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Teoria dei numeri. — Solution of a problem oit the uniform  
distribution of integers (*\ Nota (**} di P eter B undschuh e J au-  
S hyong S h iu e , presentata dal Socio B. S egre.

R iassunto. — Si riottiene sotto condizioni più generali un Teorema di Kuipers e Shiue 
stabilito altrimenti da questi Autori in una precedente Nota lincea [2], e si risolve un 
problema aperto ivi enunciato.

§ i. Introduction

In  [3] N iven introduced the notion of uniform  distribution of a sequence 
of integers: Let § be such an infinite sequence {g„}„=1,2,••• , let m be a fixed 
integer >  2, let o < j <  m  and put

A g (N  J  , m ) =  N  1 •
«<N 

g n ^ j  (mod m)

T hen § is said to be uniform ly distributed (shortly: u.d.) mod m, if for each
j  =  o  , •  • - , m —  I

lim —  A g(N  , j  , m)
N —> 00

exists and equals 1 \m.
In  this Note we study  the following sequence {Gn}. Let A  , B , a , b 

be fixed rational integers, let the equation — A x  +  B =  o have distinct 
nonzero roots, which m eans B =J= o and D =  A 2—■ 4 B o, and m oreover 
let a ,b  be not both equal to zero. Then let {G^} be defined by

( 0  ■ G0-= a y Gx — b , Gw+i =  AGn■— BGw_i (n — 1 , 2 , • • • )

and let { } be the special sequence of {Gn} w ith a =  o , 6 =  1. Let and
Qk denote the exact period length of {R n} and {G„} modulo p k for k=-1, 2 , • • • 
respectively.

W e w ant to prove the following theorem  by a m ethod developed in [1] 
by one of the present A uthors.

Theorem. Let p  be a prime with p  | D, p  1 2 B , p  \ (bA — 2 <zB) and let 
d be the exact order of B mod p. I f  ~Pk =  2 dp k fo r  k =  1 , 2 , • • - , then {Gw} 
is u .d . mod p k fo r  k =  1 , 2 , • • • .

(*) This paper was written while the second Author was an Alexander von Hum­
boldt-Stiftung fellow visiting the University of Göttingen.

(**) Pervenuta all’Accademia il 3 settembre 1973.
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Note th a t we can show in Lem m a 1 of § 2 th a t under the same assum ptions 
of our theorem  on the prim e p  we have Qk — Bk for all k . Note also th a t the 
assumptions: Px is even and furtherm ore P2=4= Pi in case P =  3 im ply that 
Bk =  2 dp k for all k under the specified assumptions on p. This will be shown 
in a later paper on the periods of {Gw} modulo a fixed natural num ber >  2. 
H ere we give two corollaries which are proved at the end of § 3.

C o ro lla ry  i. The theorem of Kuipers and Shiue in [2],
Note th a t the assum ption in [2] th a t the congruence 2 Bx == A  (p) is 

satisfied by a prim itive root mod p  is superfluous. A t the end of [2] there 
are proposed some unsolved problem s which we can answer now.

C o ro lla ry  2. Take A =  3 , B =  —  1 and let (a , 6) be the pair  (1 , 1), 
(1 ,3 ) ,  ( 1 ,5 )  respectively. Then the corresponding sequences {Gw} formed, 

following  (1) are u.d. mod i f  fo r  k =  1 , 2 , • • • .

§ 2. L emmas

T he first lem m a gives the reduction of the periods of the general 
sequences {G^} to those of the special sequence { R w}.

Lemma i. I f  p \D  , />! 2B i p \ (bA —  2 aB) then Qk — P^ (k =  1 , 2 , • • • ).

Proof. F irst we express the G’s by the R ’s:

(2) Gn =  bRn —  aB R n_i .

This is correct for .n =  o (in virtue of R 1 =  — B R _Xj see for exam ple (7) 
in Lem m a 2) and for n =  1. Now

aB R n =  —  dB (A R _ x  — BR„_2) =  A  (Gn — b R f  —

P  (Gn—1 bRn—x) G«+1 bRn_j_i

gives (2) for n +  1. Consider now the system  of congruences 

^  G) — a =  b-R q — a (1 +  B R ?_x) == o (pk)
G e+i —  b =  (bA — aB) Rç— b(i  +  B R ^ _ X) =  o (pk)'

where q ~  Qk. For the determ inant E  of system (3) in R^ and 1 +  BR^_X 
we have — 4 E =  4 \  ab A  - f  4 ^ 2 B =  (2 b — a A )2 ^  o (mod p), for if
p  I (2 b —  aA), then p  | (2 bA —- aA2) and p  | 2 (bA — 2 aB) against an 
assum ption of Lem m a 1. Therefore (3) has only the solution R ÿ ~  o , 
BR?- i  = — I (mod p k) or equivalently R^ = 0 ,  R^+1 = — BR^_X =  1 (mod pk) 
showing th a t Bk \q =  Qk . But Qk \ Bk is trivial from (2).

