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Teoria dei numeri. — Solution of a problem on the wuniform
distribution of integers . Nota® di Perer BunxpscHuH e Jau-
SHYONG SHIUE, presentata dal Socio B. SEGRE.

RIASSUNTO. — Si riottiene sotto condizioni pilt generali un Teorema di Kuipers e Shiue
stabilito altrimenti da questi Autori in una precedente Nota lincea [2], e si risolve un
problema aperto ivi enunciato.

§ 1. INTRODUCTION

In [3] Niven introduced the notion of uniform distribution of a sequence
of integers: Let § be such an infinite sequence {g, },—1.2,..., let » be a fixed
integer > 2, let 0 <7 < m and put

Ag(N ,j,m)y= D 1.
n<N
&, =J (mod )
Then € is said to be uniformly distributed (shortly: u.d.) mod #, if for each
J=0, -, m—1
. I .
NlinwWAg(N v J M)
exists and equals 1/n.

In this Note we study the following sequence {G,}. Let A, B, a,é
be fixed rational integers, let the equation 22— Ax - B = 0 have distinct
nonzero roots, which means B==0 and D = A®— 4B ==o0, and moreover
let @, & be not both equal to zero. Then let {G,} be defined by

(1) Go=a , Gi=6 , Gui=AG,—BG, ; (n=1,2, )

and let {R,} be the special sequence of {G,} with ¢=o0,6=1. Let P, and
Q; denote the exact period length of {R,} and {G,} modulo p* for A=1,2, - -
respectively.

We want to prove the following theorem by a method developed in [1]
by one of the present Authors.

THEOREM. Let p be a prime with p|D, pt2B, pt(bA — 2aB) and let
d be the exact order of B mod p. If Py = 2dpt for b=1,2, -, then {G,}
is wu.d. mod p* for k=1,2, -

(*) This paper was written while the second Author was an Alexander von Hum-
boldt-Stiftung fellow visiting the University of Géttingen.
{¥*) Pervenuta all’Accademia il 3 settembre 1973.
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Note that we can show in Lemma 1 of § 2 that under the same assumptions
of our theorem on the prime p we have Q, = P, for all 2. Note also that the
assumptions: P; is even and furthermore P,==P; in case p = 3 imply that
P, = 2dp* for all £ under the specified assumptions on p. This will be shown
in a later paper on the periods of {G,} modulo a fixed natural number > 2.
Here we give two corollaries which are proved at the end of § 3.

COROLLARY 1. The theovem of Kuipers and Shiue in [2].

Note that the assumption in [2] that the congruence 2Bx = A (p) is
satisfied by a primitive root mod p is superfluous. At the end of [2] there
are proposed some unsolved problems which we can answer now.

COROLLARY 2. Take A= 3,B = —1 and let (a,b) be the pair (1, 1),
(1,3), (1,35) respectively. Then the corresponding sequences {G,} formed
Sfollowing (1) are w.d. mod 13* for k=1,2, --

§ 2. LEMMAS
The first lemma gives the reduction of the periods of the general
sequences {G,} to those of the spécial sequence {R,}.
LEMMA 1. If p|D, pt2B, pt(bA —2aB) then Q, =P, (k=1,2,--).
Proof. First we express the G’s by the R’s:
(2) G, =6R,—aBR, ;.

This is correct for # = o (in virtue of R; = — BR_y, see for example (7)
in Lemma 2) and for » = 1. Now

—aBR,= —aB (AR,_;— BR,_9)= A (G,—éR,) —
— B (Gn—l— bRn—l) = Gn—l—l - éRn—]—l
gives (2) for » + 1. Consider now the system of congruences
(3) G,—a=6R,—a(1+BR, ) =0 ()
Ggr1—b= (@A —aB)R,— 46 (1 + BR,y) =0 (5
where g =Q,. For the determinant E of system (3) in R, and 1+ BR,_;
we have —4E =46 —4abA + 42 B = (26— aA)® = 0 (mod p), for if
21 (26—ah), then p|(26A—aA? and p|2(bA—2aB) against an
assumption of Lemma 1. Therefore (3) has only the solution R, =o,
BR,-1=-—1 (mod p*) or equivalently R, =0, R,41 =-—BR,_ ;=1 (mod )
showing that P,|g =0Q,. But Q,|P, is trivial from (2).
Now let x;,x, be the (different) roots of x2— Ax -+ B = o; then it is
well known that ,
4) R, = (w1 — x2)/(2) — x) (m=0,1,"-)
and we can define the R, by this formula also in case 2 < 0. Let us.further

define
(5) S,,=xf—|—x§ <n=07ila"')°
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We note here the trivial formulas

n=A+|D)z2 , m=@A—|D)p,

(6)
xtxm=A, x5n=B , x,—xn=|D.

