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Analisi funzionale. — Somz results concerning multi-valued map-
pings defined in Banackh spaces®. Nota di Mario MARTELLI,
presentata 0 dal Socio G. SaNSONE.

'RIASSUNTO. — Si dimostra che proiettando su B = {7 e X : |#] <1, X spazio di Ba-
nach di dimensione non finita} un insieme compatto e convesso si ottiene un aciclico.
Usando tale risultato si dimostrano un Teorema di punto fisso per una classe di applicazioni
multivoche non compatte definite su B e un’estensione del Teorema di Birkhoff-Kellogg. Si
danno alcune applicazioni di tali risultati.

1. INTRODUCTION

The main purpose of this paper is to prove that a densifying, upper
semicontinuous multi-valued mapping T : B —o X, where B is the unit ball
of a Banach space X, has a fixed point if the following two conditions are
satisfied:

i) T(x) is convex and closed for every x € B;
ii) Ax € T (x) for some x € 2B, the boundary of B, implies A < 1.

I rely heavily on two theorems. The first, proved by L. Vietoris [8], is
the following.

THEOREM A. Let f: X =Y be a continuous map such that f X)y=Y
and f* () is acyclic for every y € Y. If X and Y are compact metric spaces
then f,:H, (X)—>H,(Y) is an isomorphism.

This result has been proved using Vietoris cycles and homologies over
a field F of coefficients. It is known that it can be stated in a more general
situation when X and Y are not compact and f is proper, provided that we
use, for example, the Alexander cohomology with coefficients in an R-module
G, where R is a commutative ring with a unit (E. Spanier [1]) or the Vietoris—
Cech homology with compact carriers and rational coefficients (A. Granas and
J. W. Jaworowski [2]).

The second theorem we will make use of has been proved by S. Eilen-
berg and D. Montgomery [9] and it says that

THEOREM B. Zet X be a compact, acyclic absolute neighborhood retract
and T : X —oX be an upper sen:icontinuous multi—valued map. Assume that
T (x) is acyclic for every x€ X. Then T has a fixed point.

To make the understanding of our result easier we would like to note
that we had, until now, the following situation.

In 1941 S. Kakutani [4] extended Brouwer’s fixed point theorem for
the ball B of E” to the class of upper semicontinuous multi-valued maps
with convex and closed values.

*) Work performed under the auspices of the National Research Council (C.N.R.).
p T :
(**) Nella seduta del 19 giugno 1973.
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Using convexity arguments H. F. Bohnenblust and S. Karlin [5] proved
Schauder’s [6] theorem for upper semicontinuous, compact multi-valued
maps with convex values.

Meanwhile several improvements were obtained for single-valued maps.
B. Knaster, C. Kuratowski and S. Mazurkiewicz [16] proved Brouwer’s
theorem with the assumption f(3B)C B instead of the stronger condition
JS(B)CB. Later E. Rothe [3] obtained the same result in Banach spaces,
generalizing Schauder’s theorem.

S. Eilenberg and D. Montgomery [9] proved the result of Knaster-Ku-
ratowski-Mazurkiewicz for the class of upper semicontinuous multi-valued
mappings with compact and acyclic values. Later A. Granas [7] gave an ana-
logous extension of Rothe’s theorem for the class of upper semicontinuous
compact multi-valued maps with convex values.

I tried to weaken the assumptions of compactness of T and the boundary
condition T (3B) C B in Granas’ theorem by assuming that T is densifying
(see Notations and Definitions) and that Ax € T(x) for some x € 3B implies
A< 1 (Theorem 2).

Among the results which are contained in Theorem 2, about to be pro-
ved in Section 3, I would like to mention here one of W. V. Petryshyn’s [13]
theorems, which states that a densifying map f/: B — X, where B is the unit
ball of a Banach space X, has a fixed point provided that it satisfies the boun-
dary condition II= (\x = f(x) for some x € 3B implies A < I).

In Section 4 I will give a few applications to some surjectivity problems
obtaining, as a Corollary, H. Schafers’ [10] well-known theorem.

2. NOTATIONS AND DEFINITIONS

Multi-valued maps.

We recall that a multi-valued map T of a set X into a set Y is a triple
(G,X,Y) where G, the graph of T, is a subset of X XY such that
T(x) ={yeY:(x,y)€G is nonempty for each x € X}. T(X)= U{ T(x):
:x € X} is the range of T while X is its domain. I will use the symbol
T:X-—0Y to indicate a multi-valued map and f: X —Y for the single-
valued maps. If ACX and BCY then T(A) = U {T(x):x€A}, while
T"(B)={xeX:Tx)NnB==2} and T"B) ={reX:T(x)CB}. T (B)
and T* (B) are called the lower inverse image and the upper inverse image
of B respectively. For : X —Y we have /= (B) = /" (B) =/ (B).

