ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ROMANO SCOZZAFAVA

Sulle partizioni di un insieme finito su cui opera un semigruppo di trasformazioni

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **55** (1973), n.3-4, p. 161–166.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_55_3-4_161_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica combinatoria. — Sulle partizioni di un insieme finito su cui opera un semigruppo di trasformazioni (*). Nota (**) di Romano Scozzafava, presentata dal Corrisp. G. Zappa.

SUMMARY. — Partitions of a finite set, which are induced by a transformation semi-group acting on it, are studied via the concepts of « orbitoid » (introduced in previous papers) and those of generating and non-absorbing subsets. These partitions give rise to corresponding ones for an arbitrary (finite) semigroup, through the Cayley representation.

I. Introduzione

Le orbitoidi di un semigruppo S di trasformazioni di un insieme finito X in sé, cioè i sottoinsiemi di X che sono (rispetto ad S) invarianti *minimali*, sono state introdotte in [3]. Esse costituiscono, quando si consideri l'azione di S (non su X ma) su X², la struttura fondamentale per la costruzione delle configurazioni combinatorie regolari studiate in [6].

Nel n. 2 vengono definiti, accanto alla nozione di orbitoide, i concetti di sottoinsieme generatore e sottoinsieme assorbente, mostrando come essi intervengono nel problema di ottenere una partizione dell'insieme X su cui opera il semigruppo S.

L'interesse di questi risultati sta nel fatto che essi permettono di costruire una partizione di un arbitrario semigruppo astratto (finito) S_0 . Infatti, com'è noto, posto $X = S_0 \cup \{e\}$, esiste un semigruppo S di trasformazioni di X in sé, con S isomorfo ad S_0 . Nel n. 3 esaminiamo brevemente alcune proprietà di questa rappresentazione.

Infine nel n. 4, applicando i risultati del n. 2, stabiliamo un'altra notevole proprietà delle orbitoidi, che mette ulteriormente in luce come tale concetto sia la naturale generalizzazione di quello di « orbita » per i gruppi di permutazioni: data una trasformazione s di X in sé, e considerate le componenti disgiunte e connesse del grafo rappresentante s, le orbitoidi del semigruppo ciclico generato da s sono i « cicli » contenuti nelle suddette componenti.

Le orbitoidi di un arbitrario semigruppo finito S di trasformazioni appaiono così come un'estensione del concetto di ciclo dal caso di *una sota* trasformazione a quello di *un insieme* (semigruppo) di trasformazioni.

I risultati di questo lavoro possono essere applicati alla teoria algebrica degli automi, analogamente a quanto fatto in [5] per quelli stabiliti in [3], [4].

^(*) Lavoro eseguito nell'ambito dell'attività dei Gruppi Nazionali per la Matematica del C.N.R.

^(**) Pervenuta all'Accademia il 14 settembre 1973.

2. PARTIZIONI DELL'INSIEME X

Prima di introdurre i concetti di generatore di un sottoinsieme di X e di sottoinsieme assorbente (cfr. Definizioni 1 e 2), elenchiamo brevemente (senza dimostrazione) alcuni semplici richiami e complementi dei risultati stabiliti in [3].

Sia S un semigruppo su X. Dato $\Gamma \subseteq X$ e posto

$$\Gamma^{S} = \{\alpha^{s} : \alpha \in \Gamma, s \in S\},\$$

 Γ si dice *invariante* (rispetto ad S) se Γ ^S $\subseteq \Gamma$.

Il semigruppo S si dice *transitivo* se l'unico sottoinsieme invariante non vuoto è X stesso.

Un'orbitoide (di S su X) è un sottoinsieme Ω invariante (non vuoto) minimale (cioè tale che da $\Omega_0 \subseteq \Omega$ con $\Omega_0 \neq \emptyset$ e invariante, segue $\Omega_0 = \Omega$). Se Ω_i , Ω_j ($i \neq j$) sono orbitoidi distinte, risulta $\Omega_i \cap \Omega_j \neq \emptyset$.

Un sottoinsieme $\Gamma \subseteq X$ si dice *monogenico* se esiste $\beta \in \Gamma$ tale che $\Gamma = \beta^S$. È immediato che un insieme monogenico è invariante, mentre un insieme invariante *non* è necessariamente monogenico (per esempio X stesso, se S non è transitivo su X). Un sottoinsieme $\Omega \subseteq X$ si dice *totalmente monogenico* se, qualunque sia $\alpha \in \Omega$, si ha $\Omega = \alpha^S$.