Now let x l f x 2 be the (different) roots of x2— A x  +  B =  o; then it is 
well known th a t

(4) P-rc =  (X\ — x\)l(x± — x 2) (n =  o , I , • • • )

and we can define the R„ by this form ula also in case n <  o. Let us , further 
define

( 5) S n I n
n =  *1 +  *2 (» =  0 , ±  I >■' ')•
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We note here the trivial formulas 

^  * i = ( A  +  ]/D )/2  , x 2  =  (A —  1/D ) /2 j

Xi-\- x z = A  , x1x2= B  , x 1-— x 2 =  ] /d  .

LEMMA 2. For all rational integers n , j  one has

(7) R« =  —  B” R_.„ , S„ =  B"

(8) S2 =  D R 2 +  4 BB

(9) S„ Sn+1 =  DR„ R k+1 +  2A B ”

( 1 o) R, S„ —  R„ S, =  2 R ,_ , B”

0 0  R/+« =  R . Sy +  B" R,-_„

( 12) Ry. =  2X̂ ' R„ O S T 1 +  K R 2b) (*/ » , j  >  o)

a certain rational integer K.

Proof. Form ulas (7) to (11) are easily proved by using (4), (5) and (6). 
From  (4) and (5) one has

i î = ( S »  +  fD R » ) /2  , x l =  (SB — ]/D R b)/2
and so

1/ d  R ^ = 2 “V(S« +  1/D  R«)-7' (S„— ]/D r ,V )  =  2w ] / d  i : f L s r 4R tD (̂ 1)/2

showing (12).

Remark. I f  n~> o then R Bi is a multiple of R„ fo r  each k ~  o , 1 , • • • . 
This is trivially  true for k —o,  1 and for kl> 2 it is seen by induction via (11).

Lemma 3. Let p  be a prime with p  | D , p  I 2 B and in case p  —  3 let further  
be P2 =j= Px and  Pi =j= 3. Then p h | R ^  , but p k+l \ R^$ fo r  each k — 1 , 2 , • • • .

Proof. B y induction on k. In  case k =  1 we have p  | R^ from

(13) 2p~l B.p =  pAp- x Dy

If  p >  3 then p and so p 2\ in virtue of p \  A. In  case p  =  3 we

have from (13) th a t R 3 =  A 2 —  B. Now B =  2 (mod 3) would im ply A 2=  2 
(mod 3) which is impossible; so B =  1 (mod 3) for 3 I B. I f  we had A  eee 2 
(mod 3) then

R 0 — O ' ,  R x — I , R 2 =  2 , R3 =  o , R 4 =  I (mod 3)

such th a t Px =  3; so A  =  B =  I (mod 3). Therefore we have R„+1 =  R„ —
~ R « - i  (mod 3) and {R„} begins with o , 1 , 1 , o , 2 ,2  , o , 1 , • • • ,  so P4 =  6.
Assum e 9 | R 3, then from R„+1 =  AR„ —  BR„_! one has

{ R n (mod 9)} : o , I , A , o , — AB =  — A3 =  — 1 , — A , o ,  AB =  1 ,• • -,
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for A 2 — B (mod 9) by 9 | R 3 and for A 3 —; 1 (mod 9) by A  =  1 (mod 3). So 
we have P 2 — Px against an assum ption of Lem m a 3. Thus 9I R3 and Lem m a 3 
is proved for k — 1. (It is easily seen tha t both additional assum ptions in 
case p  — 3 are also necessary for 9 \ R 3).

Let Lem m a 3 be proved for a certain k >  1, then, from (12) with n =  p k 
j  =  A  one has

2 ^  R ^ +1 =  p R pk S^L1 +  KRj* -  PRpk S * /1 ( / +1)

from which Lem m a 3 follows for k +  1 in virtue oi p \ S n for n — o , 1 , • • ■, 
since S« =  4 B” ^  o (mod p)  by (8) and the assumptions on p.

Lem m a 4. Let i ym he integers >  o and h | (R- , R m) , (h , 2 B) =  1. . Then
h I R(?

Proof. If  g  =  f  , m), then there are rational integers r ys s u c h th a t  
g  =  ir  -f- ms. T ake j  =  ir  , n =  —  ms in (10) then

(H ) R t> S_ —  R _ Wf SfV = 2 R , B - * w.

W ithout loss of generality we m ay let ir >  ms. If  ms >  o (so ir  >  o) we have, 
from (7) and (14)

Rz'r ^ms ' ^R^r •

If  ms <  o (so ir >  o), then, by (14)

RirSmUi — RmisiSir =  2 R , B * m .

Now h I R,- and h \ R m so h | R ïr and h \ R wp| (by the rem ark after Lem m a 2). 
Thus h \ 2 R g Bm ŝ  ̂ by the last two formulas, (h , 2 B) =  1 shows h \ R g .

Lem m a 5. Under the same assumptions of Lemma 3 p k | R m implies p k \m.

