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Topologia. — On spreads of curves. Nota @ di CONSTANTIN
[van, presentata dal Socio G. Scorza DraconT.

RIASSUNTO. — Si stabiliscono risultati sulle famiglie continue di curve, mostrando
fra Daltro lesistenza in esse di al pit un insieme numerabile di curve luoghi di punti di
molteplicitd 2 £, con 2> 1. I casi £#=1 e 4= 2 sono gia stati rispettivamente considerati
da Griinbaum e da Zamfirescu.

This Note concerns spreads of curves as introduced by Griinbaum in [1]
(see also [2]). A spread is a family € of Jordan arcs (further called curves),
satisfying the following conditions:

Z) each curve L € ¢ (except its end-points) lies in the bounded
component D of the complementary of a closed Jordan curve C and its
end-points belong to C;

77) each point p € C is the end-point of exactly one curve L ;
2i7) if L, L, €2 are two different curves, then L, NL, is a single point;
@) the curve L () depends continuously on p €C.

Following [3], a maximal connected subset of ¢ the elements of which
are concurrent curves is called a pencil.

Let M, (¥) be the set of all points of D which belong to at least 7 curves
in & Put T,(@) =M, (%) —M,,1 (¢). The elements of Ty (¢) are called
triple points.

We have already a collection of results about *“ exceptions ’ that a spread
may admit. Thus, Griinbaum [1] proved that on all curves of a spread,
with at most one exception, there are triple points. Zamfirescu [3] completed
this result by proving that on all curves with at most three exceptions there
are non-degenerate arcs consisting of triple points (if M,, = 2).

Consider now a spread £ without pencils. We ask:

“On how many curves L € ¢, int LAM,(¢)CT;(®), (j=2) ?”

The cited result of Griinbaum implies the answer “on at most one curve”
for j = 2. Zamfirescu [4] proved that if M, = & then

int LNAM, () =LnNT,®
on at most one curve L. From his Lemma 5 in [4] it follows that
int (L N M, (¥)) C T, (®)

implies
int (L NM,(®)=LnNT,(Q.

(*) Pervenuta all’Accademia il 24 luglio 1973.
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Also, his proof works if M, = & is replaced by the condition that ¢ has
no pencils; thus his result implies the same answer to our question for
7 =4 as for j = 2.

In this Note we investigate the problem in the general even case.

THEOREM. If & is a spread without pencils, then
int (L 0 M, (€) C Ty, (9) (h=1)
Jor at most countably many curves L € Q.

Let f:(a, 6) — R be a continuous bounded function such that

Z) for every A €intf((a,8)), card f (M) =24—1, where £ is an
arbitrary positive fixed integer;

i) for every wefrf((a, b)),/ (1) contains no interval.

LEMMA 1. Every point x € (a,b) is a strict relative extreme for the
vestrictions of the function f to the intervals (a,x]| and [x,b).

This Lemma coincides with Lemma 2 from [4] (stated for 4 = 2) and
admits the same proof.

The point x € («, 4) is said to be of type (+4,+) (respectively (+,—),
(—y—), () if it is simultaneously a strict relative maximum (respectively
maximum, minimum, minimum) for fj,. and a strict relative maximum
(respectively minimum, minimum, maximum) for Siws (4]

Let x;€(a,6),i=1,2,---,2k—1, be 2-—1 points such that

a <xl <x2 <"'<x2,é—1<é
and '

S@)=7(x) = =f(r)€intf (e, ).

Evidently, if x, is a relative maximum (respectively minimum) for
Jixpey then xyy,i=1,2,--+,2—2 must necessarily be a relative
maximum (respectively minimum) for Jl@zzy ) too. Therefore there are 22%
possible sequences of these types for the points x,, 7 =1,2, -, 2k — 1.

It is also easy to show that, from these 224 possible sequences only those
containing as many points of type (+,4) as of type (—,—) may actually
appear and that the numbers of points of type (4,—) and (—,+) differ
by one.

LEMMA 2. If wefrf((a,?d)), then card f= (b)) = £—1.
This is a generalization of Lemma 35 from [4] (stated for £ = 2) and
can be proved in the same way.

