ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PETER BUNDSCHUH, JAU-SHYONG SHIUE

Solution of a problem on the uniform distribution of integers

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **55** (1973), n.3-4, p. 172–177.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_55_3-4_172_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Teoria dei numeri.** — Solution of a problem on the uniform distribution of integers ^(*). Nota ^(**) di PETER BUNDSCHUH e JAU-SHVONG SHIUE, presentata dal Socio B. SEGRE.

RIASSUNTO. — Si riottiene sotto condizioni più generali un Teorema di Kuipers e Shiue stabilito altrimenti da questi Autori in una precedente Nota lincea [2], e si risolve un problema aperto ivi enunciato.

§ I. INTRODUCTION

In [3] Niven introduced the notion of uniform distribution of a sequence of integers: Let \mathcal{G} be such an infinite sequence $\{g_n\}_{n=1,2,\cdots}$, let *m* be a fixed integer ≥ 2 , let $0 \leq j < m$ and put

$$A_{\mathfrak{G}}(\mathbf{N}, j, m) = \sum_{\substack{n \leq \mathbf{N} \\ \mathfrak{S}_n \equiv j \pmod{m}}} \mathbf{I} \ .$$

Then S is said to be uniformly distributed (shortly: u.d.) mod m, if for each $j = 0, \dots, m - 1$

$$\lim_{\mathbf{N}\to\infty} \frac{\mathbf{I}}{\mathbf{N}} \mathbf{A}_{\mathfrak{G}}(\mathbf{N}, j, m)$$

exists and equals 1/m.

In this Note we study the following sequence $\{G_n\}$. Let A, B, a, b be fixed rational integers, let the equation $x^2 - Ax + B = o$ have distinct nonzero roots, which means $B \neq o$ and $D = A^2 - 4B \neq o$, and moreover let a, b be not both equal to zero. Then let $\{G_n\}$ be defined by

(I)
$$G_0 = a$$
, $G_1 = b$, $G_{n+1} = AG_n - BG_{n-1}$ $(n = I, 2, \cdots)$

and let $\{R_n\}$ be the special sequence of $\{G_n\}$ with a = 0, b = 1. Let P_k and Q_k denote the exact period length of $\{R_n\}$ and $\{G_n\}$ modulo p^k for $k=1, 2, \cdots$ respectively.

We want to prove the following theorem by a method developed in [I] by one of the present Authors.

THEOREM. Let p be a prime with $p \mid D$, $p \nmid 2B$, $p \nmid (bA - 2aB)$ and let d be the exact order of B mod p. If $P_k = 2 dp^k$ for $k = 1, 2, \dots$, then $\{G_n\}$ is u.d. mod p^k for $k = 1, 2, \dots$.

(*) This paper was written while the second Author was an Alexander von Humboldt-Stiftung fellow visiting the University of Göttingen.

(**) Pervenuta all'Accademia il 3 settembre 1973.

Note that we can show in Lemma 1 of §2 that under the same assumptions of our theorem on the prime p we have $Q_k = P_k$ for all k. Note also that the assumptions: P_1 is even and furthermore $P_2 \neq P_1$ in case p = 3 imply that $P_k = 2 dp^k$ for all k under the specified assumptions on p. This will be shown in a later paper on the periods of $\{G_n\}$ modulo a fixed natural number ≥ 2 . Here we give two corollaries which are proved at the end of § 3.

COROLLARY I. The theorem of Kuipers and Shiue in [2].

Note that the assumption in [2] that the congruence $2 Bx \equiv A(p)$ is satisfied by a primitive root mod p is superfluous. At the end of [2] there are proposed some unsolved problems which we can answer now.

COROLLARY 2. Take A = 3, B = -1 and let (a, b) be the pair (1, 1), (1, 3), (1, 5) respectively. Then the corresponding sequences $\{G_n\}$ formed following (1) are u.d. mod 13^k for $k = 1, 2, \cdots$.

§ 2. LEMMAS

The first lemma gives the reduction of the periods of the general sequences $\{G_n\}$ to those of the special sequence $\{R_n\}$.

LEMMA I. If
$$p|D$$
, $p\nmid 2B$, $p\nmid (bA-2aB)$ then $Q_k = P_k$ $(k = 1, 2, \cdots)$.

