Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Constantin Ivan

On spreads of curves

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 55 (1973), n.1-2, p. 46-49. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_55_1-2_46_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Topologia. - On spreads of curves. Nota ${ }^{(*)}$ di Constantin Ivan, presentata dal Socio G. Scorza Dragoni.

RiASSUnto. - Si stabiliscono risultati sulle famiglie continue di curve, mostrando fra l'altro l'esistenza in esse di al più un insieme numerabile di curve luoghi di punti di molteplicità $2 k$, con $k \geq \mathrm{I}$. I casi $k=\mathrm{I}$ e $k=2$ sono già stati rispettivamente considerati da Grünbaum e da Zamfirescu.

This Note concerns spreads of curves as introduced by Grünbaum in [I] (see also [2]). A spread is a family \mathbb{Z} of Jordan arcs (further called curves), satisfying the following conditions:
i) each curve $L \in \mathfrak{Z}$ (except its end-points) lies in the bounded component D of the complementary of a closed Jordan curve C and its end-points belong to C ;
ii) each point $p \in \mathrm{C}$ is the end-point of exactly one curve $\mathrm{L}(p)$;
iii) if $L_{1}, L_{2} \in \mathcal{Z}$ are two different curves, then $L_{1} \cap L_{2}$ is a single point;
iv) the curve $\mathrm{L}(p)$ depends continuously on $p \in \mathrm{C}$.

Following [3], a maximal connected subset of \mathbb{Z} the elements of which are concurrent curves is called a pencil.

Let $\mathrm{M}_{n}(\mathbb{Z})$ be the set of all points of D which belong to at least n curves in Ω. Put $\mathrm{T}_{n}(\mathfrak{Z})=\mathrm{M}_{n}(\Omega)-\mathrm{M}_{n+1}(\Omega)$. The elements of $\mathrm{T}_{3}(\mathfrak{Z})$ are called triple points.

We have already a collection of results about "exceptions " that a spread may admit. Thus, Grünbaum [1] proved that on all curves of a spread, with at most one exception, there are triple points. Zamfirescu [3] completed this result by proving that on all curves with at most three exceptions there are non-degenerate arcs consisting of triple points (if $\mathrm{M}_{\mathrm{x}_{\mathrm{o}}}=\varnothing$).

Consider now a spread \mathcal{E} without pencils. We ask:
" On how many curves $L \in \mathfrak{R}$, int $\left(L \cap M_{2}(\mathfrak{Z})\right) \subset T_{j}(\mathcal{Z}),(j \geq 2)$?"
The cited result of Grünbaum implies the answer " on at most one curve" for $j=2$. Zamfirescu [4] proved that if $\mathrm{M}_{\mathrm{x}_{0}}=\varnothing$ then

$$
\operatorname{int}\left(\mathrm{L} \cap \mathrm{M}_{2}(\S)\right)=\mathrm{L} \cap \mathrm{~T}_{4}(\S)
$$

on at most one curve L. From his Lemma 5 in [4] it follows that

$$
\operatorname{int}\left(\mathrm{L} \cap \mathrm{M}_{2}(\Omega)\right) \subset \mathrm{T}_{4}(\Omega)
$$

implies

$$
\operatorname{int}\left(L \cap M_{2}(\Omega)\right)=L \cap T_{4}(\Omega)
$$

(*) Pervenuta all'Accademia il 24 luglio 1973.

Also, his proof works if $\mathrm{M}_{\mathrm{x}_{0}}=\varnothing$ is replaced by the condition that \mathfrak{Q} has no pencils; thus his result implies the same answer to our question for $j=4$ as for $j=2$.