Proof. If  m =  p t m ’ w ith o <  t < k and p  \ m* y then take i =  p k in 
Lem m a 4 such th a t (i , m) =  p* and by Lem m a 3, we have p k | R z. From  this 
result and the assum ption p k \ R m of Lem m a 5 we get p k \ R  * contradicting 
Lem m a 3.

§i 3- Proof of th e  theorem  and th e  c o ro lla rie s

W e show the theorem  first for k =  1. A simple induction on  ̂ via R n±i =  
— A R n — B.RW_! shows th a t p  | D (or equivalently A2 4 B (mod p)) implies

(IS) Ra, ^  , R2j+1 =  (2 J +  I)B'  (p).

Now we assert th a t each of the num bers 0 , - - - , p — 1 occurs exactly 2 d  
times as residue mod p  of the G„ with o <Ç n <  2 dp =  R1 ~  which implies 
the theorem  for k =  1. Consider first the even n , n-= 2 s y o <  s < dp and
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am ong these exactly those p  values  ̂ leaving the residue t (t fixed and o <  
<  t  <  d) mod d; these are exactly the ^-values from the set

M* =  {*, t  +  d , t  +  2d  , • • • , /  +  .(/>—• i ) d } .

From  (1) and (15) we get

(id ) G2 =  0 * (^A 2 aB)  -j- aB) B * (p ).

Therefore we have: I f  s , s ' e  M f such th a t G2j =  G 2s'(j>) then

(s —  s') (bA —  2 aB) == o (p)

because B*"1 e= Bj-1  (p) (for j  =  (d ) and the definition of d). Now
p \(b K — 2æB) implies s ^ s '  (mod p ) and shows s — s' such tha t
am ong the p  num bers G2, w ith i t M ,  each residue o , p —  i occurs exac­
tly  once and am ong the pd  num bers G2j , o <  s < dp exactly d times.

The case n odd, n =  2 s -\- 1 , o <  j  < dp can be treated in an analogous 
m anner via G2S+i =  (psibA. —  2æB) T  <̂ A) 4“ 1 A B J 1 (J*)- Thus the theorem  
is proved for k =  1.

Let k >  I and just be proved th a t each of the num bers o , • • - , p k— 1 
occurs exactly 2 d  times as residue mod pP of the G„ w ith o < n < 2 d p k =  
=  ^k =  Qk (see Lem m a 1 for Ok =  P^). W e show th a t this holds also for k -j- 1. 
Let s be given w ith o <  s < p k and t  with o <  t <  P* such th a t G t+rV/, =  
— s Jr ur p i . Assume th a t there are r  , r' w ith o <  r' < r  <  p  such th a t 
ur =  ur' (j>) and so

0 7 ) ? +1\(ßt+ret —  Gt+r'V,).

By (1), (11) and Ri =  2 djP we have

(18) G ,+,Pjl — G t+r'vk =  (B(’- ’") d / —  i) (òRt+r'Pi —  «B R i+,,pr l ) +

+  ■ R ( r - r ' ) d / S *  +  ( r + r ' )  P ^ / 2  + ( r + r , j  p ^ - j )  •

W e have Bdj> =  1 (p i+1) by Bd =  1 (j>) and further p \ (àSn— «BS*_i) for 
n — I , 2 , • • • since by (8), (9) and p  | D

Sn-1 (ÄS* —  aBSnJÏ) =  (bA — 2 aB) Bn~l ^  o (j>).

So we get, from (17) and (18), p k+l | R (r_ /)d^ . Now from Lem m a 5 we have 
p\ (r — r f) d and so p \ ( r  —  r ’) for d | (p —  1). But this is impossible for
0 < r  —  r ’ < p  and the contradiction shows the theorem  in case k +  1.

To Corollary 1. In  the theorem  of [2] is assumed tha t Qk =  (p — 1) p k 
for k =  I , 2 ,■• • • and we have to show: p  — 1 =  2 d, where d the order 
of B mod p . By p  | (A2 — 4 B ) , p i 2 A  and Ferm ats theorem  we have
1 == Ap 1 =  2P B^  1)12 — B^  l^2 (p) and so 2 d | (p —  1). On the other hand 
tak ing  s =  dp in (15) we see R2dA =  o (p) , R 2d̂ +i =  Bdp =  1 (p) such tha t 
Pi I 2 dp so (p  —  1) P =  Qi =  Pi I 2 dp and then (p —  1) | 2 d.
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Note th a t the last inequality  l < j  on page 9 of [2] is not correct in the 
case j  — I i p — 3*

To Corollary 2. A  =  3 , B =  —  1 gives D =  13 and (1 , 1), (1 , 3), 
(1 , 5) for (a , b) gives th a t b A —  2^B equals 5, 11, 17 respectively. Now 
take p  =  13 and so d == 2. By Vk =  4-13* (see the end of [2]) the condition 

=  2 dp k of our theorem  is satisfied and the corollary is proved.
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