | 2| — co.

2. STATEMENT OF RESULTS :

For the general equation (1.1) we shall establish the following.

THEOREM 1. Swuppose that there are positive constants v, b ,c and P,
with ab > ¢, such that
D IPOIS Py for all t considered,
(i) 2 (%) < ¢ for all x,
(iii) 2 and G satisfy (1.2).

Then there exists a constant D, whose magnitude depends only on R, Py, a,
b,c and g such that every solution x(f) of (1.1) satisfies

(2.1) #@®|<Dy , [2(®I<D, and |&(@®|<D,
Sor all sufficiently large t.

For the special equation (1.5), in which ¢ is assumed to be a positive
constant, it will be shown simply that

THEOREM 2. If p satisfies the condition (i) of Theorem I above, and if
G satisfies (1.6), then every solution x (¢) of (1.5) ultimately satisfies (2.1), for
some constant Dy whose magnitude depends only on Py, a,c and g.

In what follows D, D;, Dz,--- denote finite positive constants whose
magnitudes depend only on R, Py, a,4,¢ and on g. The D’s without suf-
fixes are not necessarily the same each time they occur, but each of the
numbered D’s: D1, Dz, Ds3,- - retains a fixed identity throughout. Finally
wherever it occurs, D (¢) denotes a constant whose magnitude depends on
R,Py,a,b,c,g as well as on the quantity e.

3. PROOF OF THEOREM 1

The procedure will be on the same lines as in [2] startmg with the system-
form of the equation (1.1):

(3.1) t=y , y=z2—ay—Gx+P@ , 2=—7r(x),

except that we shall make use of a slightly modified Lyapunov function
V=V(x,y,2 given by

(3-2) V=V —eVs,
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where Vi is as in [2], that is
x Y
Vi a [ /() ds B [ G ds+ 1 (@4 897 + 35 () — s,
0 0

but Vg, different from Swick’s Va, is given by

(v +axysgnz, i |z] =]y + axl,
(33) Ve=) -
gsgn(y +ax), if |z|<|y + ax|.
Here f > 0 is a constant fixed (as is possible, since @b > ¢ > 0) such that
(3-4) b>B>ale,

and € > o0 is an arbitrary constant.
It is clear from (3.3) that | V2| < |z| for all x, y and 2. Also, Swick’s
estimates in [2; § 3] show quite clearly that

2Vi>@Br—2? +B{y +F 2P +B (6 —p)2*—D

and the expression on the right hand side here tends to - oo as
x% + 92 4 22 — oo since (6 —B) > o, by (3.4). Hence

<3‘5) V—>—|—oo as x2+y2+z2__>oo

for each fixed e. It remains now only to vérify the other Lyapunov property
involving the function

VEE+a,yE+h,20+0)—V (@), y@),20)

V* (¢) = lim sup Z
h—>+0

corresponding to any solution (x (¢), ¥ (#), 2 (#)) of (3.1). What we shall in
fact show here is that, if ¢ is fixed sufficiently small (more precisely: ¢ <D,
with D sufficiently small) then

(3.6) V@) <—1  whenever 2(¢) 4 3°() +22() > Di,

for some Dj.
Let then (x,y,2) =& @),y () ,z({#) be any solution of (3.1). It is
an elementary matter to verify from the definitions of V,V; and Vg that

Vi = —{G @) —Bxr—P®} () + Wi —eW;
Wi = —(af — 4 (x)) 3> +BP (D y

—_— 2] +[P () —G (x)]sgnz, if |z|=]|y 4+ ax],
Pl —h@)sgn (v +ax), if 2] < |y + ax].

