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Fisica matematica. — Congruence conditions for Riemannian
N-manifolds with groups of motions . Nota * di CarLo Moros1 ",
presentata dal Socio B. Finzi.

RIASSUNTO. — Si determinano, nel caso di piccole deformazioni e per varietd rieman-
niane N-dimensionali con gruppi di moto, lo spostamento indotto da una deformazione
congruente, nonché le condizioni necessarie e sufficienti di congruenza per la deformazione
stessa. .

1. INTRODUCTION

The congruence conditions are the necessary and sufficient conditions
for a second-rank symmetric tensor to be the deformation 38z; induced on
the metric tensor @; of a manifold Vy by a displacement field s;; thus in
the case of small deformations they are the integrability conditions of the
tensor equation

(1.1) Ei = Oa, = sip + Sys @, f=1,2,--,N).

These conditions have been obtained for Riemannian manifolds Vy with
no group of motions [1], for which the homogeneous tensor equation

(1.2) 0a; = vy + vy = 0 G,k=1,2,-,N)

has the trivial solution only.

As for Riemannian manifolds Vy with groups of motions, a method to
obtain necessary, but generally not sufficient, congruence conditions has
been shown [2], and the analysis of the congruence in the particular case
of a rotation surface has been completed [3]; the method used in [3] is
generalized to Riemannian N-manifolds in this paper. Therefore N-manifolds
with groups of motions are considered, that is with rigid infinitesimal
displacements (solutions of Eq. (1.2)) parallel to 7 (1 <7 < N) linearly
independent congruences; as a particular case (» = N), Euclidean manifolds
are obtained.

The congruence conditions are given by making zero the congruence
functions, that are obtained in tensor form and are linear functions of the
strain tensor £; and its tensor derivatives; furthermore they are linked by
(N —7) linear and differential identities; as these identities cannot be reduced
to finite identities among the congruence functions, they do not allow to reduce

(*) This work was done in the sphere of activity of the C.N.R. (Group for mathematical
research).

(¥%) Pervenuta all’Accademia il 25 luglio 1973.

(*¥**) Istituto di Matematica — Politecnico di Milano.
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the number of essential congruence conditions. The method used to obtain
the congruence conditions suggests how to obtain a particular displacement
field induced on Vy by any congruent strain tensor: hence by adding the
Killing vector we obtain the most general displacement field solution of
Eq. (1.1); differently from the case of no group of motions [1], the displa-
cement field is here obtained by means of integration and differential
operators, and can be actually calculated by using a particular coordinate
system set up on the manifold.

2. N-MANIFOLDS WITH GROUPS OF MOTIONS

The congruence conditions for a surface applicable on a rotation surface
can be obtained in two equivalent ways [3], either by requiring that the
differential invariants H and L @ be the same functions of the Gaussian
curvature K both for the deformed manifold and for the undeformed one
[5, Ch. 3], or by projecting the vector field s; onto two congruences of
the manifold given by the curvature gradient K;; and the (unique) Killing
vector ;.

(2.1) s;=5K,; +s5v;.
% v

In this case the congruence conditions are the very existence conditions

of the scalar invariants s and s.
k v

The second procedure will be generalized to the case of N-manifolds
in this paper; to this end the explicit determination of the congruence condi-
tions will be preceded by a short analysis of the representation of tensor
objects (in particular vectors) defined on the manifold: that is, a suitable
representation of the form (2.1) is looked for. Therefore we consider a
Riemannian N-manifold with a group of rigid motions, that is with rigid
motions alongside » (1 <7 << N) linearly independent congruences (Killing
congruences); thus the general solution v; of Eq. (1.2) can be represented
by a linear combination of # linearly independent solutions of Eq. (1.2), in
the form @

(2.2) v, =av;.

These vectors characterize a submanifold V,CVy that we call « Killing

manifold "’; however we remark that not all the vectors (2.2), even if belonging

(1) The invariants H and L are differential invariants (of the first and the second
order respectively) of the Gaussian curvature K of the surface; they are defined as follows:

1 .
_ HEK’KH,L-—:K/;.
(2) From now on, Latin suffixes (# = 1, 2 ,- - -, 7) and Greek suffixes (¢ =7» + 1,---,N)

are to be summed if they are repeated; the case » = 0 is not analyzed in this paper, being
fully treated in [1].
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to V,, are Killing vectors, solutions of Eq. (1.2). Furthermore we can define,
upon Vy, (N—7) functionally independent invariants A (a=7r-1, -, N)

functions of the metric tensor of the manifold and its ordinary deri-
vatives: therefore we have (N —7) linearly independent vectors A/, and a
submanifold Vy_, C Vy spanned by these vectors.
Now the set of N vectors {A/;;7;} can be chosen as a vector basis
o