LEMMA 2. For all rational integers n | j one has
) R,=—B"R, , S,=B"S_,
©) Sy =DR} + 4B
9) S, Suiy1=DR, R,; + 2AB"
(10) R;S,—R,S,=2R; ,B”
(11) Rj+.=R,S; +B"R,_
(12) R;, = 21~/ R, (jS/™! + KR}) @ n,j=o0)

with a certain rational integer K.

Proof. Formulas (7) to (11) are easily proved by using (4), (5) and (6).
From (4) and (5) one has

=S, +DRY2 , %= (S,—|)D R,)2

and so

b/\.

D R,,=27((S,+}D R,)’—(S,—]D R,)/) = 217 ID 25 (}) s Ripéoe

il
=

ko

=5
[=%

showing (12).

REMARK. [f n>o0 then R, is a multiple of R, for each k=o0,1, --.
This is trivially true for £=o,1 and for 4> 2 it is seen by induction via (11).

LEMMA 3. Let p be a prime with p|D , pt2B and in case p = 3 Zez‘furt/zer

be PZZI— Py and Py==3. Then p*|R o but PR, for each k=1,

Proof. By induction on 4. In case 2= 1 we have 2| R, from
—1/2

(13 Ea WIC

= <21 + 1) ATHTIDY,

If p> 3 then ‘ﬁ“S and so g2t R, in virtue of ptA. In case p = 3 we

have from (13) that Rs=A?’—B. Now B =2 (mod 3) would imply A’=2
(mod 3) which is impossible; so B =1 (mod 3) for 3t B. If we had A = 2
(mod 3) then

Ry=o0o , Ry=1 , Ry=2 , Rg=o0 , R,=1 (mod 3)

such that Py = 3; so A =B =1 (mod 3). Therefore we have R,.1=R,—
— R,y (mod 3) and {R,} begins with 0,1,1,0,2,2,0,1,---, so P, =6.
Assume 9| Rz, then from R, ; = AR,— BR,_; one has

{R,(mod9)}:0,1,A,0, —AB=—A’=—1,—A,0,AB=1,.--,
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for A*=B (mod 9) by 9| R; and for A*=1 (mod 9) by A =1 (mod 3). So
we have Py = P; against an assumption of Lemma 3. Thus 9t Rg and Lemma 3
is proved for £ = 1. (It is easily seen that both additional assumptions in
case p = 3 are also necessary for 9tRy).

Let Lemma 3 be proved for a certain £ 1, then, from (12) with 7= p*
J = p, one has

2Ry = PRSI 4+ KRY = pR ASEh 'Y

from which Lemma 3 follows for £+ 1 in virtue of p1S, for =0, 1
since St = 4B" = o (mod p) by (8) and the assumptions on 2.

PRI

LEMMA 4. Let i, m be integers >0 and n|(R,,R,), (h,2B)=1. Then
2| R my -

Proof. If g = (i,m), then there are rational integers »,s such that
g =1 +ms. Take j=1ir,n=—ms in (10) then
<I4> Rz'r S~ ms R—ms Sz’r =2 Rg B‘ms .
Without loss of generality we may let 77 > ms. If ms > o0 (so zr > 0) we have,
from (7) and (14)

Rz’r Sm: —!_ Rm: Sz'r = 2Rg .
If ms<o (so #r > 0), then, by (14)
Ry Swps| — Rouis Sy = 2 R, B” 11,

Now %|R; and %|R,, so Z|R;, and %|R,,, (by the remark after Lemma 2).
Thus %] 2 RgBmM by the last two formulas. (%,2B) =1 shows %|R,.

LEMMA 5. Under the same assumptions of Lemma 3 P2 R, implies p*|m.

Froof. 1f m = p'm' with o<# <4k and ptwm', then take ¢/ = p* in
Lemma 4 such that (7, 7) = p’ and by Lemma 3, we have p#| R,;. From this
result and the assumption p*|R,, of Lemma 5 we get p%| R ¢ contradicting
Lemma 3.