Proof. First we express the G's by the R's:

$$G_n = bR_n - aBR_{n-1}.$$

This is correct for n = 0 (in virtue of $R_1 = -BR_{-1}$, see for example (7) in Lemma 2) and for n = 1. Now

$$- aBR_n = - aB (AR_{n-1} - BR_{n-2}) = A (G_n - bR_n) - B (G_{n-1} - bR_{n-1}) = G_{n+1} - bR_{n+1}$$

gives (2) for n + 1. Consider now the system of congruences

(3)
$$\begin{aligned} G_{q} & -a = b \cdot R_{q} - a \left(I + BR_{q-1} \right) \equiv o \qquad (p^{k}) \\ G_{q+1} & -b = (bA - aB) R_{q} - b \left(I + BR_{q-1} \right) \equiv o \qquad (p^{k}) \end{aligned}$$

where $q = Q_k$. For the determinant E of system (3) in R_q and $I + BR_{q-1}$ we have $-4E = 4b^2 - 4abA + 4a^2B \equiv (2b - aA)^2 \equiv 0 \pmod{p}$, for if $p \mid (2b - aA)$, then $p \mid (2bA - aA^2)$ and $p \mid 2(bA - 2aB)$ against an assumption of Lemma I. Therefore (3) has only the solution $R_q \equiv 0$, $BR_{q-1} \equiv -I \pmod{p^k}$ or equivalently $R_q \equiv 0$, $R_{q+1} \equiv -BR_{q-1} \equiv I \pmod{p^k}$ showing that $P_k \mid q = Q_k$. But $Q_k \mid P_k$ is trivial from (2).

Now let x_1 , x_2 be the (different) roots of $x^2 - Ax + B = 0$; then it is well known that

(4)
$$R_n = (x_1^n - x_2^n)/(x_1 - x_2)$$
 $(n = 0, 1, \cdots)$

and we can define the R_n by this formula also in case n < 0. Let us further define

(5)
$$S_n = x_1^n + x_2^n$$
 $(n = 0, \pm 1, \cdots).$

173

We note here the trivial formulas

(6)
$$x_1 = (A + ||D|)/2$$
, $x_2 = (A - ||\overline{D}|)/2$,
 $x_1 + x_2 = A$, $x_1 x_2 = B$, $x_1 - x_2 = ||\overline{D}|$

LEMMA 2. For all rational integers n, j one has

(7)
$$\mathbf{R}_n = -\mathbf{B}^n \mathbf{R}_{-n} \quad , \quad \mathbf{S}_n = \mathbf{B}^n \mathbf{S}_{-n}$$

 $S_n^2 = DR_n^2 + 4B^n$

(9)
$$S_n S_{n+1} = DR_n R_{n+1} + 2AB^n$$

(10)
$$\mathbf{R}_{j} \mathbf{S}_{n} - \mathbf{R}_{n} \mathbf{S}_{j} = \mathbf{2} \mathbf{R}_{j-n} \mathbf{B}'$$

(12)
$$R_{jn} = 2^{1-j} R_n (j S_n^{j-1} + K R_n^2)$$
 (if $n, j \ge 0$)

with a certain rational integer K.

Proof. Formulas (7) to (11) are easily proved by using (4), (5) and (6). From (4) and (5) one has

$$x_1^n = (S_n + \sqrt{D} R_n)/2$$
 , $x_2^n = (S_n - \sqrt{D} R_n)/2$

and so

$$\begin{split} & \sqrt{\mathbf{D}} \ \mathbf{R}_{jn} = 2^{-j} \left((\mathbf{S}_n + \sqrt{\mathbf{D}} \ \mathbf{R}_n)^j - (\mathbf{S}_n - \sqrt{\mathbf{D}} \ \mathbf{R}_n)^j \right) = 2^{1-j} \sqrt{\mathbf{D}} \sum_{\substack{k=0\\k \text{ odd}}}^j \binom{j}{k} \mathbf{S}_n^{j-k} \mathbf{R}_n^k \mathbf{D}^{(k-1)/2} \end{split}$$
showing (12).

REMARK. If $n \ge 0$ then R_{nk} is a multiple of R_n for each $k = 0, 1, \cdots$. This is trivially true for k=0, 1 and for $k \ge 2$ it is seen by induction via (11).

LEMMA 3. Let p be a prime with $p \mid D$, $p \nmid 2B$ and in case p = 3 let further be $P_2 \neq P_1$ and $P_1 \neq 3$. Then $p^k \mid R_{p^k}$, but $p^{k+1} \nmid R_{p^k}$ for each $k = 1, 2, \cdots$.

