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Equazioni differenziali ordinarie non lineari. — Oscillations 
fo r  forced second order nonlinear differential equations. N o ta (,) di 
V asilios A. S taikos e Y iannis G. S ficas, presentata dal Socio 
G. S ansone.

RIASSUNTO. — Si danno risultati sul com portam ento asintotico ed oscillatorio delle 
soluzioni di un ’equazione differenziale pertu rbata  della forma

[/ (ft) 4> (x) # '] '  +  a (t) 9 (x) =  b (f)
o di form a più generale

[/ (/) ^ (x) x'] '+  a (ft) g  (x , x') =  b (t)

senza la restrizione a >  o. Questi risultati generalizzano e migliorano altri precedenti dovuti 
a  Bobisud [2] e K artsatos [3] che riguardano il caso speciale ^ =  1 , / =  1 , b =  o.

In this paper we are concerned with the oscillatory and asym ptotic beha­
vior of solutions for differential equations of the form

(*) V 00 0 GO * '] '+  a (0 9 (x) =  b (/)

where the nonnegativity  of the  function a is not assumed. As references to 
the subject we m ention here the papers by Bhatia [i], Bobisud [2] and Ki- 
guradze [4] in which the special case ^ =  1 and b =  o is treated. U sing the 
results obtained here for differential equations of the form (*), we derive, by 
comparison, other ones on oscillatory and asym ptotic behavior of solutions 
for more general differential equations, nam ely for differential equations of 
the form

r  ) [/ o) <|; go x ' Y + f ( t ) g ( x , x ^  =  b (o
All functions in (*) and (**) are supposed to be real-valued with dom ains

® 00 = ® («) = ® (S) = ® (/) = [to , 0 0 )
© (0) = ' ® (9) =  R  and 3) (g) — R 2.

M oreover, is nonnegative, I positive and such th a t
OO

( ,)  / t w - “ -
to

T hroughout the sequel, by “ solution ” of (*) or (**) we shall m ean only 
solutions which are defined for all large t. Also, we shall consider the oscilla­
tory  character of the solutions in the usual sense, i.e, a solution is called oscil­
latory if and only if it has no last zero, otherwise it is called nonosdilatory.

(*) Pervenuta all’Accadem ia il 20 agosto 1973.
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T h eo rem  i. Consider the differential equation (*) subject to the following 
conditions'.

(i) the function 9 is differentiable on R  — { o } and fo r  every x  =|= o, 

x  9 (x) >  o and f f ( x ) ^ o

(ii) the function ^ /9  is locally integrable on (o , 00) and (— 00 , o) 
and such that

f —- dx <  00 andJ ?W
j  (*)
? w

dx <  00

(iii) fo r  every [i. >  o ,
00 j?

j  |> ( 0  — t d * ( * ) l ]  J  =  00 .
0̂ to

Then, every solution x  of (*) zV oscillatory or such that

lim inf I at (/) I =  o .
t—>oo

Proof. Let x  be a nonoscillatory solution of (*) w ith c =  lim inf | x(f) | =f= o.
t—>oo

W ithout loss of generality  we can suppose th a t the dom ain of x  is the 
whole half-line [t0 ,0 0 ) and th a t

I x (f) I >  for every t0 .

M oreover, this solution can be supposed positive, since the substitution 
u =  — x  transform s (*) into an equation of the same form satisfying the 
assum ptions of the theorem .

For
t

(p  ~(a — 1 w + w ] y w r ̂ ; w  J ~ïJsj
to

we have

(t\ _  _  [/ (̂ ) 4» [* (*)] x’(t)]' 9 [> (Q] — I (t) 41 [x (t)\ \x'(t)f 9' [x (/)] f  dr
w  92[* « ]  J  / o

*
I 0() <l> [X (f)] x' (/) JL_ >  __ [/ (it) [x (t)Jx' (t)Y f  _ds_ __ 4 [ X  (t)] , , .

9 ix 09] lit) ~  9 [x (/)] J  I (s) 9 [* (if)] *   ̂ '
0̂

Since

9 [* (*)]
= a (t) Hi)

9 l> 09]
« (V) _ W H >

9 IV*)] ~

— M i  v o i
•Phr
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we obtain th a t for every t J> t0

0̂

where fx =  — . This inequality, by integration, gives
* ( t )

t u x(t)

) + j* [a(u) — y.}6 (u) I] j  — du — j  ~ ^ à x
to to X (/„)

t u 00

^  « Oo) +  J  [*(u) — iLÌà(u)l] I ' f L - d u  — j 1 W .
? w

from which, by (ii) and (iii), it follows tha t for some t± >  /0 

# (/) ^  I for every t ^  t±.

Thus, by (2), for every t t±

I(3) 4 [*(*)] „/ ^  =  _  z(t) <
9 [*(*)] ^  ‘ A ~d set)

1{ S )
I  it) j d s 

lis)

from which it is obvious th a t x' is negative on [ix , od) and consequently 
lim x (t) =  c. Integrating, now, the inequality  (3) from tx to t, we obtain tha t

(4)
x (it)

Hence, by (i),

(5)

xit) t
du

tn

log ds
1 { S )

x G?i)

I t9 M
dx =  00

which contradicts (ii).