Upper semicontinuous multi—valued maps.

Let X and Y be topological spaces and T: X —o Y. We say that T is
upper semicontinuous (u.s.) at x,€ X if for any open set O containing T(x,)
there exists a neighborhood U(xo) such that

a) x€U (x) =T () CO.
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If T is upper semicontinuous at each point x € X then T is said to be
u.s. on X. The following two conditions are equivalent to the above.
4) T is u.s. if for any open set OCY the set T*(O) is open;
¢) T is us. if for any closed set CCY T (C) is closed.
We say that T : X —o Y has closed values if T (x) is closed for every
x € X and that T has closed graph if G, the graph of T, is a closed subset of
X xY. If T has closed graph then it has closed values. If X and Y are me-
tric spaces and T : X —o Y has closed graph then x,—~x, y,—y and y,€ T (x,)
implies ¥ € T (x). Itis known that G is closed in X X Y if T is u.s., Y is regular
and T has closed values.
If Y is compact then T : X —o Y is u.s. with closed values if and only
if T has closed graph.
We say that T : X —o Y is compact if for any bounded set AC X, T (A)
is relatively compact. If the stronger condition T (X) C K, K being a compact
subset of Y, is verified, then we say that T is completely continuous.

Fixed points and invariant sets.

A fixed point of a multi-valued map T : X —o X is a point x € X such
that x € T (x). A subset A C X is said to be invariant under T if T(A) CA.

Denstfying multi-valued maps.

Let X be a Banach space. For any bounded set A C X we define o(A)
(C. Kuratowski [11]) as the infimum of all r > o such that A can be covered
by a finite family of subsets with diameter less than ». Let us recall here some
properties of this number, called sometimes measure of noncompactness.
1) «(A) =0 <= A is precompact (= totally bounded);
2) a(co (A)) = a (A), where c0(A) indicates the closed convex hull of A.
A map T: X —o X is said to be densifying if (T (A)) < «a(A) for any
bounded subset A C X such that «(A)==o.

Homeology.

Let % be the category of topological spaces, § be the category of graded
vector spaces over a field F. By H;(X), where X €&, we denote the £A-th
Vietoris homology vector space and by H, (X) the graded vector space as-
sociated to- X. Given a continuous map f: X — Y we shall write

St Hy(X) = Hy (V).
A nonempty topological space X is said to be acyélic if H;(X) = o for 7 ==
and Hy(X) >~ F. '
Some other notations.

In what follows, unless otherwise stated, X will be an infinite dimensional
Banach space, B(o,7) ={xeX:||x| <7}, 9B(o,7) = {x€X:| x| =7}
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and ©:X —>B(o,7) will be the radial retraction of X onto B(o,7).
I will say that a mapping T: B(0,7)—o X has the property P if ax € T (x)
for some x € @B (0, #) implies A < 1.

3. REsuLTs

In order to prove the first theorem we need the following lemma.

LEMMA 1. Let T : B(0,7) —o0 X be densifying. Then for any x € B(o, »)
the set T (x) is precompact.

Proof. It cannot be «(T (x)) 4= 0 because otherwise o(T(x)) < a(x)=o.

THEOREM 1. Let T:B(o,7)—0 X be as in Lemma 1. Then woT (x)
is acyclic for every x such that T (x) is closed and convex.

Progf. T(x) is compact. Since w is continuous moT(x) is compact.
It is easy to see that mn!(y) is acyclic for every y € woT (x). Applying
Vietoris’ theorem we obtain that

m,: H, (T(x) —H, (7o T (x))

is an isomorphism. Since T(x) is convex we have H, (T (x)) = o if 79=0
and Ho(T(x)) 2 F. Thus H;(xoT(x)) = 0 if <=0 and Hy(mo T(x)) == F.

LEMMA 2. The radial retraction = is o—nonexpansive.

Proof. Let A be a bounded set of X. Then n(A) Cco(A U{o}). Since
a(co(AU{0})) = a(A) it follows that a(m(A)) < a(A).

The following Lemma 3 has been proved by the Author in a simpler
case [13], but the technique used there can be applied also to this one.

LEMMA 3. Let T:K—0K be a mapping defined in a compact topolo-
gical space K.  Then there exists a closed nonempty subset M of K such that
M =T M).

Note that if T is u.s. with closed values and K is Hausdorff then T (M)
is compact, therefore closed. Hence M = T (M).

THEOREM 2. Let T:B(o,7)—o X be a densifying, u.s. map with convex
and closed values. Assume that T satisfies condition P. Then Fr, the set of fixed
points of T, is nonempty and compact.

Proof. Since 7 is a—nonexpansive, woT is still densifying.