Proof. By induction on k. In case k = I we have $p | R_p$ from

(13)
$$2^{p-1} \mathbf{R}_{p} = p \mathbf{A}^{p-1} + \sum_{j=1}^{(p-1)/2} {p \choose 2j+1} \mathbf{A}^{p-2j-1} \mathbf{D}^{j}.$$

If p > 3 then $p \mid \binom{p}{3}$ and so $p^2 \nmid R_p$ in virtue of $p \nmid A$. In case p = 3 we have from (13) that $R_3 = A^2 - B$. Now $B \equiv 2 \pmod{3}$ would imply $A^2 \equiv 2 \pmod{3}$ which is impossible; so $B \equiv 1 \pmod{3}$ for $3 \nmid B$. If we had $A \equiv 2 \pmod{3}$ then

$$R_0=o$$
 , $R_1=I$, $R_2\equiv 2$, $R_3\equiv o$, $R_4\equiv I$ (mod 3)

such that $P_1 = 3$; so $A \equiv B \equiv 1 \pmod{3}$. Therefore we have $R_{n+1} \equiv R_n - R_{n-1} \pmod{3}$ and $\{R_n\}$ begins with $0, 1, 1, 0, 2, 2, 0, 1, \cdots$, so $P_1 = 6$. Assume $9 \mid R_3$, then from $R_{n+1} = AR_n - BR_{n-1}$ one has

$$\{R_n \pmod{9}\}: o, I, A, o, -AB \equiv -A^3 \equiv -I, -A, o, AB \equiv I, \cdots,$$

for $A^2 \equiv B \pmod{9}$ by $9 \mid R_3$ and for $A^3 \equiv I \pmod{9}$ by $A \equiv I \pmod{3}$. So we have $P_2 = P_1$ against an assumption of Lemma 3. Thus $9 \nmid R_3$ and Lemma 3 is proved for k = I. (It is easily seen that both additional assumptions in case p = 3 are also necessary for $9 \nmid R_3$).

Let Lemma 3 be proved for a certain $k \ge 1$, then, from (12) with $n = p^k$ j = p, one has

$$2^{p-1} \mathbf{R}_{p^{k+1}} = p \mathbf{R}_{p^{k}} \mathbf{S}_{p^{k}}^{p-1} + \mathbf{K} \mathbf{R}_{p^{k}}^{3} \equiv p \mathbf{R}_{p^{k}} \mathbf{S}_{p^{k}}^{p-1} \quad (p^{k+1})$$

from which Lemma 3 follows for k + 1 in virtue of $p \nmid S_n$ for $n = 0, 1, \dots$, since $S_n^2 \equiv 4 B^n \equiv 0 \pmod{p}$ by (8) and the assumptions on p.

LEMMA 4. Let i, m be integers > 0 and $h | (R_i, R_m), (h, 2B) = 1$. Then $h | R_{(i,m)}$.

Proof. If g = (i, m), then there are rational integers r, s such that g = ir + ms. Take j = ir, n = -ms in (10) then

(14)
$$R_{ir} S_{-ms} - R_{-ms} S_{ir} = 2 R_g B^{-ms}$$

Without loss of generality we may let $ir \ge ms$. If $ms \ge 0$ (so ir > 0) we have, from (7) and (14)

$$\mathrm{R}_{ir}\,\mathrm{S}_{ms}+\mathrm{R}_{ms}\,\mathrm{S}_{ir}=2\mathrm{R}_{g}\,.$$

If ms < o (so ir > o), then, by (14)

$$\mathbf{R}_{ir} \mathbf{S}_{m|s|} - \mathbf{R}_{m|s|} \mathbf{S}_{ir} = 2 \mathbf{R}_{s} \mathbf{B}^{m|s|}$$

Now $h | R_i$ and $h | R_m$ so $h | R_{ir}$ and $h | R_{m|s|}$ (by the remark after Lemma 2). Thus $h | 2 R_g B^{m|s|}$ by the last two formulas. (h, 2B) = 1 shows $h | R_g$.

LEMMA 5. Under the same assumptions of Lemma 3 $p^k | R_m$ implies $p^k | m$.

Froof. If $m = p^t m'$ with $0 \le t < k$ and $p \nmid m'$, then take $i = p^k$ in Lemma 4 such that $(i, m) = p^t$ and by Lemma 3, we have $p^k \mid R_i$. From this result and the assumption $p^k \mid R_m$ of Lemma 5 we get $p^k \mid R_{p^t}$ contradicting Lemma 3.

§. 3. PROOF OF THE THEOREM AND THE COROLLARIES

We show the theorem first for k = I. A simple induction on s via $R_{n+1} = AR_n - BR_{n-1}$ shows that $p \mid D$ (or equivalently $A^2 \equiv 4 B \pmod{p}$) implies (I5) $R_{2s} \equiv sAB^{s-1}(p)$, $R_{2s+1} \equiv (2s+I)B^s$ (p).

