Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Peter Bundschuh, Jau-Shyong Shiue

Solution of a problem on the uniform distribution of integers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 55 (1973), n.3-4, p. 172-177.

Accademia Nazionale dei Lincei

```
<http://www.bdim.eu/item?id=RLINA_1973_8_55_3-4_172_0>
```

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Teoria dei numeri. - Solution of a problem on the uniform distribution of integers ${ }^{(*)}$. Nota ${ }^{(* *)}$ di Peter Bundschum e JauShyong Shiue, presentata dal Socio B. Segre.

RIASSUNTO. - Si riottiene sotto condizioni più generali un Teorema di Kuipers e Shiue stabilito altrimenti da questi Autori in una precedente Nota lincea [2], e si risolve un problema aperto ivi enunciato.

§ i. Introduction

In [3] Niven introduced the notion of uniform distribution of a sequence of integers: Let \mathcal{G} be such an infinite sequence $\left\{g_{n}\right\}_{n=1,2, \ldots}$, let m be a fixed integer ≥ 2, let $0 \leq j<m$ and put

$$
\mathrm{A}_{\mathfrak{G}}(\mathrm{N}, j, m)=\sum_{\substack{n \leq \mathrm{N} \\ s_{n} \equiv j(\bmod m)}} \mathrm{I}
$$

Then \mathfrak{G} is said to be uniformly distributed (shortly: u.d.) $\bmod m$, if for each $j=0, \cdots, m$ - 1

$$
\lim _{N \rightarrow \infty} \frac{\mathrm{I}}{\mathrm{~N}} \mathrm{~A}_{\mathfrak{G}}(\mathrm{N}, j, m)
$$

exists and equals I / m.
In this Note we study the following sequence $\left\{\mathrm{G}_{n}\right\}$. Let $\mathrm{A}, \mathrm{B}, a, b$ be fixed rational integers, let the equation $x^{2}-\mathrm{A} x+\mathrm{B}=\mathrm{o}$ have distinct nonzero roots, which means $B \neq 0$ and $D=A^{2}-4 B \neq 0$, and moreover let a, b be not both equal to zero. Then let $\left\{\mathrm{G}_{n}\right\}$ be defined by

$$
\begin{equation*}
\mathrm{G}_{0}=a \quad, \quad \mathrm{G}_{1}=b \quad, \quad \mathrm{G}_{n+1}=\mathrm{AG}_{n}-\mathrm{BG}_{n-1} \quad(n=\mathrm{I}, 2, \cdots) \tag{I}
\end{equation*}
$$

and let $\left\{\mathrm{R}_{n}\right\}$ be the special sequence of $\left\{\mathrm{G}_{n}\right\}$ with $a=\mathrm{o}, b=\mathrm{I}$. Let P_{k} and Q_{k} denote the exact period length of $\left\{\mathrm{R}_{n}\right\}$ and $\left\{\mathrm{G}_{n}\right\}$ modulo p^{k} for $k=\mathrm{I}, 2, \ldots$ respectively.

We want to prove the following theorem by a method developed in [1] by one of the present Authors.

Theorem. Let p be a prime with $p \mid \mathrm{D}, p \nmid 2 \mathrm{~B}, p \nmid(b \mathrm{~A}-2 a \mathrm{~B})$ and let d be the exact order of $\mathrm{B} \bmod p$. If $\mathrm{P}_{k}=2 \mathrm{~d} p^{k}$ for $k=\mathrm{I}, 2, \cdots$, then $\left\{\mathrm{G}_{n}\right\}$ is u.d. mod p^{k} for $k=\mathrm{I}, 2, \cdots$.
 boldt-Stiftung fellow visiting the University of Göttingen.
${ }^{\text {**) }}$) Pervenuta all'Accademia il 3 settembre 1973.

Note that we can show in Lemma I of $\S 2$ that under the same assumptions of our theorem on the prime p we have $\mathrm{Q}_{k}=\mathrm{P}_{k}$ for all k. Note also that the assumptions: P_{1} is even and furthermore $\mathrm{P}_{2} \neq \mathrm{P}_{1}$ in case $p=3$ imply that $\mathrm{P}_{k}=2 \mathrm{~d} p^{k}$ for all k under the specified assumptions on p. This will be shown in a later paper on the periods of $\left\{\mathrm{G}_{n}\right\}$ modulo a fixed natural number ≥ 2. Here we give two corollaries which are proved at the end of $\S 3$.