where

Since 4’ (x) < ¢ and af — %' (x) > aB — ¢ > 0, by (3.4), it is evident that

Wi < —2D: 32 + BPo | y|
<—Dys?+D
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where Dz = — (a —¢). The foregoing estimates show clearly that
(3-7) Vi — Doy —[G () — pa] h () + 2 |G ()] +
+ (Po 4 ¢) |2 ()] +D (2)
always, but that
(38 V= —els| =Dy —[G @) —palh(®) +<[G@]| +
+Polh(®)| +D (), if 5=y +ax|.
Now, if |x| > R, then
(3:9) [G@F]—p=b—p>o0,
by (1.2) and (3.4), so that
—[G (%) — B2 £ (x) + £ |G @)| + (Po + ) |4 (x)]
=—|G (@) —Bx|- |2 @] + |G @) + (Po + ) 2 (@)]
S —I[G@) —Bx[- 12 @] +e|G (x) —Bx| +eB x| + (Po+e) |4 (2)]

Il

_%IG(x)—ﬁxllh(x)[ +U1 +0U: +Us

where
Ur=— - {IG () —Bx| —4 (Po -+ &)} |4 ()|
Us = — 2 {|2(x)]| —4¢} |G (x) —Bx
Us=——{|G @ —Bx|-12(x)| — 4B |x[}.

But, by (1.2)'and (3.9),
U< — 5 nl6—B x| —4 @ +9] <o
if || >D >R, for arbitrary e. Also

U< — - (n—49)(¢6—@) x| <o

if |[x] >R and e< = v. Finally

I

4
Us<— {n(6—B)—4p} x| <o

if |[#]>R and e < ; 7871 (6 —B). Hence if

(3.10) eﬁ%nmin {1,877@—P)},

13. — RENDICONTI 1973, Vol. LV, fasc. 3-4.
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as we shall henceforth assume, then there exists Dy > R such that

311D —{G @ —Bx} h(x) + ]G @] + (Po+ <) |4 (&) < —
— 1G@—pxl-1h@)| < — - G6—p)nlxl,

if |x| = D3, which when combined with (3.7) shows that

(3.12) Vi< —1, if 22@) + 5% () >D?

for some Dy > Ds3.

For the case when x°(¢) + 3* (/) < D], the estimate (3.8) is applicable
provided that |z (¢)| = (a + 1) Ds; that is

Vi< —clz| + D5, if 2*() +5°(#)<Di and |2(?)| > (¢ + 1) Da.
Thus
(3.13) Vi< —1 if 2@ +2¢) <D}

provided that |z (#)| = D¢ = max {(@ + 1) D, , (D5 + 1) £'}.
The two estimates (3.12) and (3.13) show that

Vi< —1, if 2@ +5*@) +2¢ =D+ D,

with ¢ subject to (3.10), which proves (3.6) and thus concludes our veri-
fication of Theorem 1.

4. PROOF OF THEOREM 2

This time it is convenient to take the differential equation (1.5) in the
system-form:

(4.1) t=z—ax , y=—cx , 2=y—G(@) + P
and to work with the Lyapunov function V=V (x, 5, 2) given by

V = Vi—(Po +2) Va— (Po + 1) V3

where
Vi= [6 @ di—ay + L@ +arty
‘ 0.
(4-2) ([ Eseny, if |y|Z=]g],
27 | ysgne, if |z|>]y],
_f xsgnz, if |z]=>]x],

V3_lzsgnx, if |x|>|z].
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Note that Vl can be reset in the form
Vi = j {G(s)—ales}ds + ~;— {(alf? =12 y — (12 g~112 z)2 | 52}
0
in which the integral
f{G(J‘ —ates}ds—> 4 oo as |x|—>oo.
0

because of (1.6). Thus, since |Va| < |z| and | V3| < |2| for all z, ¥ and 2,
we have as before that

V— 4 oo as x% 4 3% + 22 — oo,

Next let (x, y,2) =(x ),y (#),2() be any solution of (4.1). Then
a simple calculation from (4.1) and (4.2), followed by the use of the condition
that | P ()| < Po, will show that