In this Note we investigate the problem in the general even case.
Theorem. If \mathfrak{Z} is a spread without pencils, then

$$
\operatorname{int}\left(\mathrm{L} \cap \mathrm{M}_{2}(\Omega)\right) \subset \mathrm{T}_{2 k}(\Omega)
$$

for at most countably many curves $\mathrm{L} \in \mathbb{R}$.
Let $f:(a, b) \rightarrow \mathrm{R}$ be a continuous bounded function such that
i) for every $\lambda \in \operatorname{int} f((a, b)), \operatorname{card} f^{-1}(\lambda)=2 k-\mathrm{I}$, where k is an arbitrary positive fixed integer;
ii) for every $\mu \in \operatorname{fr} f((a, b)), f^{-1}(\mu)$ contains no interval.

Lemma i. Every point $x \in(a, b)$ is a strict relative extreme for the restrictions of the function f to the intervals $(a, x]$ and $[x, b)$.

This Lemma coincides with Lemma 2 from [4] (stated for $k=2$) and admits the same proof.

The point $x \in(a, b)$ is said to be of type $(+,+)$ (respectively $(+,-)$, $(-,-),(-,+))$ if it is simultaneously a strict relative maximum (respectively maximum, minimum, minimum) for $f_{l(a, x]}$ and a strict relative maximum (respectively minimum, minimum, maximum) for $f_{[[x, b)}$ [4].

Let $x_{i} \in(a, b), i=\mathrm{I}, 2, \cdots, 2 k-\mathrm{I}$, be $2 k$ - I points such that

$$
a<x_{1}<x_{2}<\cdots<x_{2 k-1}<b
$$

and

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{2 k-1}\right) \in \operatorname{int} f((a, b)) .
$$

Evidently, if x_{i} is a relative maximum (respectively minimum) for $f_{\left(\left[x_{i}, b\right)\right.}$, then $x_{i+1}, i=\mathrm{I}, 2, \cdots, 2 k-2$ must necessarily be a relative maximum (respectively minimum) for $f_{l\left(a, x_{i+1}\right]}$ too. Therefore there are $2^{2 k}$ possible sequences of these types for the points $x_{i}, i=\mathrm{I}, 2, \cdots, 2 k-\mathrm{I}$.

It is also easy to show that, from these $2^{2 k}$ possible sequences only those containing as many points of type $(+,+)$ as of type (,--) may actually appear and that the numbers of points of type $(+,-)$ and $(-,+)$ differ by one.

Lemma 2. If $\mu \in \operatorname{fr} f((a, b))$, then $\operatorname{card} f^{-1}(\mu)=k-\mathrm{I}$.
This is a generalization of Lemma 5 from [4] (stated for $k=2$) and can be proved in the same way.

Lemma 3. Let $\mathrm{F} \subset f((a, b))$ be the set of all μ^{\prime} s such that at least one of the points of $f^{-1}(\mu)$ is of type $(+,+)$. Then F is at most countable.

Proof. Let $\mu \in \mathrm{F} \cap \operatorname{int} f((a, b))$ and $\left\{x_{1}, \cdots, x_{2 k-1}\right\}=f^{-1}(\mu)$ and suppose x_{j} is of type $(+,+)$. Let I be a subinterval of (a, b) between a point of type $(-,+)$ or $(+,+)$ and another point of type $(+,-)$ or $(+,+)$.

There are exactly k - I such intervals $\mathrm{I}_{1}, \mathrm{I}_{2}, \cdots, \mathrm{I}_{k-1}$. Also, either x_{1} is of type $(+,-)$ or $(+,+)$, or $x_{2 k-1}$ is of type $(-,+)$ or $(+,+)$. In the first case denote $\mathrm{I}_{0}=\left(a, x_{1}\right)$, in the second $\mathrm{I}_{0}=\left(x_{2 k-1}, b\right)$. Now it is easily seen that each point of $f^{-1}(\lambda)$, where

$$
\lambda \in\left(\mu, \min _{i} \max _{x \in \mathrm{I}_{i}} f(x)\right),
$$

is neither of type $(+,+)$ nor of type (,--). The fact that F is countable is now obvious.