Corollary i. The theorem of Kuipers and Shiue in [2].
Note that the assumption in [2] that the congruence $2 \mathrm{~B} x \equiv \mathrm{~A}(p)$ is satisfied by a primitive root $\bmod p$ is superfluous. At the end of [2] there are proposed some unsolved problems which we can answer now.

Corollary 2. Take $\mathrm{A}=3, \mathrm{~B}=-\mathrm{I}$ and let (a, b) be the pair ($\mathrm{I}, \mathrm{I})$, $(\mathrm{I}, 3),(\mathrm{I}, 5)$ respectively. Then the corresponding sequences $\left\{\mathrm{G}_{n}\right\}$ formed following (1) are u.d. mod 13^{k} for $k=1,2, \cdots$.

§ 2. Lemmas

The first lemma gives the reduction of the periods of the general sequences $\left\{\mathrm{G}_{n}\right\}$ to those of the special sequence $\left\{\mathrm{R}_{n}\right\}$.

Lemma i. If $p \mid \mathrm{D}, p \nmid 2 \mathrm{~B}, p \nmid(b \mathrm{~A}-2 a \mathrm{~B})$ then $\mathrm{Q}_{k}=\mathrm{P}_{k}(k=\mathrm{I}, 2, \cdots)$.
Proof. First we express the G's by the R's:

$$
\begin{equation*}
\mathrm{G}_{n}=b \mathrm{R}_{n}-a \mathrm{BR}_{n-1} \tag{2}
\end{equation*}
$$

This is correct for $n=0$ (in virtue of $R_{1}=-\mathrm{BR}_{-1}$, see for example (7) in Lemma 2) and for $n=1$. Now

$$
\begin{aligned}
-a \mathrm{BR}_{n} & =-a \mathrm{~B}\left(\mathrm{AR}_{n-1}-\mathrm{BR}_{n-2}\right)=\mathrm{A}\left(\mathrm{G}_{n}-b \mathrm{R}_{n}\right)- \\
& -\mathrm{B}\left(\mathrm{G}_{n-1}-b \mathrm{R}_{n-1}\right)=\mathrm{G}_{n+1}-b \mathrm{R}_{n+1}
\end{aligned}
$$

gives (2) for $n+1$. Consider now the system of congruences

$$
\begin{align*}
& \mathrm{G}_{q}^{\prime}-a=b \cdot \mathrm{R}_{q}-a\left(\mathrm{I}+\mathrm{BR}_{q-1}\right) \equiv \mathrm{o} \tag{3}\\
& \mathrm{G}_{q+1}-b=(b \mathrm{~A}-a \mathrm{~B}) \mathrm{R}_{q}-b\left(\mathrm{I}+\mathrm{BR}_{q-1}\right) \equiv \mathrm{o} \tag{k}
\end{align*}
$$

where $q=Q_{k}$. For the determinant E of system (3) in R_{q} and $\mathrm{I}+\mathrm{BR}_{q-1}$ we have $-4 \mathrm{E}=4 b^{2}-4 a b \mathrm{~A}+4 a^{2} \mathrm{~B} \equiv(2 b-a \mathrm{~A})^{2} \neq 0(\bmod p)$, for if $p \mid(2 b-a \mathrm{~A})$, then $p \mid\left(2 b \mathrm{~A}-a \mathrm{~A}^{2}\right)$ and $p \mid 2(b \mathrm{~A}-2 a \mathrm{~B})$ against an assumption of Lemma I . Therefore (3) has only the solution $\mathrm{R}_{q} \equiv \mathrm{o}$, $\mathrm{BR}_{q-1} \equiv-\mathrm{I}\left(\bmod p^{k}\right)$ or equivalently $\mathrm{R}_{q} \equiv \mathrm{o}, \mathrm{R}_{q+1} \equiv-\mathrm{BR}_{q-1} \equiv \mathrm{I}\left(\bmod p^{k}\right)$ showing that $\mathrm{P}_{k} \mid q=\mathrm{Q}_{k}$. But $\mathrm{Q}_{k} \mid \mathrm{P}_{k}$ is trivial from (2).