LEMMA 3. ZLet FCf((a, b)) be the set of all W's such that at least one
of the points of f= (w) is of type (4-,+). Then F is at most countable.

Proof. Let weFnintf((a,8) and {x;, -+, x5 1} =f"" () and sup-
pose #; is of type (+,+4). Let I be a subinterval of (2, 8) between a point
of type (—,+) or (+4,4) and another point of type (+—) or (+,+).
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There are exactly #— 1 such intervals I;,I,, -, I,_;. Also, either x; is
of type (4,—) or (+4,4), or x9;_1 is of type (—,+) or (4+,4+). In the

first case denote I, = (@, xy), in the second I, = (x2;-1,6). Now it is easily
seen that each point of =t (A), where

A € (u, min max f (x)),
7 xel;

is neither of type (+,+) nor of type (—,—). The fact that F is countable
is now obvious.

Let € be a spread without pencils and let L (p) € € be such that
int (L (2) N M (¥)) CL (p) N Ty, (9).
Consider two homeomorphisms
o:la,b] A
Yile,dl =L
providing parametric representations of the curve L (p) with the end-points p

and — p and of one of the two arcs of C determined by these end-points, A.
Then the application

fi(a,b) —(c,d)
defined by
f@) =19 (L (e () NL(2))

is continuous. Also,

fa, 8) =y (L (p) N M, (®)
and

L (P)NTy () ={h€ef(a,b):cardf ) =2k—1}.
Since
int (L () " M, (¥)) CL () N Ty, (9),
intf((a,6)C{Nef(a,b):cardf () =2~k—1}

and since € has no pencils, for each w €f((a, 4)), /7 (u) includes no interval.
Hence f is a function of the type investigated above.

LEMMA 4. Let 2 be an arbitrary point belonging to int (L(p) "M, ()),
such that the subset [~ (7 (2) of (a,b) contains only points of the types
(+,—) and (—,+). Then on every curve L€ & passing through z and different
Srom L(p) there are points through which pass at least 2k + 1 curves.

Proof. Let f7 (471 (2))={x, %y, -+, %2:_1}. Suppose for instance
that ¢ (@) = ¢ (¢) = p and ¢ (6) = ¢ (d) = — p,
Xog=a < xp <Xy <.+ <X9z_q <bZX2k

and that the point x1 is of type (+,—), the other case being analogous.
Let L = L (¢(x))), the proof for the other curves L (¢(x,)) (¢=1,2,---
+++,2k—1) being similar. Then there exist %24 1 points y,€ (x,, x;)
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and y, € (23, 1,%;) ({=1,2, -+, &), such that L (¢ (y))NL () lies bet-
ween p and z on L(p), and L(e (y))NL(p) ¢ =1,2, -+, %) lie between 2
and —p on L(p). Therefore, evidently, L(p(y))NL({=0,1,2,---,4)
are between z and — ¢ (x;) on L.

Let 2 be a point of the curve L simultaneously placed between z and
LnL(e(y,) ¢=0,1,2,--+,4). Then, in accordance with Lemma 1
of [1], there exist 2 £ points g€ (%9, 71)y PLE (Vs %), prE (*2:-1,;) and
p%e(yi,xzi) ({=12,3,-,4) such that # €L (p(pD)G=1,2, -+, 4 and
J=1,2).

Then z/e L N M25+1 <8)

The following lemma is a generalization of Lemma 7 in [4].

LEMMA 5. For every curve L€ different from L (p) intersecting
fr (L (2) 0 M, (©) , int (L A My () — Mg (8) == 2.

Proof. Let z be the common point of L =1L (x,) and L (). Because
¢ (2)€fr f ((a,6)), by Lemma 2, card f ' (¢7%(5)) < A—1. Then 2€Mp(¥)—
— M1 (9).

Suppose that all interior points of L ()N Mz () lie on L (p) between z
and — p. Then there exist two points x, € (2, x,) and x, € (x,, 6) (different
from the end-points of all other #— 2 curves passing through z), such that
the point z lies between L N L(¢(x;)) and L N L(9 (x,) on the curve L.
It follows that z€int (LN M, (¥)) and then z€int (L N M, () — My ().

Now the proof of the theorem reduces to an obvious combination of
Lemmas 3, 4 and 3.
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