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Analisi funzionale. — Some results concerning multi-valued m ap­
pings defined in Banach spaces Nota di M a r i o  M a r t e l l i , 
presentata (#* (**)> dal Socio G. S a n s o n e .

R iassunto. — Si dim ostra che proiettando su B =  { r e X  : \\x\\ <  i, X spazio di B a­
nach di dimensione non finita} un insieme com patto e convesso si ottiene un aciclico. 
U sando tale risultato si dim ostrano un Teorem a di punto fisso p e ru n a  classe di applicazioni 
m ultivoche non com patte definite su B e un ’estensione del Teorem a di Birkhoff-Kellogg. Si 
danno alcune applicazioni di tali risultati.

i .  I n t r o d u c t io n

The m ain purpose of this paper is to prove th a t a densifying, upper 
semicontinuous m ulti-valued m apping T  : B — o X, where B is the unit ball 
of a Banach space X, has a fixed point if the following two conditions are 
satisfied:

i) T  (x) is convex and closed for every r e B ;  
ii) I x e T ( x )  for some x e d B ,  the boundary of B, implies X <  i.

I rely  heavily on two theorems. The first, proved by L. Vietoris [8], is 
the following.

T h e o r e m  A. Let  /  : X -> Y be a continuous map such that / ( X )  =  Y 
and f  (y) ts acychc fo r  every y e  Y . I f  X. and  Y are compact metric spaces 
then f y .  H * (X )-> H * (Y ) is an isomorphism.

This result has been proved using Vietoris cycles and homologies over 
a field F  of coefficients. It is known th a t it can be stated in a more general 
situation when X and Y are not com pact and /  is proper, provided tha t we 
use, for example, the A lexander cohomology with coefficients in an R -m odule 
G, where R is com m utative ring with a unit (E. Spanier [i]) or the V ietoris- 
Cech homology with com pact carriers and rational coefficients (A. Granas and 
J. W. Jaworowski [2]).'

The second theorem  we will m ake use of has been proved by S. Eilen­
berg and D. M ontgom ery [9] and it says that

THEOREM B. L et X be a compact, acyclic absolute neighborhood retract 
and  T  : X — o X  be an upper semi continuous m ulti-va lued  m ap . A ssum e that 
T(Y) is acyclic fo r  every x e X .  Then T  has a fix e d  po in t.

To m ake the understanding of our result easier we would like to note 
tha t we had, until now, the following situation.

In 1941 S. K akutani [4] extended Brouwer’s fixed point theorem  for 
the ball B of E M to the class of upper sem icontinuous m ulti-valued  m aps 
with convex and closed values.

(*) W ork perform ed under the auspices of the N ational Research Council (C.N.R.).
(**) Nella seduta del 19 giugno 1973.
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U sing convexity argum ents H. F. Bohnenblust and S. K arlin [5] proved 
S chauder’s [6] theorem  for upper semicontinuous, com pact m ulti-valued 
m aps with convex values.

M eanwhile several im provem ents were obtained for single-valued maps. 
B. K naster, C. K uratow ski and S. M azurkiewicz [16] proved B rouw er’s 
theorem  w ith the assum ption f ( d B) C B instead of the stronger condition 

/ ( B )  C B. L ater E. Rothe [3] obtained the same result in Banach spaces, 
generalizing Schauder’s theorem .

S. Eilenberg and D. M ontgom ery [9] proved the result of K naster-K u- 
ratowski-M azurkiewicz for the class of upper sem icontinuous m ulti-valued 
m appings with com pact and acyclic values. L ater A. Granas [7] gave an ana­
logous extension of R othe’s theorem  for the class of upper semicontinuous 
com pact m ulti-valued m aps with convex values.

I tried to weaken the assum ptions of compactness of T  and the boundary 
condition T  (3B) C B in G ranas’ theorem  by assum ing th a t T  is densifying 
(see N otations and Definitions) and th a t À r t T  (x) for some x  e dB implies 
X <  1 (Theorem  2).

Am ong the results which are contained in Theorem  2, about to be pro­
ved in Section 3, I would like to m ention here one of W. V. P etryshyn’s [15] 
theorem s, which states th a t a densifying m a p / :  B -> X, where B is the unit 
ball of a B anach space X, has a fixed point provided th a t it satisfies the boun­
dary  condition I I “ (\ x — f ( x ) for some x  e dB implies X <  1).

In  Section 4 I will give a few applications to some surjectivity  problems 
obtaining, as a Corollary, H. Schafers’ [10] well-known theorem.

2. N o t a t io n s  a n d  D e f i n i t i o n s

M ulti-valued maps.

