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Algebra. — On Some Measures on Free Semigroups Induced by
Semiautomata. Nota @ di Dan A. Simovicr, presentata dal Socio
B. SEGRE.

RIASSUNTO. — In questa Nota si studia la relazione esistente fra la nozione di rap-
presentabilita in semiautomati e la misurabilitd rispetto ad alcune misure sui semigruppi
liberi. Se ne deduce quindi un teorema di caratterizzazione delle misure esteriori indotte
da semiautomati su semigruppi liberi.

I. INTRODUCTION

A semiautomaton (in the common meaning of this word) is a 4-uple
A=(,S, f;s), where /7,5 are respectively the input alphabet and the
set of states, f: S X /— S is the transition function and sy€.S is the initial
state of the semiautomaton. Let 7™ be the free semigroup generated by the
input alphabet /.

The mapping f can be extended until S x 7*, taking inductively on the
length of the words from 77:

f(s,e)=7s, Vse S
f(f(s,2),0)=f(s,pi), Vpel*, iel,

e being the null word.

A semiautomaton homomorphism between the semiautomata A;=
= (1,S,, f;yS;), J=1,21is a mapping 4: S; =S, for which % (sy)) = 50,
and /i (fy (s, 2) = /o (h (5), ), Vs€S,, pe ™

‘The language £ _ /” is represented in the semiautomaton A= (7, S, £, s,)
if there exists S; C S so that Z = {p|p€el”, f(s,, ) €S} S, is the set
of final states for the language £.

We shall consider a new notion which allows a new characterization of
the languages which can be represented in semiautomata and the inference
of some other properties of these languages.

A measure semiautomaton is a s-uple A= (/,S, f,m;s,), where
7,S, f,s, have the previous significance and #: & (S) — R, is a measure.
Here & (S) is the set of the subsets of the set S. If m is a finite measure
(positive measure-which means that » (S;) = 0 —.S; = @) the measure semi-
automaton is called measure-finite (positive).

The notion of representable language for measure semiautomata is the
same as for common semiautomata.

(*) Pervenuta all’Accademia il 31 luglio 1973.
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An outer measure on the set M is a mapping w: 8 (M) — R, for which:

1) My C M, implies w (M) < u (M), YM,, M, _ M,

2) u ( 8 JWJ) < 2 u (M), for every family {M;|je N} 8 (M).
=1 7=1

Following Carathéodory, the p-measurable sets are those sets A7, for
which:

w(l) =u(lL M)+ p(lnM), VL C M.

It is a well known fact that the set of all y—measurable sets is a 6—com-
plete Boolean algebra with respect to the set-theoretical operations (U, N, [3].
The outer measure induced by the semiautomaton A = (7, S, f,m; sy)
is given by:
wa(B)=m (5| f (50, $) =5, pE€ED).

II. ILANGUAGES REPRESENTABLE IN FINITE-MEASURE SEMIAUTOMATA

The connection between representable languages in semiautomata and
measurable languages is described in the next two propositions.

THEOREM 1. [If E is a language whick can be represented in the semi-
automaton A = (1, S, f,m;sy), then E is a w,~measurable language.

Proof. 1f K is a language, K C 7*, let us denote f (s,, K) = {s | Ip € K,
s=f(so,p)}. Since E is a representable language, we have f(s,, £Z) N
Nf(sy,E) =@ and it follows:

wa (B = m (f (8o, £1)) = m (f (5o, Ex N E) U f(sy, £y N E)) =
=m ([ (o, E10 E)) + m (f (59, E1 0 ET)) =
=y (E10 E) +py (E10 £, for every £, CT*.

Hence %, is a p,-measurable language.

THEOREM 2. Let A be a finite-measure semiautomaton. A u.,-measurable
language differs from a representable language only by a w,-negligible set.

Proof. Let E; be a p,~measurable language and Fi = {p| f(sy, p) €
€f(so,E)}. It is obvious that I} is represented in the semiautomaton A
and £; CE;. Since Fj is p,~mcasurable (in view of Theorem 1) we can
write:

ba (BN EY) = iy (B) — iy (By) = m (f (0, ED) —m (f (5o, ED) =0,
which shows that £ differs from E; by a p,—negligible set.