V() < —ax {G (x) —a~lex} + Po|z| + Ms + Ms,

where
[ —@o+2) [y +D(G@)| 4+ 1), if |y]=]z;
M=\ Dlal, it 121> 1y],
M({—(P0+I)lzl+D|xl, if |z]>|x],
= @Po+ 1Dyl FIGE| + Py, if x| = |z].
Hence
- —ax [G(x)—atex] —|z|—Po+2) |y +D (|G @®)| + |x] +1),
if |yl=>le]l=>]x],
o (—dx[G(x)_d‘lfx]_lyl+D(|G(x)l+|x|+1),
@3 V=i if |y|>]2] and |x]|>]|z],
—ax[G(#x)—atex]—|z|+D x|, if |2]>|y| and |z]|>|x],
P —ax [G@) —a 1 ex] +D (|G )| + |x| + 1), if |x|>]2]>]y].
Thus

(4.4) V*< —ax [G (¥) —a~lex] + Dy |G (x)] + Dg |2| + D,

always, for some constants D; and Dg. But, by (1.6), there exists Dy such
that [G (x) —a~lcx}sgnx > o, so that

x2[G @) —atex] = |x|-|G (x) —a1cx|,
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for |x|=Dy. Hence, if |x| =Dy, we have from (4.4) that
V< —alx]-|G @ —a-lee| - D, |G @) + Dglx| + D
<—al|x[-|G@)—atex| + Dy |G (x)—alex| + Dy lx| +D

I

=—alx|G@—aler| + M, + M; 4D
where D;y = Dg + a~1 (D, and
My =— - (a|x| —4Dp) |G (x) —alex],
Ms = — - (1aG () — x| —4Dyy) [x].

Clearly My <o and, by (1.6), My <o, if |x| is sufficiently large. Hence
there exists Dy; > Dy such that, if |x|> Dy, then

(4-3) V*<——alx||G#) —a-tex| +D
<—1

provided, further, that |x| > D2 with Dis (> Du) sufficiently large.

It remains now to estimate V* for |x| < Dia, and we shall consider only
the case yz + 22 large. If, for instance, yz + >0 DI, then two distinct
possibilities arise, namely: (I) |z| > D2 or (II) |z| <Di2 and |y| > Dis.
Always recalling that |x| < Dia is assumed here, case (I) then implies that
lz| = |x| so that, by (4.3),

V*<{ — |zl —@o +2) |y +D, if |y|=]e]
— U —[z| +D , izl =y
which shows clearly that

V*<—1 if min(|y],|#]) = Dis,

with Dig (= Dig) sufficiently large. Case (II) implies that |z| < |y]|, so that
again by (4.3),
Vi< — |yl +D<—1

for sufficiently large |y|. The last two estimates for V* show clearly that
there is a constant D4 such that

Vi< —1 if |x] < D12 and yz + 2 >D},
which, when combined with (4.5), shows that
Vi< —1 if A2+ + 2@ >D% - DL

and the theorem now follows, as before.
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5. A FURTHER GENERALIZATION OF THEOREM 2

It is possible to extend the conclusion of Theorem 2 to the slightly per-
turbed equation:

(5.1) ¥4af +g@)x f+ex=p0F+qlt,x,%,%)

with @, g, ¢, p exactly as in Theorem 2, where ¢ is a continuous function depen-
dent on all the arguments shown and |¢(¢,x,y,2)| <Q, (constant) for

all #,x, y,2 For the proof it will be necessary to take (5.1) in the system
form

’ y:——[x—}—g*’ Z=y——G<X>+P<l‘>,

X =2z2—ax

where
=g, x,z2—av,y+atx—a:—Gx) +P@),

and to use the function V given by
V=V —aVe — Vs
where V1,Vz2,Vs are exactly as in §4, and
a=Po+2(1+a1Qy) , PB=Po+14a1Q,.

The other relevant details are as in § 4, and will therefore be omitted.
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