We recall th a t a m ulti-valued m ap T of a set X into a set Y is a triple 
(G , X , Y) where G, the graph of T, is a subset of X x  Y such that 
T 0*0 — { y  fi Y : (x  , y )  0 G is nonem pty for each x  6 X}. T (X) =  U{ T( x )  : 
: x e  X } is the range of T  while X is its domain. I will use the symbol 
T  : X — o Y to indicate a m ulti-valued m ap and /  : X -> Y for the single­
valued maps. If  A C X  and BCY  then T (A ) =  U { T ( r )  : r e A } ,  while 
T “  (B).,= {x e X  : T ( x )  n  B 4= 0  } and T f (B) -  { x  e X  : T ( x )  C B}. T“ (B) 
and T + (B) are called the lower inverse image and the upper inverse image 
of B respectively. For / :  X Y we have / “  (B) =  f + (B) — f ~ x (B).

Upper semicontinuous m ulti-va lued  maps.

Let X and Y be topological spaces and T  : X — o Y. We say tha t T  is 
upper sem icontinuous (u.s.) at x 0e X  if for any  open set O containing T (x0) 
there exists a neighborhood U(^o) such that 

a) x  € U  (x0) = » T ( r ) c O .
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I f  T  is upper semicontinuous at each point ^ e X  then T  is said to be 
u.s. on X. The following two conditions are equivalent to the above. 

d) T  is u.s. if for any  open set O C  Y the set (O) is open; 
c) T  is u.s. if for any closed set C C Y  T~ (C) is closed.

We say th a t T  : X —o Y has closed values if T  (x) is closed for every 
x  £ X  and th a t T  has closed graph  if G, the graph of T, is a closed subset of 
X X Y. I f  T  has closed graph  then it has closed values. If  X and Y are m e­
tric spaces and T  : X — o Y has closed graph then x n^ - x  , y n-> y  and y n£ T .(xn) 
implies y  £ T  (x). It is known th a t G is closed in X X Y if T  is u.s., Y is regular 
and T  has closed values.

If  Y is com pact then T  : X — o Y is u.s. with closed values if and only 
if T  has closed graph.

We say tha t T  : X —o Y is com pact if for any bounded set A C  X, T (A ) 
is relatively compact. If  the stronger condition T (X) C K , K being a com pact 
subset of Y, is verified, then we say th a t T  is completely continuous.

F ixed  points and  invariant sets.

A  fixed point of a m ulti-valued m ap T  : X —o  X is a point x  £ X  such 
that x  £ T  (x ). A subset A  C X is said to be invariant under T  if T  (A) C A.

D ensifying m ulti-valued maps.

Let X be a Banach space. For any bounded set A  C X we define oc (A) 
(C. Kuratow ski [11 ]) as the infimum of all r >  o such th a t A can be covered 
by a finite fam ily of subsets w ith d iam eter less than  r. Let us recall here some 
properties of this num ber, called sometimes measure o f noncompactness.

1) a (A) =  o A  is precom pact ( =  totally  bounded);
2) a. (cö (A)) =  a (A), where cd (A) indicates the closed convex hull of A. 

A  m ap T  : X — o X is said to be densifying if a (T  (A)) <  a (A) for any
bounded subsèt A C X such th a t oc (A) =j= o.

Homology.

Let % be the category of topological spaces, be the category of graded 
vector spaces over a field F. By H^(X), where X e ^ ,  we denote the >é-th 
Vietoris homology vector space and by H ^(X ) the graded vector space as­
sociated to X. Given a continuous m ap /  : X -> Y we shall write

/*  • H*(X ) H # (Y).

A  nonem pty topological space X is said to be acyclic if H,-(X) =  o for i - o  
and H 0( X ) ^ F .

Some other notations.

In  w hat follows, unless otherwise stated, X will be an infinite dim ensional 
Banach space, B (o , r) =  { x  £ X  : \\x  || <  r }  , 3B(o , r) =  { x  £ X  : \ \ x  || =  r}
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and t u : X - > B ( o , F )  will be the radial retraction of X onto B ( o , r ) .  
I will say th a t a m apping T  : B (o , r) —  o X has the p roperty  P if \ x  e T ( i )  
for some x  e 3B (o , r) implies X <  1.

3. R e s u l t s

In  order to prove the first theorem  we need the following lemma.

L em m a i . L et T  : B (o , r) — o X be densifying. Then fo r  any x  e B (o , r )  
the set T  (pc) is precompact.

Proof. It cannot be a (T (x)) =j= o because otherwise oc(T(V)) <  «■(*) =  O.

THEOREM i .  L et T : B ( o , r ) — -o X be as in  Lem m a  I. Then -k.oT(x) 
is acyclic fo r  every x  such that T  (x) is closed and  convex.