Now let x_{1}, x_{2} be the (different) roots of $x^{2}-\mathrm{A} x+\mathrm{B}=\mathrm{o}$; then it is well known that

$$
\begin{equation*}
\mathrm{R}_{n}=\left(x_{1}^{n}-x_{2}^{n}\right) /\left(x_{1}-x_{2}\right) \quad(n=0, \mathrm{I}, \cdots) \tag{4}
\end{equation*}
$$

and we can define the R_{n} by this formula also in case $n<0$. Let us further define

$$
\begin{equation*}
\mathrm{S}_{n}=x_{1}^{n}+x_{2}^{n} \quad(n=0, \pm \mathrm{I}, \cdots) \tag{5}
\end{equation*}
$$

We note here the trivial formulas

$$
\begin{align*}
& x_{1}=(\mathrm{A}+\sqrt{\mathrm{D}}) / 2 \quad, \quad x_{2}=(\mathrm{A}-\sqrt{\mathrm{D}}) / 2 \tag{6}\\
& x_{1}+x_{2}=\mathrm{A}, \quad x_{1} x_{2}=\mathrm{B} \quad, \quad x_{1}-x_{2}=\sqrt{\mathrm{D}} .
\end{align*}
$$

Lemma 2. For all rational integers n, j one has

$$
\begin{align*}
& \mathrm{R}_{n}=-\mathrm{B}^{n} \mathrm{R}_{n}, \mathrm{~S}_{n}=\mathrm{B}^{n} \mathrm{~S}_{-n} \tag{7}\\
& \mathrm{~S}_{n}^{2}=\mathrm{DR}_{n}^{2}+4 \mathrm{~B}^{n} \tag{8}\\
& \mathrm{~S}_{n} \mathrm{~S}_{n+1}=\mathrm{DR}_{n} \mathrm{R}_{n+1}+2 \mathrm{AB}^{n} \tag{9}\\
& \mathrm{R}_{j} \mathrm{~S}_{n}-\mathrm{R}_{n} \mathrm{~S}_{j}=2 \mathrm{R}_{j-n} \mathrm{~B}^{n} \tag{io}\\
& \mathrm{R}_{j+n}=\mathrm{R}_{n} \mathrm{~S}_{j}+\mathrm{B}^{n} \mathrm{R}_{j-n} \tag{II}\\
& \mathrm{R}_{j n}=2^{1-j} \mathrm{R}_{n}\left(j \mathrm{~S}_{n}^{j-1}+\mathrm{KR}_{n}^{2}\right) \quad \tag{I2}
\end{align*}
$$

with a certain rational integer K .
Proof. Formulas (7) to (I I) are easily proved by using (4), (5) and (6). From (4) and (5) one has

$$
x_{1}^{n}=\left(\mathrm{S}_{n}+\sqrt{\left.\overline{\mathrm{D}} \mathrm{R}_{n}\right) / 2, x_{2}^{n}=\left(\mathrm{S}_{n}-\sqrt{\mathrm{D}} \mathrm{R}_{n}\right) / 2.20}\right.
$$

and so
$l \overline{\mathrm{D}} \mathrm{R}_{j n}=2^{-j}\left(\left(\mathrm{~S}_{n}+\sqrt{\mathrm{D}} \mathrm{R}_{n}\right)^{j}-\left(\mathrm{S}_{n}-\sqrt{\mathrm{D}} \mathrm{R}_{n}\right)^{j}\right)=2^{1-j} 7 / \overline{\mathrm{D}} \sum_{\substack{k=0 \\ k \text { odd }}}^{j}\binom{j}{k} \mathrm{~S}_{n}^{j-k} \mathrm{R}_{n}^{k} \mathrm{D}^{(k-1) / 2}$ showing (I2).

Remark. If $n \geq 0$ then $\mathrm{R}_{n k}$ is a multiple of R_{n} for each $k=\mathrm{o}, \mathrm{I}, \cdots$. This is trivially true for $k=0, \mathrm{I}$ and for $k \geq 2$ it is seen by induction via (II).