Remark. In  particu lar for'if; — i, a function 9 satisfying (i) and (ii) can 
be defined by

9 (x) =

where a >  1, a =  p\q and p  , q are odd integers.

THEOREM 2. Consider the differential equation (*) with b — o, i.e. the 
equation

[I (t) ^ (x) x r]' +  a (t) 9 (x) =  o .
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Then, under the assumptions of Theorem J, every solution of the differential 
equation under consideration is either oscillatory or tending monotonically to 
zero as t-^0 0 . Moreover, under the additional assumption

fiv) f dx <  00 and | - dx <  00N y  I
0+ 0-

all solutions are oscillatory.

Proof. Let x  be a nonoscillatory solution. This solution can be supposed 
again with dom ain [t0 ,0 0 ) and positive. U sing the transform ation (2) and 
following the same technique as in the proof of Theorem  1, we derive at first 
the inequality

z' (t) a (t) <\> [x (/)] 
l{s) J ■'(f) t^L 4

Then, by integration, we obtain (3) and consequently (4). Since ,by (3), x'  
is negative on [4 ,0 0 ) ,  it follows th a t lim * (t) = c o exists. Thus (4) gives

t->oo
(5), which contradicts (ii) for c >  o and (iv) for c =  o.

Remark. The above theorem  has been proved in the particular case 
^ =  I and I — I by Bobisud ([2] Theorems 1 and 2) under the additional 
condition

00
o <  I a '(f) dt 00 .

u

THEOREM 3. Consider the differential equation (**) and the function 9 
subject to the conditions (i), (ii) and the following ones:

(v) the function g is continuous and such that fo r  every x =f o and y,
* g ( x , y ) > o

(vi) fo r  every [jq >  o and (ji2 >  o,
00 t

j  l > i / +00 — f~(f )  — t*a I ^ (0  I] f
0̂ t0

where
f + (t) =  m ax { f ( t )  , 0} and f~(t)  =  m ax {— f  (f) , o} ,

(vii) & is a class of functions defined and differentiable fo r  all large 
t, which possesses the property.

fo r  every x e $  with lim inf \x( t ) \ f f=o,  there exist positive constants
t — 0 0

L, M (depending on x) such that

j  <  g [x (*), d  00]
=  *[*(*)](6)

fo r  all large t.
^  M
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Then every solution x of (**) which belongs to the function class 3  is oscilla­
tory or such that

lim inf I x (f) I =  o .
t—> oo

Proof. Let x be a nonoscillatory solution of (**) with x E & and
lim inf I x (f) I o. This solution can be supposed with dom ain [t0 , oo),

t — OG

positive and such th a t (6) is satisfied for all t ^  t0 .
If

a 00 =  / 0 0
g  [x jt) , x ' (/)] 

9 \x W]

then the differential equation (*) has x  as a solution. Since, by (6),

__ f  + (t \ S \ x  W yX' (*)]____X- g  \x  (t) , x ’ (t)]
J  K } 9 [x (/)] J  \ ) 9 \x  (/)J

è  L/ + (0  — M/ “(0  — M * ( 0 I

=  m  [ ^ f \ t ) - r ( t ) - ^ \ b f ) \ \

\ i \b( t ) \

where ^  — L/M  and [a2 =  [jl/M, we have th a t (iii) follows from (vi). Thus, 
by Theorem  i, x'  m ust be oscillatory or such th a t lim inf | x (f) | =  o, a 
contradiction.

Remark. If  in the above theorem  W is the class of all bounded and dif­
ferentiable functions for all large then, as conclusion, we have th a t every 
bounded solution x of (**) is oscillatory or such that lim inf | x (f) | == o. Thus

t—A OO

a result due to K artsatos ([3] Theorem  1) follows from Theorem  3 in the p arti­
cular case ^  e= I, /  — I and b = o.

A pplying the same technique used in the above theorem , it is obvious 
th a t we can obtain, by Theorem  2, the following theorems.

THEOREM 4. Consider the function 9 and the differential equation (**) 
with b e= o, i.e. the equation

[/ it) (x) x'] ' + f ( t ) g  (x ,x ' )  =  o.

Theny under the conditions (i), (ii), (v), (vi) and

(vii)' of is a class of functions defined and differentiable for all large t, 
which possesses the property'.

fo r  every nonoscillatory xE of with lim x (t) =4= o, there exist positive con-
t—>00

stants • L, M such that (6) is satisfied fo r  all large t

every solution of the differential equation under consideration, which belongs 
to the function class of is oscillatory or tending to zero as t -> 00.
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THEOREM 5. Consider the function 9 and the differential equation (**) 
with 3 = o .  Then, under the conditions (i) , (ii) , ( i v ) ( v )  , (vi) and

(vii)" $ is a class of functions defined and differentiable fo r  all large 
t, which possesses the property'.

fo r  every nonosdilatory xe&,  there exist positive constants L, M such 
that (6) is satisfied fo r  all large t

all solutions of the differential equation under consideration, which belong to the 
function class P are oscillatory.
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