Let \mathfrak{Z} be a spread without pencils and let $\mathrm{L}(p) \in \mathbb{Z}$ be such that

$$
\operatorname{int}\left(\mathrm{L}(p) \cap \mathrm{M}_{2}(\Omega)\right) \subset \mathrm{L}(p) \cap \mathrm{T}_{2 k}(\Omega)
$$

Consider two homeomorphisms

$$
\begin{aligned}
& \varphi:[a, b] \rightarrow \mathrm{A} \\
& \psi:[c, d] \rightarrow \mathrm{L}(p)
\end{aligned}
$$

providing parametric representations of the curve $\mathrm{L}(p)$ with the end-points p and $-p$ and of one of the two arcs of C determined by these end-points, A .

Then the application

$$
f:(a, b) \rightarrow(c, d)
$$

defined by

$$
f(x)=\psi^{-1}(\mathrm{~L}(\varphi(x)) \cap \mathrm{L}(p))
$$

is continuous. Also,

$$
f((a, b))=\psi^{-1}\left(\mathrm{~L}(p) \cap \mathrm{M}_{2}(\Omega)\right)
$$

and

$$
\psi^{-1}\left(\mathrm{~L}(p) \cap \mathrm{T}_{2 k}(\mathbb{Z})\right)=\left\{\lambda \in f(a, b): \operatorname{card} f^{-1}(\lambda)=2 k-\mathrm{I}\right\}
$$

Since

$$
\begin{gathered}
\operatorname{int}\left(\mathrm{L}(p) \cap \mathrm{M}_{2}(\{)) \subset \mathrm{L}(p) \cap \mathrm{T}_{2 k}(\Omega),\right. \\
\operatorname{int} f((a, b)) \subset\left\{\lambda \in f(a, b): \operatorname{card} f^{-1}(\lambda)=2 k-\mathrm{I}\right\}
\end{gathered}
$$

and since \mathfrak{Z} has no pencils, for each $\mu \in f((a, b)), f^{-1}(\mu)$ includes no interval. Hence f is a function of the type investigated above.

Lemma 4. Let z be an arbitrary point belonging to int $\left(\mathrm{L}(p) \cap \mathrm{M}_{2}(\Omega)\right)$, such that the subset $f^{-1}\left(\psi^{-1}(z)\right)$ of (a, b) contains only points of the types $(+,-)$ and $(-,+)$. Then on every curve $\mathrm{L} \in \mathbb{Q}$ passing through z and different from $\mathrm{L}(p)$ there are points through which pass at least $2 k+1$ curves.

Proof. Let $f^{-1}\left(\psi^{-1}(z)\right)=\left\{x_{1}, x_{2}, \cdots, x_{2 k-1}\right\}$. Suppose for instance that $\varphi(a)=\psi(c)=p$ and $\varphi(b)=\psi(d)=-p$,

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{2 k-1}<b=x_{2 k}
$$

and that the point x_{1} is of type $(+,-)$, the other case being analogous.
Let $\mathrm{L}=\mathrm{L}\left(\varphi\left(x_{1}\right)\right)$, the proof for the other curves $\mathrm{L}\left(\varphi\left(x_{i}\right)\right)(i=\mathrm{I}, 2, \ldots$ $\cdots, 2 k-\mathrm{I}$) being similar. Then there exist $k+\mathrm{I}$ points $y_{0} \in\left(x_{0}, x_{1}\right)$
and $y_{i} \in\left(x_{2 i-1}, x_{2 i}\right)(i=1,2, \cdots, k)$, such that $\mathrm{L}\left(\varphi\left(y_{0}\right)\right) \cap \mathrm{L}(p)$ lies between p and z on $\mathrm{L}(p)$, and $\mathrm{L}\left(\varphi\left(y_{i}\right)\right) \cap \mathrm{L}(p)(i=\mathrm{I}, 2, \cdots, k)$ lie between z and $-p$ on $\mathrm{L}(p)$. Therefore, evidently, $\mathrm{L}\left(\varphi\left(y_{i}\right)\right) \cap \mathrm{L}(i=0, \mathrm{I}, 2, \cdots, k)$ are between z and $-\varphi\left(x_{1}\right)$ on L .