Lemma 3. Let p be a prime with $p \mid \mathrm{D}, p \nmid 2 \mathrm{~B}$ and in case $p=3$ let further be $\mathrm{P}_{2} \neq \mathrm{P}_{1}$ and $\mathrm{P}_{1} \neq 3$. Then $p^{k} \mid \mathrm{R}_{p^{k}}$, but $p^{k+1} \nmid \mathrm{R}_{p^{k}}$ for each $k=\mathrm{I}, 2, \cdots$.

Proof. By induction on k. In case $k=\mathrm{I}$ we have $p \mid \mathrm{R}_{p}$ from

$$
\begin{equation*}
2^{p-1} \mathrm{R}_{p}=p \mathrm{~A}^{p-1}+\sum_{j=1}^{(p-1) / 2}\binom{p}{2 j+\mathrm{I}} \mathrm{~A}^{p-2 j-1} \mathrm{D}^{j} . \tag{13}
\end{equation*}
$$

If $p>3$ then $p \left\lvert\,\binom{ p}{3}\right.$ and so $p^{2} \nmid \mathrm{R}_{p}$ in virtue of $p \nmid \mathrm{~A}$. In case $p=3$ we have from (I3) that $\mathrm{R}_{3}=\mathrm{A}^{2}-\mathrm{B}$. Now $\mathrm{B} \equiv 2(\bmod 3)$ would imply $\mathrm{A}^{2} \equiv 2$ $(\bmod 3)$ which is impossible; so $B \equiv I(\bmod 3)$ for $3 \nmid B$. If we had $A \equiv 2$ $(\bmod 3)$ then

$$
\mathrm{R}_{0}=\mathrm{o} \quad, \quad \mathrm{R}_{1}=\mathrm{I} \quad, \quad \mathrm{R}_{2} \equiv 2 \quad, \quad \mathrm{R}_{3} \equiv \mathrm{o} \quad, \quad \mathrm{R}_{4} \equiv \mathrm{I} \quad(\bmod 3)
$$

such that $\mathrm{P}_{1}=3$; so $\mathrm{A} \equiv \mathrm{B} \equiv \mathrm{I}(\bmod 3)$. Therefore we have $\mathrm{R}_{n+1} \equiv \mathrm{R}_{n}-$ $-\mathrm{R}_{n-1}(\bmod 3)$ and $\left\{\mathrm{R}_{n}\right\}$ begins with $\mathrm{O}, \mathrm{I}, \mathrm{I}, \mathrm{o}, 2,2, \mathrm{o}, \mathrm{I}, \cdots$, so $\mathrm{P}_{1}=6$. Assume $9 \mid \mathrm{R}_{3}$, then from $\mathrm{R}_{n+1}=\mathrm{AR}_{n}-\mathrm{BR}_{n-1}$ one has

$$
\left\{\mathrm{R}_{n}(\bmod 9)\right\}: \mathrm{o}, \mathrm{I}, \mathrm{~A}, \mathrm{o},-\mathrm{AB} \equiv-\mathrm{A}^{3} \equiv-\mathrm{I},-\mathrm{A}, \mathrm{o}, \mathrm{AB} \equiv \mathrm{I}, \cdots,
$$

for $A^{2} \equiv B(\bmod 9)$ by $9 \mid R_{3}$ and for $A^{3} \equiv I(\bmod 9)$ by $A \equiv I(\bmod 3)$. So we have $P_{2}=P_{1}$ against an assumption of Lemma 3. Thus $9 \nmid R_{3}$ and Lemma 3 is proved for $k=\mathrm{I}$. (It is easily seen that both additional assumptions in case $p=3$ are also necessary for $9 \nmid \mathrm{R}_{3}$).