TEOREMA I. Tutti e soli i sottoinsiemi totalmente monogenici di X sono le orbitoidi di S su X.

Ciò premesso, introduciamo la seguente

DEFINIZIONE I. Sia S un semigruppo di trasformazioni di X, e sia $\Lambda \subseteq X$. Il generatore di Λ è l'insieme

$$g\Lambda = \{\alpha \in X : \alpha^S \cap \Lambda \neq \emptyset\}.$$

Può essere $g\Lambda=\varnothing$, anche se $\Lambda \neq \varnothing$ (per esempio, se $X=\{i,2,3\}$ e $S=\{s_1,s_2\}$, con

$$s_1 = \begin{pmatrix} \mathbf{I} & 2 & 3 \\ \mathbf{I} & 2 & 2 \end{pmatrix}$$
 , $s_2 = \begin{pmatrix} \mathbf{I} & 2 & 3 \\ 2 & \mathbf{I} & \mathbf{I} \end{pmatrix}$,

basta considerare $\Lambda = \{3\}$); pertanto, mentre si ha sempre

$$g(\Lambda^{ extsf{S}})\supseteq \Lambda$$
 ,

l'inclusione $(g\Lambda)^S \supseteq \Lambda$ sussiste invece, per $\Lambda \neq \emptyset$, se e solo se anche $g\Lambda \neq \emptyset$. Dalla (I) segue che una condizione sufficiente affinché sia $g\Lambda \neq \emptyset$ è che Λ sia invariante (non vuoto): infatti da $\Lambda^S \subseteq \Lambda$ segue $g(\Lambda^S) \subseteq g\Lambda$, e quindi, per la (I), $g\Lambda \supseteq \Lambda \neq \emptyset$. Si può allora enunciare:

TEOREMA 2. Se Γ è un sottoinsieme invariante (rispetto ad S) di X, si ha $g\Gamma \supseteq \Gamma$.

Il teorema non è invertibile. Se $S = \{s_1, s_2\}$, con

$$s_1 = \begin{pmatrix} \mathbf{I} & 2 & 3 \\ \mathbf{I} & 2 & 2 \end{pmatrix}$$
 , $s_2 = \begin{pmatrix} \mathbf{I} & 2 & 3 \\ \mathbf{I} & 3 & 3 \end{pmatrix}$,

si ha $g\{1,3\} = \{1,2,3\} \supset \{1,3\}$, tuttavia $\{1,3\}$ non è invariante.

DEFINIZIONE 2. Un sottoinsieme $\Lambda \subseteq X$ si dice assorbente se $g\Lambda \subseteq \Lambda$.

COROLLARIO I. Sia $\Gamma \subseteq X$ un sottoinsieme invariante. Allora Γ è non assorbente se e solo se $g\Gamma = \Gamma$.

LEMMA I. Sia $\mathfrak{S} = \{\Omega_1, \Omega_2, \cdots, \Omega_m\}$ l'insieme delle orbitoidi di un semi-gruppo S su un insieme finito X. L'insieme dei generatori $g\Omega_i$ $(i=1,2,\cdots,m)$ costituisce un ricoprimento di X, cioè

$$X = \bigcup_{i=1}^m g\Omega_i$$
.

Dimostrazione. Sia $\beta \in X$. L'insieme invariante β^S contiene un'orbitoide Ω_k , e quindi $\beta \in g\Omega_k$.

Abbiamo già osservato in [3], mediante un esempio, che l'insieme

$$\Theta = \{\Omega_1, \Omega_2, \cdots, \Omega_m\}$$

delle orbitoidi di S su X può costituire una partizione di X (e non necessariamente quella banale $\mathcal{O} = \{X\}$, quando S è transitivo) anche se S non è un gruppo di permutazioni (contrariamente a quanto accade per l'insieme & delle orbitoidi di S su X^2 : cfr. Teorema 4.1 in [3]). Si ha in proposito il seguente:

TEOREMA 3. Si ha $X = \bigcup_{i=1}^{m} \Omega_i$, cioè le orbitoidi (di S su X) sono una partizione di X, se e solo se ogni sottoinsieme invariante di X è non assorbente.