.n

of Vy; in fact the » vectors v; and the (N — ) vectors Aj; are linearly
7n o

independent by construction, and, moreover, for any vector u;€ Vx_,
and K; €V,

(2.3) u, K=o

that is the two manifolds V, and Vy_, are orthogonal. This property follows
from the fact that the Killing congruences characterize the directions of the
rigid motions, for which 34,, = o0, hence we have

(2.4) SA =A@+ %) —A(@=A,v=o0 (Vo , n)

from what Eq. (2.3) follows, #, and K, being linear combinations of Ay
and v; respectively. Furthermore it follows from (2.4) that for any displa-

cement vector K, € V,, generally non-rigid (that is with 8a; =& 0),
(2.4") SA =A(a+82)—A@=A,K =0

that is the functional variation of any invariant constructed with the metric

tensor vanishes on the Killing manifold [6, Ch. 12]. Therefore in correspond-

ence to any choice of a vector basis {A}, ;7;} the manifold is decomposed
23 n

as the sum of two orthogonal submanifolds

(2.5) Vy=V,®Vyx_,.

In spite of the fact that the invariants A cannot be chosen univocally, as
o

well as the Killing vectors v, (the parameters of the group of motions being

generally more than 7), nevertheless the Killing manifold V, and its orthogonal
complement Vy_, are univocally determined: for that the decomposition (2.5)
is invariant. Therefore, even if a complete system of ¢ intrinsic coordinates *’
cannot be set up (differently from the case of no rigid motions [1]), for any
tensor object we can consider its components alongside the particular con-
gruences given by the chosen vector basis: we shall name these particular
components, even if improperly, “ intrinsic components . In particular we
consider vectors and second-rank tensors: a vector field of Vy (e.g. the
eventual solution of Eq. (1.1) we are looking for) can be given the following

5. — RENDICONTT 1973, Vol. LV, fasc. 1-2.
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form:
(2.6) s;=u; + K; = i{}/i + S
where
(2.7) Uy Egé/z‘ ;o K =3

are respectively the vector components of s; lying on the manifolds Vy_,
and V,. The decomposition of a second-rank symmetric tensor is the
following

(2.8) oap=0A; Ay +o6Qv, +Arv,) +0 00,
o o B om O m % m mn m n
Of course the manifold Vi can be characterized by a different vector
basis; in particular we can consider a basis {A;;v;} constructed by
o n

means of invariants A’ and Killing vectors z; defined as follows

o n

(2.9) A=) 5 v=co
where the functions @, do not depend on particular properties of Vy: that

is, if A" and A are the invariants of another manifold Vy (e.g. obtained
o o

from Vy by a generic strain), it is always A’ = @, (jgx) @),
o

By such a choice, the intrinsic components s’ and s’ are linear combina-
o

n
tions of the first ones: furthermore they are scalar objects, that is invariant
under coordinate mappings; instead the decomposition (2.6) of the vector

— — —>
s as the sum of the vectors # € Vy_, and K €V, is invariant, that is
(2.10) w=u;, ; K=K,

referring to their components in any reference frame.

As it will be shown in the next section, a vector field induced on the
manifold by the strain tensor can be obtained by means of the decomposition
(2.6); in fact, the intrinsic components s can be obtained by means of any

o

strain &,,, even if not congruent, and for any choice of the invariants A
o

(and they are unique only if the strain is congruent), whereas the determina-
tion of the intrinsic components s is linked in an essential way to the
congruence of the strain tensor.

(3) Differently from the case outlined above, a functional relation like (2.9) may be
valid for particular manifolds only: the typical case is that of a rotation surface (see foot-
note @) where H = f (K), while for a generic surface H and K are functionally independent.
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3. DETERMINATION OF THE DISPLACEMENT FIELD
AND OF THE CONGRUENCE CONDITIONS

In this section a vector field is obtained (in correspondence to any
infinitesimal and congruent strain &,) that is induced by &, upon Vy: further-
more, by requiring that this field be solution of Eq. (1.1), we obtain the
necessary and sufficient congruence conditions for the strain tensor.