Let Lemma 3 be proved for a certain $k \geq \mathrm{I}$, then, from (12) with $n=p^{k}$ $j=p$, one has

$$
2^{p-1} \mathrm{R}_{p^{k+1}}=p \mathrm{R}_{p^{k}} \mathrm{~S}_{p^{k}}^{p-1}+\mathrm{KR}_{p^{k}}^{3} \equiv p \mathrm{R}_{p^{k}} \mathrm{~S}_{p^{k}}^{p-1} \quad\left(p^{k+1}\right)
$$

from which Lemma 3 follows for $k+\mathrm{I}$ in virtue of $p \nmid \mathrm{~S}_{n}$ for $n=0, \mathrm{I}, \cdots$, since $S_{n}^{2} \equiv 4 \mathrm{~B}^{n} \neq \mathrm{o}(\bmod p)$ by (8) and the assumptions on p.

Lemma 4. Let i, m be integers $>\mathrm{o}$ and $h \mid\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right),(h, 2 \mathrm{~B})=\mathrm{I}$. Then $h \mid \mathrm{R}_{(i, m)}$.

Proof. If $g=(i, m)$, then there are rational integers r, s such that $g=i r+m s$. Take $j=i r, n=-m s$ in (IO) then

$$
\begin{equation*}
\mathrm{R}_{i r} \mathrm{~S}_{-m s}-\mathrm{R}_{-m s} \mathrm{~S}_{i r}=2 \mathrm{R}_{g} \mathrm{~B}^{-m s} \tag{14}
\end{equation*}
$$

Without loss of generality we may let ir $\geq m s$. If $m s \geq 0$ (so ir >0) we have, from (7) and (14)

$$
\mathrm{R}_{i r} \mathrm{~S}_{m s}+\mathrm{R}_{m s} \mathrm{~S}_{i r}=2 \mathrm{R}_{g}
$$

If $m s<0$ (so ir >0), then, by (14)

$$
\mathrm{R}_{i r} \mathrm{~S}_{m|s|}-\mathrm{R}_{m|s|} \mathrm{S}_{i r}=2 \mathrm{R}_{g} \mathrm{~B}^{m|s|}
$$

Now $h \mid \mathrm{R}_{i}$ and $h \mid \mathrm{R}_{m}$ so $h \mid \mathrm{R}_{i r}$ and $h \mid \mathrm{R}_{m|s|}$ (by the remark after Lemma 2). Thus $h \mid 2 \mathrm{R}_{g} \mathrm{~B}^{m|s|}$ by the last two formulas. $(h, 2 \mathrm{~B})=\mathrm{I}$ shows $h \mid \mathrm{R}_{g}$.

Lemma 5. Under the same assumptions of Lemma $3 p^{k} \mid \mathrm{R}_{m}$ implies $p^{k} \mid m$.
Froof. If $m=p^{t} m^{\prime}$ with $0 \leq t<k$ and $p \nmid m^{\prime}$, then take $i=p^{k}$ in Lemma 4 such that $(i, m)=p^{t}$ and by Lemma 3, we have $p^{k} \mid \mathrm{R}_{i}$. From this result and the assumption $p^{k} \mid \mathrm{R}_{m}$ of Lemma 5 we get $p^{k} \mid \mathrm{R}_{p^{t}}$ contradicting Lemma 3.

§. 3. Proof of the theorem and the corollaries

We show the theorem first for $k=\mathrm{I}$. A simple induction on s via $\mathrm{R}_{n+1}=$ $=\mathrm{AR}_{n}-\mathrm{BR}_{n-1}$ shows that $p \mid \mathrm{D}$ (or equivalently $\mathrm{A}^{2} \equiv 4 \mathrm{~B}(\bmod p)$) implies

$$
\begin{equation*}
\mathrm{R}_{2 s} \equiv s \mathrm{AB}^{s-1}(p) \quad, \quad \mathrm{R}_{2 s+1} \equiv(2 s+\mathrm{I}) \mathrm{B}^{s} \quad(p) \tag{15}
\end{equation*}
$$

Now we assert that each of the numbers $0, \cdots, p$ - I occurs exactly 2 d times as residue $\bmod p$ of the G_{n} with $\mathrm{o} \leq n<2 \mathrm{~d} p=\mathrm{P}_{1}=\mathrm{Q}_{1}$ which implies the theorem for $k=\mathrm{I}$. Consider first the even $n, n=2 s, 0 \leq s<\mathrm{d} p$ and
among these exactly those p values s leaving the residue t (t fixed and $\mathrm{o} \leq$ $\leq t<\mathrm{d}) \bmod \mathrm{d}$; these are exactly the s-values from the set

$$
\mathrm{M}_{t}=\{t, t+\mathrm{d}, t+2 \mathrm{~d}, \cdots, t+(p-\mathrm{I}) \mathrm{d}\} .
$$