Dimostrazione. L'insieme \mathcal{O} sia una partizione di X. Allora qualunque sottoinsieme invariante Γ è necessariamente unione di orbitoidi, e lo stesso accade per $X \setminus \Gamma$. Ma allora, per il Teorema 1, per nessun $\alpha \in X \setminus \Gamma$ e nessun $s \in S$ può aversi $\alpha^S \in \Gamma$, cioè Γ è non assorbente.

Supponiamo ora che ogni sottoinsieme invariante sia non assorbente. Allora, per il Corollario I, si ha in particolare $g\Omega_i=\Omega_i$ $(i=1,2,\cdots,m)$, e quindi, per il Lemma I, le orbitoidi Ω_i ricoprono X. Ciò conclude la dimostrazione del teorema, essendo gli insiemi Ω_i disgiunti.

Osserviamo che gli insiemi che costituiscono la suddetta partizione si possono riguardare indifferentemente come le orbitoidi oppure come i generatori di tali orbitoidi.

Si può ottenere direttamente una partizione di X costituita dai generatori delle orbitoidi, se il semigruppo S è commutativo. In questo caso tali generatori non coincidono necessariamente con le orbitoidi; l'esempio più interessante è quello studiato al n. 4.

TEOREMA 4. Sia S un semigruppo commutativo di trasformazioni di X. Allora l'insieme $\{g\Omega_1, g\Omega_2, \cdots, g\Omega_m\}$ dei generatori delle orbitoidi di S su X è una partizione di X, e gli insiemi $g\Omega_i$ ($i=1,2,\cdots,m$) sono invarianti.

Dimostrazione. In virtù del Lemma I, basta dimostrare che per $i \neq j$ $(i,j=1,2,\cdots,m)$ si ha $g\Omega_i \cap g\Omega_j = \emptyset$. Se esistesse $\beta \in g\Omega_i \cap g\Omega_j$, si avrebbe, per opportuni $s_1, s_2 \in S$, $\beta^{s_1} \in \Omega_i$ e $\beta^{s_2} \in \Omega_j$; ma allora, per il Teorema I, $\beta^{s_1s_2} \in \Omega_i$ e $\beta^{s_2s_1} \in \Omega_j$. D'altra parte $\beta^{s_1s_2} = \beta^{s_2s_1}$, e quindi le orbitoidi Ω_i e Ω_j avrebbero un elemento in comune (contraddizione).

Se $g\Omega_i$ non fosse invariante, esisterebbero $\alpha \in g\Omega_i$ e $s_1 \in S$ tali che $\alpha^{s_1} \notin g\Omega_i$. Ma allora $\alpha^{s_1S} \cap \Omega_i = \varnothing$, in contraddizione col fatto che da $\alpha \in g\Omega_i$ segue l'esistenza di $s_2 \in S$, con $\alpha^{s_2} \in \Omega_i$ (e quindi $\alpha^{s_2 s_1} \in \Omega_i$).

3. Sulla rappresentazione di un semigruppo finito mediante un semigruppo di trasformazioni

Sia S_0 un arbitrario semigruppo finito. Possiamo supporre, per semplicità di esposizione, che S_0 sia dotato di *identità e*; in tal modo si evita la considerazione di $S_0 \cup \{e\}$, e si ha direttamente una rappresentazione di S_0 mediante un semigruppo S di trasformazioni di $X = S_0$ in sè (S è il cayleyano *destro* di S_0).

È facile verificare che ad ogni ideale destro Γ_0 di S_0 corrisponde, nell'isomorfismo, un insieme $\Gamma \subseteq X$, invariante rispetto ad S. Allora l'insieme degli ideali destri *minimali* di S_0 corrisponde all'insieme delle orbitoidi di S su X.

Se S_0 è un gruppo, l'unico ideale destro è S_0 stesso: allora, se $\Gamma \subseteq X$ è invariante rispetto ad S, per l'isomorfismo si ha necessariamente $\Gamma = X = S_0$. Si ritrova così il noto risultato che, nella rappresentazione di Cayley di un gruppo finito mediante un gruppo S di permutazioni, S è transitivo.