Moreover mo T (x) is acyclic for every x € B(o,7) by Theorem 1.

Since ©o T is densifying the set K = U (o T)"(x,), where x€ B(o,7),
is compact. Moreover mo T (K)CK. Let M be the subset of K whose
existence is insured by Lemma 3 and consider the family

D={DCB(o,»): MCD, D closed, convex and invariant under = oT}.

Put C=n{D:DeD}. Clearly conoT(C)=C. Since a(co(n.T(C))=
= a(moT(C)) = a(C) it follows that C is compact.

By Theorem B we can find x € C such that x € wo T (x). This implies the
existence of a y € T(x) such that x =n(y). If|x]| <7 then y = x because the
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restriction of © to B(0,7) is the identity and we are done. If || x| = 7 then
¥ = Ax, with A> 1. But in this case Ax € T (x) and so, by condition P, » < 1.

It follows that A =1 i.e. y =x. So Fr is nonempty. Clearly FrCT (Fr).
This implies o(Fr) < «(T (Fr)). On the other hand «(T(Fr) < a(Fr) if
«(Fr)=Fo. It follows that «(Fr) = o and Fr is precompact.

But it is also closed because it is the lower inverse image of the 0 €X
under the upper semicontinuous map I—T. Indeed (I —T)~ (o) =
={r€B(o,7):0ex—T(x) ie. 2€T (x)} = Fr.

It follows that Fr is compact.

COROLLARY 1. (A. Granas [7]). Zet T:B(o,7)—o0 X ée an u.s. map
with closed and convex values. Assume that T is compact and T (x) C B(o,7»)
Jor every x € 3B (0,7). Then T has a fixed point.

Remark. Theorem 2 contains, as a particular case, the well-known

result of Rothe [3]. It contains also many other theorems which would be
too long to mention here. As examples I will give only the following two.

COROLLARY 2. (M. Krasnoselskij [14]). Zet f:B(o,7)—H ée a conts-
nuous compact map, where H is a Hilbert space. If for every x €3B(o,r).
(f@),x)<|=|*

then [ has a fixed point.
COROLLARY 3. (W. V. Petryshyn [15]). Zetf:B(o,7)— X be a den-

sifying map which satisfies condition P. Then M, the set of fixed points of f,
is nomempty and compact.

THEOREM 3. (Birkhoff-Kellogg Theorem). Zez T:9B—o X ée a
compact upper—semicontinuons map with closed and convex values. Assume
that inf{||y|l:y€T(x),x€3B} >ec>o0. Then there exists a point x € 9B
and a real number Ay >0 such that x,€2T (%)

Proof.  Define p:T(B) 3B, p(»)=y/||y|. Then the composite
map poT:9B —0 3B is compact, upper semicontinuous with closed and
acyclic values. Since 3B is an acyclic ANR poT has a fixed point x,
(L. Gorniewicz and A. Granas [17]). Clearly x,€ 2T (x) for some 2 > 0.

4. APPLICATIONS

The first result of this section is Theorem 4, which is a generalization to
multi-valued maps of a theorem obtained by M. Martelli and A. Vignoli (see
Corollary 4).

THEOREM 4. Zet T:X —o X be an w.s. and densifying map with closed
and convex values. Assume that there exists a sequence of spheres {3B (0, B,)}
and a sequence {v,} of positive real numbers v, —>o0o as n oo, such that for
any A\ > 1 and any x € 3B (o, B,)

inf |y —M|>7,.
reT(x)

Then the equation y € x — T (x) has a solution for any y€ X.
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Progf. Let yy€ X and choose 7o large enough so that || 3, || < ¥,

Define Ty (x) =y, + T (x). Clearly T, has the same properties of T.
Therefore if Ax € T(x) for some x€3B(o,B,) implies A < 1, Theorem 2
will give the existence of a point x € B(o,B,) such that x € T,y(x), ie.
x €yy+ T(x), which means y,€x—T(x).

Assume X > 1. We have

o= inf s —dx| = inf |y —y,—2x | = inf (|y — x| —
zeTy(x) yeT(x) yeT(x)

— 2D =Y.~ 5l >o.
This contradiction shows that A <1 and the theorem is proved.

Remark. With only minor changes we can prove that if 2>>1 then

the equation
y€kx—T(x)

has a solution for any y € X.
Moreover if we assume that, for any bounded subset A of X

a(TA)) </ia(A) , o<i<1

and that the condition

)

inf |y —ax| =7,

yeT(x)

holds for any A > / then the equation

ye€krxr—T(x)
has a solution for any &> 4.