From (I) and (15) we get

$$
\begin{equation*}
\mathrm{G}_{2 s} \equiv(s(b \mathrm{~A}-2 a \mathrm{~B})+a \mathrm{~B}) \mathrm{B}^{s-1}(p) . \tag{ı6}
\end{equation*}
$$

Therefore we have: If $s, s^{\prime} \in \mathrm{M}_{t}$ such that $\mathrm{G}_{2 s} \equiv \mathrm{G}_{2 s^{\prime}}(p)$ then

$$
\begin{equation*}
\left(s-s^{\prime}\right)(b \mathrm{~A}-2 a \mathrm{~B}) \equiv \mathrm{o} \tag{p}
\end{equation*}
$$

because $\mathrm{B}^{s-1} \equiv \mathrm{~B}^{s^{\prime}-1}(p)$ (for $s \equiv s^{\prime}(\mathrm{d})$ and the definition of d). Now $p \nmid(b \mathrm{~A}-2 a \mathrm{~B})$ implies $s \equiv s^{\prime}(\bmod p)$ and $s, s^{\prime} \in \mathrm{M}_{t}$ shows $s=s^{\prime}$ such that among the p numbers $\mathrm{G}_{2 s}$ with $s \in \mathrm{M}_{t}$ each residue $0, \cdots, p-\mathrm{I}$ occurs exactly once and among the $p \mathrm{~d}$ numbers $\mathrm{G}_{2 s}, \mathrm{o} \leq s<\mathrm{d} p$ exactly d times.

The case n odd, $n=2 s+\mathrm{I}$, $\mathrm{o} \leq s<\mathrm{d} p$ can be treated in an analogous manner via $\mathrm{G}_{2 s+1} \equiv(2 s(b \mathrm{~A}-2 a \mathrm{~B})+b \mathrm{~A}) 4^{-1} \mathrm{AB}^{s-1}(p)$. Thus the theorem is proved for $k=\mathrm{I}$.

Let $k \geq \mathrm{I}$ and just be proved that each of the numbers $0, \cdots, p^{k}-\mathrm{I}$ occurs exactly 2 d times as residue $\bmod p^{k}$ of the G_{n} with $0 \leq n<2 \mathrm{~d} p^{k}=$ $=\mathrm{P}_{k}=\mathrm{Q}_{k}$ (see Lemma I for $\mathrm{Q}_{k}=\mathrm{P}_{k}$). We show that this holds also for $k+\mathrm{I}$. Let s be given with $0 \leq s<p^{k}$ and t with $0 \leq t<\mathrm{P}_{k}$ such that $\mathrm{G}_{t+\gamma \mathrm{P}_{k}}=$ $=s+u_{r} p^{k}$. Assume that there are r, r^{\prime} with $0 \leq r^{\prime}<r<p$ such that $u_{r} \equiv u_{r^{\prime}}(p)$ and so

$$
\begin{equation*}
p^{k+1} \mid\left(\mathrm{G}_{t+r \mathrm{P}_{k}}-\mathrm{G}_{t+\gamma^{\prime} \mathrm{P}_{k}}\right) . \tag{7}
\end{equation*}
$$

By (I), (II) and $\mathrm{P}_{k}=2 \mathrm{~d} p^{k}$ we have

$$
\begin{gather*}
\mathrm{G}_{t+r \mathrm{P}_{k}}-\mathrm{G}_{t+r^{\prime} \mathrm{P}_{k}}=\left(\mathrm{B}^{\left(r-r^{\prime}\right) \mathrm{d} p^{k}}-\mathrm{I}\right)\left(b \mathrm{R}_{t+r^{\prime} \mathrm{P}_{k}}-a \mathrm{BR}_{t+r^{\prime} \mathrm{P}_{k}-1}\right)+ \tag{I8}\\
\quad+\mathrm{R}_{\left(r-r^{\prime}\right) \mathrm{d} p^{k}}\left(b \mathrm{~S}_{t+\left(r+r^{\prime}\right) \mathrm{P}_{k} / 2}-a \mathrm{BS}_{t+\left(r+r^{\prime}\right) \mathrm{P}_{k} / 2-1}\right) .
\end{gather*}
$$