Dal Corollario I segue che, dato un sottoinsieme invariante $\Gamma \subseteq X$, esso risulta non assorbente se e solo se anche $X \setminus \Gamma$ è invariante. Per il Teorema 3 si può quindi enunciare:

TEOREMA 5. L'insieme degli ideali destri minimali del semigruppo S_0 costituisce una partizione di $S_0 \setminus \{e\}$ se e solo se il complementare in $S_0 \setminus \{e\}$ di qualunque ideale destro è anche esso un ideale destro.

L'ultima condizione scritta implica evidentemente che ogni ideale destro Γ_0 è *semiprimo* (cioè da $a^2 \in \Gamma_0$ segue $a \in \Gamma_0$). Ricordiamo inoltre che un semigruppo si dice *semplice a destra* se è privo di ideali destri propri.

Queste osservazioni mettono in luce la stretta parentela del Teorema 5 con il seguente noto risultato (cfr. [1], p. 123): un semigruppo (finito o no) è unione disgiunta di sottosemigruppi semplici a destra se e solo se ogni ideale destro è semiprimo.

4. CICLI DI UNA TRASFORMAZIONE

Sia s un'arbitraria trasformazione di un insieme finito X in sè. È noto (cfr. ad esempio [2]) che s si può rappresentare come « prodotto » di cicli (generalizzati) disgiunti. Essi sono le classi di equivalenza della relazione così

definita in X: si ha $\alpha \equiv \beta$ se $\alpha = \beta$, oppure se $\alpha \neq \beta$ ed esistono $k, h \in \mathbb{N}$ tali che, posto $t = s^k$, $u = s^h$, risulta

$$\alpha^t = \beta^u.$$

Questi cicli generalizzati si dicono anche componenti (connesse) di s, e possono essere così costruiti: si fissa un elemento arbitrario $\alpha_1 \in X$, e si considerano successivamente $\alpha_2 = \alpha_1^s$, $\alpha_3 = \alpha_2^s$, e così via, fino a quando si ottiene un α_k la cui immagine α_k^s è uno dei k elementi già considerati; si definisce allora (provvisoriamente) la prima componente

$$\Lambda_1 = \{ \alpha_1 , \alpha_2 , \cdots , \alpha_k \}$$
 .

Partendo ora con un elemento arbitrario $\alpha_{k+1} \in X \setminus \Lambda_1$, si procede come prima, fino ad ottenere α_{k+j} , con

$$\alpha_{k+j}^{s} \in \Lambda_{1} \cup \{\alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_{k+j}\};$$

se $\alpha_{k+j}^s \in \{\alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_{k+j}\}$, definiamo la seconda componente

$$\Lambda_2 = \{\alpha_{k+1}, \alpha_{k+2}, \cdots, \alpha_{k+i}\}$$

e ripetiamo il procedimento, scegliendo un elemento α_{k+j+1} di $X \setminus (\Lambda_1 \cup \Lambda_2)$. Se invece $\alpha_{k+j}^s \in \Lambda_1$, aggiungiamo a Λ_1 gli elementi ottenuti, cioè definiamo come prima componente

$$\Lambda_1' = \{\alpha_1, \alpha_2, \cdots, \alpha_k, \alpha_{k+1}, \cdots, \alpha_{k+j}\}$$

ed iniziamo nuovamente la costruzione di Λ_2 .

In altre parole, ogni volta che si fissa un nuovo elemento di partenza, esso genera una successione di elementi di X, la quale o «ritorna su sé stessa» (dando luogo così ad una nuova componente) o finisce in una componente già esistente, alla quale, in tal caso, vengono aggiunti tutti gli elementi della successione. Questo processo continua fino a quando si esaurisce l'insieme X.

Se si associa ad s il grafo G avente X come insieme dei vertici e come archi i lati orientati congiungenti α ed α^s (per ogni $\alpha \in X$), la precedente rappresentazione di s corrisponde, com'è noto, alla decomposizione di G in componenti connesse. È chiaro che ognuna di queste componenti è costituita da un *ciclo* (o cammino chiuso) e da un certo numero di « alberi » che arrivano in vertici del ciclo (si tratta quindi di un « ciclo generalizzato »).