Firstly we consider (for a strain £, generally not congruent), the
system

(3.1 BA=AG@+D)—A@=Au9:
its infinite many solutions ¢’ are

(3.2) ¢ = B 3A A 4 o

where B is the inverse matrix of the matrix A = A; %”' and @' is a generic

ofB afd o
vector of V,. In particular if &’ = o, that is if the particular solution @ € Vy_,
is chosen, one has
(3-3) ¢p =B SA A"
ad B o«

The following properties of ¢’ and cp(’)' are of some interest: firstly, ¢f
and cp(’; can always be obtained, by Eq. (3.1), for any strain &;, even if
not congruent, and ¢; does not depend upon a change of vector basis such
like (2.9), as follows from (3.3). Instead, if (N —7) invariants A = g, (zgx)

o

are considered on the undeformed manifold Vy, a vector Po=F @i is generally
obtained; but if the strain & is congruent, and only in this case, we have

- %,
o 8 B
hence
(3.5) % = B4

in this case <pg is univocally determined. Therefore (3.4) (as well as (3.5))
are necessary, but generally not sufficient, congruence conditions. At last,
if the strain £, is congruent (hence Eq. (1.1) has a solution), og (<p6 = @é)
is the vector component on Vy_, of the solutions of Eq. (1.1); in fact by (2.3)
and (2.6)

(3.6) 3% &= Ay st = Ay o’

hence, by (3.1) and (2.7)
(3.7 Py =o'
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in what follows the vector defined by (3.3) will be indicated by #’. Thus,
on account of (2.7) and (3.3) the “ intrinsic components ”’ s of the eventual
solution of Eq. (1.1) can be given the form *

(3.8 = B SA
(3.8) s=DBo

(that is they are linear functions of the variations SA), whether or not the
strain £,, is congruent.

Now we come back to our first assumption: the strain &; is congruent,
hence Eq. (1.1) has a solution with the (N — 7) intrinsic components s given
: o

by (3.8); our aim is to obtain the remaining » components s. To this end
Eq. (1.1) can be given, by (2.6), the following form ?

(3-9 Eip = wipp + wayi + (i fi)/é + v s
if the tensor
(3-110) 6 = & — (uin + uy;)

is defined (by (3.3) and (3.7), o, is a linear function of the strain and its
tensor derivatives) and Eq. (1.2) is used, Eq. (3.9) becomes

(3.11) G = S/iUp + S v;
”n 7 n

”n

that is we have a linear system for the gradients s,; on account of the
”

assumed congruence of the strain £, the system (3.11) has a solution and
the gradients s;; can be given the form

(3.12) si=NA; +Mo;.

n no o nl 1

Thus the strain &,, satisfies a set of particular conditions: the * irrotatio-
nality "’ conditions of (3.12)

(3-13) Cu = (nf} %{i -+ l\fl 7;;‘>/k — ({:‘ é/k -+ 1}5 7;&)/;’ =0.

The relations (3.13) have been obtained as necessary congruence conditions:
are they also sufficient, that is are the N invariants s and s the very
intrinsic components of a solution of Eq. (1.1)? *

Firstly we point out that the conditions (3.13) are actually sufficient in
order that a vector field be induced upon Vy by &,; in fact by (3.3), (3.7)
and (3.10) the tensor o, is obtained for any infinitesimal strain £;: then

if N.and P are the symmetric and skew-symmetric parts of the matrix M
nl nl nl

(3.14) M=N+4P

nl ~ ul nl
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the following expressions of A and N are obtained by means of (3.12)

and (3.11) " "

<3IS> A= O'Z'kA/i UéB %%
no Y m YO mn

(3.16) N = O 'Z/Z. 'Z/é W W
nl m s mn sl

where W is the inverse matrix of the matrix V =279,: of course the

mn mn m 7

skew-symmetric elements P cannot be obtained, for o, is symmetric &y
. 7
construction. "

Thus Eq. (3.12) can be solved in correspondence to any choice of P
nl

for which the » tensors C; vanish, and 7 scalars s are obtained: on account

3 . 7

of (3.8), by which s are given without requiring further conditions upon
o

&, N invariants (s, s) are determined as linear functions of £,; therefore
o n

a vector field induced by the strain upon Vy is obtained with intrinsic
components s and s.
[+4

In order that Eq. (1.1) be solved, we have to verify whether or not the
vector field s, (§,,) just obtained is actually a solution of Eq. (1.1), that
is whether or not the tensor

(3.17) Nig Eomn) = &z — (Sipa + swr2)

or (with reference to the decomposition (2.8)) its intrinsic components
m,7M," vanish identically; in fact one can verify, by means of (3.11),

afl mn o

(3.12) and (3.13), that v = n = o, whereas n6=l= o.