Proof. T  (x) is compact. Since tu  is continuous tu  o T  (x ) is compact. 
It is easy to see th a t tu” 1 (y )  is acyclic for every y  e tu  o T ( x ).  A pplying 
V ietoris’ theorem  we obtain tha t

F *  : H* (T ( * ) )  - >  H* ( tu  o T (x ))

is an isomorphism. Since T  (x) is convex we have U f i T ( x ) )  =  0 if i  =f= o 
and H 0(T(L)) ^  F. Thus H, (tuoT(^)) =  0 if i=f= o and H 0 (71 o T  (*)) ^  F.

LEMMA 2. The radia l retraction tu is vi-nonexpansive.
Proof. Let A be a bounded set of X. Then tu (A) C ~cd (A U {o}). Since 

a (co(A U {o})) =  a (A) it follows tha t a ( tu (A)) <  a (A).
The following Lem m a 3 has been proved by the A uthor in a simpler 

case [13], but the technique used there can be applied also to this one.

LEMMA 3. L et T  : K — o K be a m apping defined in a compact to polo* 
gica l space K. Then there exists a closed nonempty subset M o f K suchthat 
M =  T ( M ) .  ■. .

Note th a t if T  is u.s. with closed values and K is H ausdorff then T (M ) 
is compact, therefore closed. Hence M =  T  (M).

THEOREM 2. L et T  : B (o  , r) — o X  be a densifying , u.s. map w ith convex 
and closed values. A ssum e that T  satisfies condition P. Then F T, the set o f f ix e d  
points o f T , is nonempty and  compact.

Proof. Since ru is a-nonexpansive, tu o T is still densifying.
M oreover t u o T ( L )  is acyclic for every x e  B (o , r )  by Theorem  1.
Since t u o  T  is densifying the set K =  U ( tu o T )n (x0), where x 0 € B (o , r), 

is compact. M oreover tu o T  (K) C K. Let M be the subset of K whose 
existence is insured by Lem m a 3 and consider the fam ily

& =  {D C B (o , r) : M C D, D closed, convex and invariant under tu o T } .

Put C =  n { D : D e 3>}. Clearly ^ tu o T (C ) =  C. Since olÇcô(tuoT(C))) =  
=  a ( tu o T  (C)) =  a (C) it follows tha t C is compact.

By Theorem  B we can find x e C  such tha t x  e tu o T  (x ).  This implies the 
existence of a y  6 T(x)  such th a t x  = .  tu (y).  I f  || x  || <  r  then  y  =  x  because the
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restriction of n  to B (o , r) is the identity  and we are done. I f  || .r || =  r  then 
y  =  ~kx, w ith X >  I. But in this case \ x  e T (x ) and so, by condition P, X <  1.

It follows that X =  I i.e. y  — x .  So FT is nonem pty. C learly F t C T (F t ). 
This implies a (F t) <  a (T (F t)). On the other hand a (T (F t)) <  a (F t) if 
a (F t) =j= o. It follows th a t a ( F T) =  o and FT is precompact.

But it is also closed because it is the lower inverse image of the o e X 
under the upper sem icontinuous m ap I — T. Indeed ( I — T)"~(o) =  
=  { x  € B (o , r) : o e x  —  T  (x) i.e. ' x  e T  (x )} =  FT .

It follows th a t Ft is compact.

C o r o l l a r y  i. (A. G ranas [7]). L et T  : B ( o , F ) — o X be an u.s. map  
w ith closed and  convex values. A ssum e that T  is compact and  T  (x) C B to , r) 
fo r  every x  € SB (o , r). Then T  has a f ix e d  point.

Rem ark. Theorem  2 contains, as a particular case, the well-known 
result of Rothe [3]. It contains also m any other theorem s which would be 
too long to m ention here. As examples I will give only the following two.

C o r o l l a r y  2. (M . Krasnoselskij [1 4 ]). L et f  \ B (o , r) - »  H be a conti­
nuous compact map, where H is a H ilbert space. I f  fo r  every x  e 3B (o , r).

( f ( x ) , x ) < \ \ x f
then f  has a f ix e d  point.

C o r o l l a r y  3. (W. V. Petryshyn [15]). Let f  : B ( o , r ) - ^ X  be a den-
sifying  map which satisfies condition P. Then M, the set o f f ix e d  points o f f  , 
ts nonem pty and  compact.

T heorem  3. (B irkhoff-Kellogg Theorem). L et T  : d B — o X  be a 
compact upper-semicontinuous map w ith closed and convex values. A ssum e  
that in f { Il y  || : y  eT (x) , x  e 3B } >  s >  o. Then there exists a po in t x 0 e S>B 
and a real number X0 >  o such that j 0 €X0T ( r 0).