Sia ora $\langle s \rangle = \{s, s^2, s^2, \cdots, s^p\}$ il semigruppo ciclico generato da s. Poiché $\langle s \rangle$ è commutativo, vale il Teorema 4; pertanto, detto $\mathfrak{C} = \{C_1, C_2, \cdots, C_m\}$ l'insieme delle orbitoidi di $\langle s \rangle$ su X, si ha

(3)
$$X = \bigcup_{i=1}^{m} gC_{i} , gC_{i} \cap gC_{j} = \emptyset per i \neq j,$$

ed inoltre $gC_i \supseteq C_i$ (per il Teorema 2).

11. - RENDICONTI 1973, Vol. LV, fasc. 3-4.

Proviamo che gli insiemi gC_i e C_i sono rispettivamente le componenti ed i cicli di s:

TEOREMA 6. Sia s una trasformazione di un insieme finito X in sè. Si ha: (i) la partizione di X in classi di equivalenza definite dalla (2) coincide con la partizione (3); (ii) il ciclo contenuto in ciascuna componente gC_i ($i = 1, 2, \dots, m$) è l'orbitoide C_i corrispondente.

Dimostrazione. (i) Siano $\alpha, \beta \in gC_i$, con $\alpha + \beta$; esistono allora $s_1, s_2 \in \langle s \rangle$ (sia $s_1 = s^{n_1}$, $s_2 = s^{n_2}$, con n_1 , $n_2 \in \mathbb{N}$) tali che $\alpha^{s_1} \in C_i$ e $\beta^{s_2} \in C_i$. Poiché C_i è totalmente monogenico, esiste $s_3 \in \langle s \rangle$ (sia $s_3 = s^{n_3}$) tale che $\alpha^{s_1 s_3} = \beta^{s_2}$, e quindi vale la (2) con $k = n_1 + n_3$, $k = n_2$ cioè $\alpha = \beta$. Sia ora $\gamma = \alpha$, con $\gamma + \alpha$; esistono m_1 , $m_2 \in \mathbb{N}$ tali che, posto $t_1 = s^{m_1}$, $t_2 = s^{m_2}$, si ha $\alpha^{t_1} = \gamma^{t_2}$. Poniamo

$$u = \begin{cases} s^{n_1 - m_1}, & \text{se } n_1 > m_1 \\ s^{m_1 - n_1}, & \text{se } n_1 \le m_1 \end{cases}$$

Nel primo caso si può scrivere

$$\alpha^{t_1u}=\alpha^{s_1}=\gamma^{t_2u},$$

e quindi $\gamma^{t_2 u} \in C_i$, cioè $\gamma \in gC_i$; analogamente, nel secondo caso si ha

$$\alpha^{s_1 u} = \alpha^{t_1} = \gamma^{t_2},$$

ed essendo $\alpha^{s_1 u} \in C_i$ si ottiene ancora $\gamma \in gC_i$.

(ii) Se α è un *qualunque* vertice del ciclo contenuto in gC_i , tale ciclo è l'insieme $\alpha^{\langle s \rangle}$; ma allora, per il Teorema I, esso coincide con un'orbitoide, e dai Teoremi 2 e 4 segue $\alpha^{\langle s \rangle} = C_i$.

BIBLIOGRAFIA

- [1] A. H. CLIFFORD e G. B. PRESTON, The algebraic theory of semigroups, «Amer. Math. Soc.», 1, Providence 1961.
- [2] J. DÉNES, Connections between transformation semigroups and graphs, «Actes des Journées Internationales d'étude sur la théorie des graphes», 298-303, Rome 1966.
- [3] R. SCOZZAFAVA, Graphs and finite transformation semigroups, «Discrete mathematics», 5, 87–99 (1973).
- [4] R. SCOZZAFAVA, Semigruppi primitivi, «Boll. Un. Mat. It.», 6 (4), 242-247 (1972).
- [5] R. SCOZZAFAVA, Minimal subautomata and admissible subsets of a finite automaton, «Rapporto Interno Istituto Matematico 'U. Dini'», Firenze 1972/n. 26 (sottoposto per la pubblicazione su «Mathematical Systems Theory»).
- [6] R. Scozzafava, Combinatorial configurations generated by finite semigroups, Atti del «Colloquio Internazionale sulle Teorie Combinatorie» (Accademia dei Lincei, American Mathematical Society), Roma 1973 (in corso di stampa).