COROLLARY. If A is a positive, finite-measure semiautomaton the . A—ea-
surable languages coincide with the languages which are vepresented in the
same measure semiautomaton.
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REMARK. The existence of a finite, positive-measure #: 8 (S) — R,
implies immediately that | S| < &,. (Here |S| is the cardinal number of the
set S). Hence, only for semiautomata having the set of states of cardinality
less or equal than 8;, the representable languages can coincide with the
measurable languages. ‘

Let now p be an outer measure on /* and M (i) the Boolean algebra
of y-measurable sets. Suppose that A4/ (y) is an atomic Boolean algebra and
let &, be the set of its atoms. If £, ,Z,€d,, we have £, NE, = @ and
U{E|Ee@,}=T7". Hence the family of sets {£1E€8,} is a parti-
tion of 7%,

Let §,: 8 (/") —8 (/") be the mapping given by

¢ (K)=U{E|Eedq, ENK=g).

It is clear that §, is a closure operator [1].
The outer measures induced by measure semiautomata on their free
input semigroup are characterized by the following:

THEOREM 3. The outer measure .. 8 (1) — R, is induced by a positive,
Jenite-measure semiautomaton iff there are satisfied the following conditions:

1) the algebra M (W) is an atomic one,

2) VEeQ,, pel*, 3E' €Q, so that Ep C E/,

3) the outer measure u. is invariant with respect to the closure S
which means that:

w (&) = u(Cu(E), VE €8 (1.

Proof. Suppose that the outer measure . is induced by the semiautomaton
A=(/,S, f,m;s,) positive and finite in measure, which means that u = Py .
Let us consider the languages:

B, =1p1f(s,0) = s}, SES

and let £ be a measurable language. In view of Theorem 2, £ is repre-
sentable in the semiautomaton A = (7,S, f,m;s,). It is obvious that
E=U{E |s€f(sy,E)}; E, are also representable languages in the same
semiautomaton and are the minimal languages having this property. Hence
M (u) is an atomic Boolean algebra.

The atoms of the algebra M/ (u) are necessarily languages having the
form Z,. It follows that, if » € £, than s = f (s, 7) and f(s,,7p) = f (s, ?),
from which 7p € £y 4, hence £, p C Ey 5 which points the validity of the
second property.

Finally, we have

() = pp (By) =m (f (s, E))
and
b (G (E)) = p(U{E|Eeq, BN E+2)).
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The languages {£|E€d,,E, NE== 2} are mutually disjoint. Since
these languages are representable in the semiautomaton A, they are [y —mea-
surable languages. Hence:

w@u(E) =2{u(E)|Eeq, E\NE+0} =
=Z{m{s})|sef(sg,E),E€q,, E,NE=F03}=
=m ([ (so,E1) = w(&.

and we have proved the third property.

Let p. be a finite, outer measure which fulfils the conditions 1)-3) and the
semiautomaton A = (7,8, ,¢,m; E,),E, being the atom which contains
the null word e of the free semigroup 7*.

Here ¢ (£ ,7) = E' (where E' is the atom for which Zp CE') and
m{E; | jeJ}) =2Z{w(E)|je J}. The mapping ¢ is well defined fer, if
there existed £',E'" €8, so that £p CL', Ep CE" with E'==E", there
would result £p CE' N E" = », which is absurd.

We claim that p = ty- Indeed, we can write u(K)=u (X)) =
=uw({UH|Hedq,, HNK == o}).

The condition 2) shows that the equivalence o related to the partition
&, is a right congruence on the semigroup /*. Let us denote by [p], the set
£ € &, which contains p. The third condition implies that u ({p}) = u ([p].)-

We have:

pa (K) = (¢ (lele, K)) = w ({2l | p€ K}) = p (K)
and the proof is completed.

REMARK. Let u, be an outer measure induced by the semiautomaton
A=(,S, f,m;sy). The condition 2) implies that, if Z€d,, pe /" and
Epn E== @ then Ep CE.

Hence, for p, pg, »€ £ we have, rg € £. This is the condition obtained
by A. Salomaa in [4] for languages which can be represented by one state
in a semiautomaton.