Proof. Define p  : T  (9B) ->9B , p ( y )  =  y j \ \ y  | | . Then the composite 
m a P P 0 T  : dB — o 3B is compact, upper semicontinuous with closed and 
acyclic values. Since dB is an acyclic A N R  p  oT  has a fixed point x 0 

(L. Gorniewicz and A. G ranas [17]). Clearly x 0 eX0T  (xo) for some X0 > 0 .

4. A p p l ic a t io n s

The first result of this section is Theorem  4, which is a generalization to 
m ulti-valued m aps of a theorem  obtained by M. M artelli and A. Vignoli (see 
Corollary 4).

T h e o r e m  4. L et T  : X — o X be an u.s. and densifying map w ith closed 
and convex values. A ssum e that there exists a sequence o f spheres {3B(o , ßÄ)} 
and a sequence, {yn} o f positive real numbers y ,-> o o  as n -> oo , such that fo r  
any  X >  1 and, any x  e S>B(o , ßÄ)

in f \\y  —  \x \ \  > y n .
^eT(^r)

Then the equation y  e x —  T  (x) has a solution fo r  any  y e  X.
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Proof. Let y 0 £ X and choose no large enough so th a t \\y 0 || <  yno. 
Define T 0 (x) =  y 0 +  T  (x). Clearly T 0 has the same properties of T. 

Therefore if X x e T 0 (x) for some *  e 3B (o , ßKo) implies A < i ,  Theorem  2 
will give the existence of a point x e B ( o , ß Xa) such that x e T 0 (x), i.e. 
^  e To +  T  (T)> which m eans y 0 e x  ~— T(T).

Assume À >  1. We have

o =  in f II 2 — \ x  II =  in f \\y  — y 0 —  Xx || >  in f (|| y  ■— Xx || —
z  e T 0 ( ^ )  y e T ( x )  y e T ( x )

—  IITo II) ^  I n —  IITo II >  0 •

This contradiction shows th a t A <  i and the theorem  is proved.

Rem ark. W ith only m inor changes we can prove th a t if k >  i then 
the equation

y  £ k x  —  T (x)

has a solution for any  y  £ X .
M oreover if we assume that, for any  bounded subset A of X,

a (T  (A)) <  Aa(A) , o <  h <  i

and th a t the condition
inf II y  — A# H >  yn

y  e T ( x )

holds for any  A >  h then the equation

y  £ k x  — T (x)
has a solution for any  k^> h .

C o r o l l a r y  4 (M. M artelli and A. Vignoli [12]). L et / : X - > X  be an 
QL-Lipschitz m apping w ith constant k  and let F  be an isomorphism.

A ssum e that'.
i) Il F ”1 y k  <  I

ii) there exists a sequence o f spheres 3B (o , ßÄ) and a sequence o f posi­
tive real numbers yn ->oo as n ->  00 such that fo r  any  A >  1 and  any 
x  £ dB (o , ßw)

\ \ f (x ) : F  (fx). II >  yn .

Then the m apping  F  — f  is surjective.
The next Theorem  contains, as a Corollary, a well-known theorem  of 

H. Schaefer [10] in a particu lar case. M ore precisely the result of Schaefer 
is valid also in locally convex HausdorfF topological vector spaces, but in 
this case cannot be obtained as a Corollary of our Theorem .

THEOREM 5. L et T  : X —-o X be an u.s. and densifying m ap w ith  
convex and  closed values. I f  there is no x  £ X  such that x  £ T ( x )  then the 
set M =  { ^ 6  X : A r  e T  (x) fo r  some A >  1 } is unbounded.

Proof. Let Bn =  { x  £ X  : \\ x  \\ <  n }  and let nn be the radial retraction 
of X onto Bn. Then Theorem  2 gives a point xn £ Bn such th a t x n £ nn° T(Ww).
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Clearly || x n || =  n, otherwise we would have x n c T  (x „). M oreover there 
exists X >  I such th a t X

COROLLARY 5. (H . Schaefer [10]). L et / :  X -> X be compact and  conti­
nuous. I f  there exists X0 € [o , 1 ] such that the equation x  =  X0/  (T) does not 
have any solutions, set M =  { i e X : i = À / ( , r ) ,  o <  X <  X0} zj
unbounded.

Proof. Suppose th a t the equation # =  X0/(V ) does not have any  solu­
tions. Since f  is com pact we can apply  Theorem  5 to the m ap X0/ .  Therefore 
for any  n  we have an element x n e X such tha t || x n \\ =  n and \ n x n =  X0/ ( ^ )  
with Xn >  I. This implies =  X“ 1 X0/(yrw) and o <  X“ 1 X0 <  X0.
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