Therefore the only set of conditions (3.13) is not sufficient in order
that (3.17) be valid: the strain £, must satisfy also to the following set of
conditions

— e 1i AlR __
(3.18) o‘{]ﬂ—&:c&é 1{} =0
(that can be formally obtained directly by (3.11) and (3.12)).

Thus the necessary and sufficient congruence conditions are given by
the two sets (3.13) and (3.18): by the first one a field s;(%,,) can be obtained
induced by the strain, and if the strain satisfies also to the second one this
field is a particular solution of Eq. (1.1). At last if the general solution v,
of the homogeneous equation (1.2) is added, the general solution of the
complete equation is obtained.

We remark that an actual integration of the system (3.12) is required
for the determination of the components s; for that a particular coordinate

system must be chosen and operators of integration introduced, in contrast
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with the case of the components s that can be expressed, by means of (3.8),
o

in an invariant form as functions of the strain and its tensor derivatives.
Finally we stress that, despite the fact that the largely arbitrary ele-
ments P are used, the solutions of Eq. (1.1) do not depend upon them; in

nl

fact, even if these elements could not be chosen so as to reduce the number
of essential congruence conditions (as will be indicated in the following sec-
tion), or they were not univocally determined by the conditions (3.13), one can
easily show that the vector fields obtained in correspondence to different deter-

minations of P differ by a rigid displacement, but, as already stressed, this
In

indetermination is just the characteristic property of the manifolds we are
analyzing on account of the existence of non-trivial solutions of Eq. (1.2).

4. CONGRUENCE CONDITIONS

Before discussing some qualitative features of the congruence condi-
tions just obtained, we give the conditions (3.13) an invariant tensor form,
as well as the conditions (3.18); in fact the (3.13) are equivalent to

C =1 (Cua—CuAA" =0 ()

(4.1) = Ca—Ci)vivb=0 (== )

smn

C=—_(Ch—CAlvt=0.
\ SOl 2 K s o 3
Therefore they express that the non-trivial intrinsic components of the 7 ten-
sors C;; are zero; in this way the congruence conditions are obtained by
7 ,
making zero ¢ ,C,C, C, that are linear functions of the strain tensor €
o safd smn son X

. . . . . ’ .
and its tensor derivatives. Moreover if another vector basis {A;; v;} is cho-
o n

sen, the new congruence functions are linear combinations of the first ones,
and they are equivalent to them, being zero if and only if the first ones too
are zero. Another feature of the congruence functions is given by the fact
that they are differentially linked; in fact for any strain (independent of
whether the conditions (3.13) and (3.18) are verified) the tensor o, satisfies
by construction to the following (N —#) identities

(4-2) 3{} (o) = 313 i) — 3{} (i + uys) = o

that are linear differential identities for o;;: the highest order of derivation

depends upon the particular choice of the invariants A.
o

Even if the above identities can be written as identities among the
congruence functions, the number of essential congruence conditions cannot
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in general be reduced, as well as in the case of a rotation surface [3], by
means of the identities (4.2), for no homogeneous and finite identity can be
obtained from them among the congruence functions. At last we point out
that the »N (N-—1)/2 functions (4.1) just obtained contain » (» — 1)/2

arbitrary invariants P; on account of this arbitrariness not less than » (» — 1)/2
nl

congruence functions can be made zero for any strain: as the congruence
functions defined by (3.13) are (N —7) (N —7» + 1)/2, the maximum number
© (N ;7) of congruence conditions is given by

N(N + 1 N(3—N
43) SN;r= D BT

2

As the conditions (4.1), that contain P, are differential of the first order
nl

and generally integrable in P, other arbitrary functions have to be introduced
nl
when P are actually obtained from them, hence in some cases more congru-
nl

ence functions than » (# — 1)/2 can be made zero for any strain: thus the
essential congruence conditions may be less than € (N ;7) for particular
manifolds. Without any detailed analysis of particular cases, we simply
remark that @ (N ;7) = 3 — 7 for the surface; therefore, as well known [3, 7],
there is only one congruence condition (» = 2) for a surface with zero or
constant Gaussian curvature, and there are two essential congruence condi-
tions (» = 1) for a surface applicable on a rotation surface.

5. CONCLUSION

The displacement field has been obtained, for Riemannian N-manifolds
with groups of motions, induced by a congruent strain (in the case of small
deformations), as well as the necessary and sufficient congruence conditions
for the strain. As suggested by [8], [4] and applied in [1], the knowledge
of the congruence conditions allows to obtain the solution of the equili-
brium " equations

(5.1) Pia=o0 ; pH=Ff

when the equilibrium problem is the adjoint problem of the congruence [2]:
this problem will be analyzed in a forthcoming paper.
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