We have $\mathrm{B}^{\mathrm{d} p^{k}} \equiv \mathrm{I}\left(p^{k+1}\right)$ by $\mathrm{B}^{\mathrm{d}} \equiv \mathrm{I}(p)$ and further $p \nmid\left(b \mathrm{~S}_{n}-a \mathrm{BS}_{n-1}\right)$ for $n=\mathrm{I}, 2, \cdots$ since by (8), (9) and $p \mid \mathrm{D}$

$$
\mathrm{S}_{n-1}\left(b \mathrm{~S}_{n}-a \mathrm{BS}_{n-1}\right) \equiv(b \mathrm{~A}-2 a \mathrm{~B}) \mathrm{B}^{n-1} \not \equiv \mathrm{O} \quad(p) .
$$

So we get, from (I7) and (I8), $p^{k+1} \mid \mathrm{R}_{\left(r-r^{\prime}\right) \mathrm{d} p^{k}}$. Now from Lemma 5 we have $p \mid\left(r-r^{\prime}\right) \mathrm{d}$ and so $p \mid\left(r-r^{\prime}\right)$ for $\mathrm{d} \mid(p-\mathrm{I})$. But this is impossible for $0<r-r^{\prime}<p$ and the contradiction shows the theorem in case $k+\mathrm{I}$.

To Corollary I. In the theorem of [2] is assumed that $Q_{k}=(p-1) p^{k}$ for $k=\mathrm{I}, 2, \cdots$ and we have to show: $p-\mathrm{I}=2 \mathrm{~d}$, where d the order of $\mathrm{B} \bmod p$. By $p \mid\left(\mathrm{A}^{2}-4 \mathrm{~B}\right), p \nmid 2 \mathrm{~A}$ and Fermats theorem we have $\mathrm{I} \equiv \mathrm{A}^{p+1} \equiv 2^{p-1} \mathrm{~B}^{(p-1) / 2} \equiv \mathrm{~B}^{(p-1) / 2}(p)$ and so $2 \mathrm{~d} \mid(p-\mathrm{I})$. On the other hand taking $s=\mathrm{d} p$ in (15) we see $\mathrm{R}_{2 \mathrm{~d} p} \equiv \mathrm{o}(p), \mathrm{R}_{2 \mathrm{~d} p+1} \equiv \mathrm{~B}^{\mathrm{d} p} \equiv \mathrm{I}(p)$ such that $\mathrm{P}_{1} \mid 2 \mathrm{~d} p$ so $(p-\mathrm{I}) p=\mathrm{Q}_{1}=\mathrm{P}_{1} \mid 2 \mathrm{~d} p$ and then $(p-\mathrm{I}) \mid 2 \mathrm{~d}$.

Note that the last inequality $l<j$ on page 9 of [2] is not correct in the case $j=\mathrm{I}, p=3$.

To Corollary 2. $\mathrm{A}=3, \mathrm{~B}=-\mathrm{I}$ gives $\mathrm{D}=\mathrm{I} 3$ and (I, I), ($\mathrm{I}, 3$), $(\mathrm{I}, 5)$ for (a, b) gives that $b \mathrm{~A}-2 a \mathrm{~B}$ equals 5 , II, I7 respectively. Now take $p=13$ and so $\mathrm{d}=2$. By $\mathrm{P}_{k}=4 \cdot 13^{k}$ (see the end of [2]) the condition $\mathrm{P}_{k}=2 \mathrm{~d} p^{k}$ of our theorem is satisfied and the corollary is proved.

References

[I] P. Bundschuh, On the distribution of Fibonacci numbers, "Tamkang J.», 5 (I) (1974). [2] L. Kuipers and J. S. Shiue, A distribution property of a linear recurrence of the second order, "Atti Accad. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat.》, 52, 6-10 (1972).
[3] I. Niven, Uniform distribution of sequences of integers, "Trans. Amer. Math. Soc.», 98, 52-6I (196I).