Now we assert that each of the numbers $0, \dots, p-1$ occurs exactly 2 d times as residue mod p of the G_n with $0 \le n < 2 dp = P_1 = Q_1$ which implies the theorem for k = 1. Consider first the even n, n = 2s, $0 \le s < dp$ and

among these exactly those p values s leaving the residue t (t fixed and $o \le \le t < d$) mod d; these are exactly the s-values from the set

$$M_t = \{t, t+d, t+2d, \dots, t+(p-1)d\}.$$

From (1) and (15) we get

(16)
$$G_{2s} \equiv (s (bA - 2 aB) + aB) B^{s-1} (p).$$

Therefore we have: If $s, s' \in M_t$ such that $G_{2s} \equiv G_{2s'}(p)$ then

 $(s - s')(bA - 2aB) \equiv 0$ (p)

because $B^{s-1} \equiv B^{s'-1}(p)$ (for $s \equiv s'(d)$ and the definition of d). Now $p \nmid (bA - 2aB)$ implies $s \equiv s' \pmod{p}$ and $s, s' \in M_t$ shows s = s' such that among the p numbers G_{2s} with $s \in M_t$ each residue $0, \dots, p-1$ occurs exactly once and among the pd numbers G_{2s} , $0 \leq s < dp$ exactly d times.

The case *n* odd, n = 2s + 1, $0 \le s < dp$ can be treated in an analogous manner via $G_{2s+1} \equiv (2s(bA - 2aB) + bA) 4^{-1}AB^{s-1}(p)$. Thus the theorem is proved for k = 1.

Let $k \ge 1$ and just be proved that each of the numbers $0, \dots, p^k - 1$ occurs exactly 2 d times as residue mod p^k of the G_n with $0 \le n < 2 dp^k =$ $= P_k = Q_k$ (see Lemma 1 for $Q_k = P_k$). We show that this holds also for k + 1. Let s be given with $0 \le s < p^k$ and t with $0 \le t < P_k$ such that $G_{t+rP_k} =$ $= s + u_r p^k$. Assume that there are r, r' with $0 \le r' < r < p$ such that $u_r \equiv u_{r'}(p)$ and so

(17)
$$p^{k+1} \mid (\mathbf{G}_{t+r\mathbf{P}_k} - \mathbf{G}_{t+r'\mathbf{P}_k}).$$

By (1), (11) and $P_k = 2 dp^k$ we have

(18)
$$G_{t+rP_{k}} - G_{t+r'P_{k}} = (B^{(r-r')dp^{k}} - I) (bR_{t+r'P_{k}} - aBR_{t+r'P_{k}-1}) + R_{(r-r')dp^{k}} (bS_{t+(r+r')P_{k}/2} - aBS_{t+(r+r')P_{k}/2-1}).$$

We have $B^{dp^k} \equiv I(p^{k+1})$ by $B^d \equiv I(p)$ and further $p \nmid (\delta S_n - aBS_{n-1})$ for n = I, 2, \cdots since by (8), (9) and $p \mid D$

$$S_{n-1}(bS_n - aBS_{n-1}) \equiv (bA - 2aB) B^{n-1} \equiv 0 \quad (p).$$

So we get, from (17) and (18), $p^{k+1} | R_{(r-r')dp^k}$. Now from Lemma 5 we have p | (r - r') d and so p | (r - r') for d | (p - 1). But this is impossible for 0 < r - r' < p and the contradiction shows the theorem in case k + 1.

To Corollary I. In the theorem of [2] is assumed that $Q_k = (p - I)p^k$ for k = I, 2,... and we have to show: p - I = 2 d, where d the order of B mod p. By $p \mid (A^2 - 4B)$, $p \nmid 2A$ and Fermats theorem we have $I \equiv A^{p-1} \equiv 2^{p-1} B^{(p-1)/2} \equiv B^{(p-1)/2}(p)$ and so $2d \mid (p-I)$. On the other hand taking s = dp in (15) we see $R_{2dp} \equiv o(p)$, $R_{2dp+1} \equiv B^{dp} \equiv I(p)$ such that $P_1 \mid 2dp$ so $(p-I) \not p = Q_1 = P_1 \mid 2dp$ and then $(p-I) \mid 2d$. Note that the last inequality l < j on page 9 of [2] is not correct in the case j = 1, p = 3.

To Corollary 2. A = 3, B = -1 gives D = 13 and (1, 1), (1, 3), (1, 5) for (a, b) gives that bA - 2aB equals 5, 11, 17 respectively. Now take p = 13 and so d = 2. By $P_k = 4 \cdot 13^k$ (see the end of [2]) the condition $P_k = 2 dp^k$ of our theorem is satisfied and the corollary is proved.

References

- [1] P. BUNDSCHUH, On the distribution of Fibonacci numbers, «Tamkang J.», 5 (1) (1974).
- [2] L. KUIPERS and J. S. SHIUE, A distribution property of a linear recurrence of the second order, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat. », 52, 6-10 (1972).
- [3] I. NIVEN, Uniform distribution of sequences of integers, «Trans. Amer. Math. Soc.», 98, 52-61 (1961).