COROLLARY 4 (M. Martelli and A. Vignoli [12]). ZLet f: X - X be an
o—Lipschitz mapping with constant kb and let ¥ be an isomorphism.
Assume that:
DIFH &<

il) there exists a sequence of spheres 3B (0, B,) and a sequence of posi-
tive real numbers y,—>oo as n-—>oo such that for any \>1 and any
x €2B(o, B,)

/() —FOx) | = v,

Then the mapping F — f is surjective.

The next Theorem contains, as a Corollary, a well-known theorem of
H. Schaefer [10] in a particular case. More precisely the result of Schaefer
is valid also in locally convex Hausdorff topological vector spaces, but in
this case cannot be obtained as a Corollary of our Theorem.

THEOREM 5. Zet T:X —0X be an ws. and densifying map with
convex and closed values. If there is no x € X such that x € T(x) then the
set M ={x€X:ax€eT(x) for some \>1} is unbounded.

Proof. Let B,={x€X:| x| <#) and let =, be the radial retraction
of X onto B,. Then Theorem 2 gives a point z, € B, such that z, € 7,0 T (x,).
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Clearly || x, || = 7, otherwise we would have x,€T(x,). Moreover there
exists A > 1 such that Ax, € T(x,).

CoROLLARY 5. (H. Schaefer [10]). ZLetf: X — X be compact and conti-
nuous. If there exists hy€ [0, 1] such that the equation x = \f (x) does not
have any solutions, them the set M ={xeX:x=2n(x), o <A <Ay} is
unbounded.

Progf. Suppose that the equation x = Ay f(x) does not have any solu-
tions. Since f is compact we can apply Theorem 5 to the map A, 7. Therefore
for any 7 we have an element x, € X such that ||, || = » and 2, x, = A f(x,)
with 2, > 1. This implies x, = A1 % f(x,) and o <A 12y <A,

REFERENCES

[1] E. SPANIER, Algebraic Topology, McGraw-Hill, New York, 344 (1966).

[2] A. GRANAS and J. W. JAWOROWSKI, Some theorems for multivalued mappings of subsets
of the Euclidean space, « Bull. Ac. Pol. Sci., Sér. des sci. math., astr. et phys.» 7 (5),
277-284 (1959).

[3]1 E. ROTHE, Zur theorie der topologischen Ordung und der Vectorfelder in Banachschen
Rdumen, « Compositio Mathem.», 5, 177-197 (1937).

[4] S. KAKUTANI, A generalization of Brouwwer’s fixed point theorem, « Duke Math. Journal »,
8, 457-459 (1951).

[5] H. F. BOHNENBLUST and S. KARLIN On a theorem of Ville, Contribution to the theory
of games. Vol. 1, 155160, « Ann. of Math. Studies », 24, Princeton (1950).

[6] J. SCHAUDER, Der Fixpunktsatz in Funktionalréum, « Studia Math.», 2, 171-180 (1930).

[71 A. GRANAS, Theorem on antipodes and theorems on fixed points for a certain class of multi-
valued mappings in Banach spaces, « Bull. Ac. Pol. Sci., Sér. des sci. math. astr. et phys. »,
7 (5), 271-275 (1950).

[8] E. G. BEGLE, The Vietoris mapping theorem for bicompact spaces, « Annales of Mathe-
matics », 5I, 534-543 (I1950).

[9] S. EILENBERG and D. MONTGOMERY, Fixed point theorems for multi-valued transforma-
tions, « Am.‘ Journal of Math. », 68, 214—222 (1946).

[10] H. SCHAEFER, Uber die Methode der a priori Schranken, «Math. Ann.», 129, 415-416
(1955).

[t1] C. KURATOWSKI, Zopologie, «Monografie Matematiczne», 20, Warzawa (1958).

[12] M. MARTELLI and A. VIGNOLI, Eigenvectors and surjectivity for o—Lipschitzmappings
in Banach spaces, « Ann. di Mat. Pura ed Appl.» (to appear).

[13] M. MARTELLI, A4 lemma on maps of a compact topological space and an application to
Jixed point theory, « Atti Acc. Naz. Lincel», ser. VIII, 49, 128-129 (1970).

[14] M. KRASNOSELSK1]J, New existence theorems for solutions of nonlinear integral equaz‘zom,
« Dokl. Acad. Nauk. SSSR.», 88, 949-952 (1953).

[15] W. V. PETRYSHYN, Structure of the fixed points set of k—set contractions, « Archiv. Rat.
Mech. Anal.», 40 (4), 312-328 (1971).

[16] B. KNASTER, C. KURATOWSKI and S. MAZURKIEWICZ, Ein Beweis des Fixpunkisatzes
fir n-dimensionale simplexe, « Fund. Math.», 14, 132-137 (1920).

[17] L. GORNIEWICZ and A. GRANAS, Fixed point theorems for multivalued mappings of the
absolute neighborhood retracts, « J. Math. Pures et Appl.», 49, 381-395 (1970).