Let z^{\prime} be a point of the curve L simultaneously placed between z and $\mathrm{L} \cap \mathrm{L}\left(\varphi\left(y_{i}\right)\right)(i=\mathrm{o}, \mathrm{I}, 2, \cdots, k)$. Then, in accordance with Lemma I of [I], there exist $2 k$ points $p_{1}^{1} \in\left(x_{0}, y_{1}\right), p_{1}^{2} \in\left(y_{2}, x_{2}\right), p_{i}^{1} \in\left(x_{2 i-1}, y_{i}\right)$ and $p_{i}^{2} \in\left(y_{i}, x_{2 i}\right)(i=2,3, \cdots, k)$ such that $z^{\prime} \in \mathrm{L}\left(\varphi\left(p_{i}^{j}\right)\right)(i=1,2, \cdots, k$ and $j=1,2)$.

Then $z^{\prime} \in \mathrm{L} \cap \mathrm{M}_{2 k+1}(\Omega)$.
The following lemma is a generalization of Lemma 7 in [4].
Lemma 5. For every curve $\mathrm{L} \in \mathbb{Z}$ different from $\mathrm{L}(p)$ intersecting $\operatorname{fr}\left(\mathrm{L}(p) \cap \mathrm{M}_{2}(\mathfrak{Z})\right)$, int $\left(\mathrm{L} \cap \mathrm{M}_{2}(\mathfrak{Z})\right)-\mathrm{M}_{k+1}(\mathfrak{Z}) \neq \varnothing$.

Proof. Let z be the common point of $\mathrm{L}=\mathrm{L}\left(x_{0}\right)$ and $\mathrm{L}(p)$. Because $\varphi^{-1}(z) \in \operatorname{fr} f((a, b))$, by Lemma 2, $\operatorname{card} f^{-1}\left(\varphi^{-1}(z)\right) \leq k$ - I. Then $z \in \mathrm{M}_{2}(\mathbb{Y})$ -$-\mathrm{M}_{k+1}(\Omega)$.

Suppose that all interior points of $\mathrm{L}(p) \cap \mathrm{M}_{2}(\mathfrak{R})$ lie on $\mathrm{L}(p)$ between z and - p. Then there exist two points $x_{1} \in\left(a, x_{0}\right)$ and $x_{2} \in\left(x_{0}, b\right)$ (different from the end-points of all other $k-2$ curves passing through z), such that the point z lies between $\mathrm{L} \cap \mathrm{L}\left(\varphi\left(x_{1}\right)\right)$ and $\mathrm{L} \cap \mathrm{L}\left(\varphi\left(x_{2}\right)\right)$ on the curve L . It follows that $z \in \operatorname{int}\left(\mathrm{~L} \cap \mathrm{M}_{2}(\mathfrak{Z})\right)$ and then $z \in \operatorname{int}\left(\mathrm{~L} \cap \mathrm{M}_{2}(\mathfrak{Z})\right)-\mathrm{M}_{k+1}(\mathfrak{Z})$.

Now the proof of the theorem reduces to an obvious combination of Lemmas 3, 4 and 5 .

References

[I] B. Grünbaum, Continuous families of curves, "Can. J. Math.», I8, 529-537 (1966).
[2] B. Grünbaum, Arrangements and spreads. Conference Board of the Mathematical Sciencies. Regional Conference Series in Mathematics.
[3] T. Zamfirescu, Sur les familles continues de courbes (Note I), «Rend. Lincei», ser. VIII, 42 (6) (1967).
[4] T. Zamfirescu, Sur les familles continues de courbes (Note II), "Rend. Lincei», ser. VIII, 43 (1-2) (1967).