§. 3. PROOF OF THE THEOREM AND THE COROLLARIES

We show the theorem first for £2=1. A simple induction on s via Rop1=
= AR,—BR,_; shows that p|D (or equivalently A®=4B (mod p)) implies

(13 Ry, = sAB™'(8) , Ren=(s+ 1B (p).

Now we assert that each of the numbers 0,---, p— 1 occurs exactly 2d
times as residue mod p of the G, with 0 < 7 < 2dp = P, = Q, which implies
the theorem for 2= 1. Consider first the even #, 7 = 25, 0 < s < dp and
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among these exactly those p values s leaving the residue # (¢ fixed and o <
=< ¢ < d) mod d; these are exactly the s-values from the set

M,={¢t,¢+d,z4+2d,- -, ¢+ (p—1)d}.
From (1) and (15) we get
(16) Gy, = (s (bA—2aB) +aB) B"™' ().
Therefore we have: If s,s'€M, such that G,, =Gy, (p) then
(s—s)(bA—2aB) =0 (p)

because B™'= B! (p) (for s=s'(d) and the definition of d). Now
P1(A—24aB) implies s=s' (mod ») and s,s €M, shows s= s’ such that
among the p numbers G,, with s€ M, each residue o,- -+, p — 1 occurs exac-
tly once and among the pd numbers G,,,0 < s < dp exactly d times.

The case # odd, z=12s5-+ 1,0 < s < dp can be treated in an analogous
manner via Go.y1 = (25(6A — 2aB) + 6A) 47 AB° ! (). Thus the theorem
is proved for £ = 1.

Let 2> 1 and just be proved that each of the numbers o, - L PE—
occurs exactly 2d times as residue mod p* of the G, with o<z < 2dpt=
=P, =0Q; (see Lemma 1 for Q,=P,). We show that this holds also for 4 - 1.
Let s be given with o <s < p* and ¢ with o < # < P, such that Gryp, =
= s + u, p*.  Assume that there are »,7’ with o<#' <» < p such that
#, = u, (p) and so

(17) P (Gepory— Grgrpy) -
By (1), (11) and P, = 2 dp* we have
(18)  Grry— G, = (BY™% 1) 4R, o, — aBRyyp,) +
=+ R(r«—-r') apk (ést+(r+r’) P2 aBs, L7 Pk/2—1> .
We have B =1 (4" by B' = 1(p) and further p1(4S,— aBS,_;) for
n=1,2, - since by (8), (9) and p|D
Su—1(8S,—aBS,_1) = (bA—2aB) B ' =0 ().

So we get, from (17) and (18), p#+1| R, _,ya- Now from Lemma 5 we have

pl(r—7"d and so p|(r—~") for d|(p —1). But this is impossible for
0 <7—7'< p and the contradiction shows the theorem in case % - 1.

To Corollary 1. In the theorem of [2] is assumed that Q, = (p — 1) p*
for b=1,2 ,»++ and we have to show: p— 1 = 2d, where d the order
of B mod p. By p|(A2—4B),p12A and Fermats theorem we have
1= APt = o?7P B = B4y and so 2d|(p— 1). On the other hand
taking s = dp in (15) we see Rogp =0(p), Rogpy = BY =1 (p) such that
Pil2dp so (p—1)p=0Q,=P;|2dp and then (p —1)]| 2d.
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Note that the last inequality /< j on page 9 of [2] is not correct in the
case j =1,p = 3.

To Corollary 2. A =3,B=—1 gives D=13 and (1,1), (1, 3),
(1,5) for (a, ) gives that A — 2aB equals 5, 11, 17 respectively. Now
take p = 13 and so d = 2. By P, = 4-13* (see the end of [2]) the condition
P, = 2dp* of our theorem is satisfied and the corollary is proved.

REFERENCES

[1] P. BUNDSCHUH, On the distribution of Fibonacci numbers, « Tamkang J.», 5 (1) (1974).
[2] L. KUTPERS and ].S. SHIUE, A distribution property of a linear recurrence of the second
order, « Atti Accad. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat.», 52, 6-10 (1972).

[3] I. NIVEN, Uniform distribution of sequences of integers, « Trans. Amer. Math. Soc.»,
98, 52-61 (1961).