Conversely, if this condition holds for the language £ there exists a semi-
automaton A = (/,S, f;s,) and a state s€.S so that Z = £ . If the set
S is endowed with a measure 7: & (S) — R, it follows that £ is an atom of
the Boolean algebra M (u) which corresponds to the outer measure induced
by the measure semiautomaton A, = (/, S, f,m;s,) on I%.

Hence the condition of Salomaa characterizes also the atoms of the
Boolean algebras of u, measurable sets.

Let w be a finite outer measure u: & (/") - R,. The outer measure
induced by (. on the set of states of a semiautomaton A = (7, S, f;s,) is
given by:

my (S =p ({2 f(s,2)€S1}).
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»

We have the following ‘“ regularity ”’ theorem:

THEOREM 4. Let A= (1,S, f,m;s,) be a measure semiautomaton and
my: 8(S) =R, be the outer measure induced on the set S by the outer mea-
sure .= W, . Then m = m,.

Let A= (1,5, [f;s) be a semiautomaton. If the languages which are
representable in this semiautomaton are p—measurable, then the outer measure
my: 8(S) = R, is a measure and the outer measure p, induced by the measure
semiautomaton A = (1, S, f,m,;s,) coincides with u. on the set of representa-
ble languages.

Proof. In view of the definition of the measure 7, we can write

7 (S) = w ({5 f (0, ) €S1}) =
=m({s| f(so,0) = s5,5€ 5} = m (S

and the first part of the theorem is proved.
Let now A= (/, S, f; sp) be a semiautomaton, S;,S, CS,S NS, = 2.
We have
7y (S1USe) = ({21 f (s, 2)€SUS,}) =

=u({21 (o, p)€S13U{p] fso, ) €S)).

Since the languages Z; = {p| f(s,, p)€S,}, j = 1,2 are represented
in the semiautomaton A = (Z, S, f; so), they are u,-measurable languages
and being disjoint sets we obtain:

7y (S1US) =u({p] fs0,2) €S +u({2] fs,2)€S,}) =
= m,, (S1) + 7, (Sy)

hence m, is a measure.

We have
W (B)=m, ({s| f(so,0)=s,p€eE)} =

=wu{glf(s0,9) € f(s0, D).

If the language Z is represented in the semiautomaton A we have
E={q|f(s0,9) € f(s0,E)}. Hence, for these languages yu, (&) = u (E).

III. CARDINAL MEASURE SEMIAUTOMATA

In this paragraph we shall consider a special class of measure semiau-
tomata.

A cardinal measure semiautomaton is a measure semiautomaton
A=(,S, f,m;sy) for which m (S;) =1]S,|, VS;CS.

We can relate to every semiautomaton, in a natural manner, its cardinal
measure semiautomaton. We shall use the same capital letter to denote a
semiautomaton and its cardinal measure semiautomaton.
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The outer measure induced on the free input semigroup by a cardinal
measure semiautomaton characterizes the isomorphism type of the semi-
automaton, if this semiautomaton is connected by its initial state.

Let A, = (/,S;, f;;%;) /= 1,2, be two semiautomata connected by
their initial states. We have:

THEOREM 5. 7he following assertions are equivalent:

1) There exists a surjective homomorphism h: S;— S, between A,
and A,;

i), (B)=u, (B), VEeS (I
i) py (£) = p, (&) for the languages E€§ (I*)  for which |E| < 2.

COROLLARY. If A = (1,S;, f;;50,), ] = 1,2 are two connected semi-
automata by their initial states and p, (E) = o, (£) for every E€8 (",
|E| < 2 then A, and A, are isomorphic semiautomata.

Let now £ € 8 (7™) be a language with ¢ € Z. We shall consider the set
of languages {£"| 2€ N} where E°= {¢} , E'=E |, E**'={pq| p € EY, g€ E}.
It is clear that E°CE*C... E*C....

Suppose that A is a finite semiautomaton.

THEOREM 6. [f u, (E% = u, (B then p, (E*) = p, ('), VjeN.
In a next Note we shall study the behaviour of u,~measurable languages
to homomorphisms of the free semigroup 7°.
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