ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FABRIZIO CACCIAFESTA

Una proprietà di bordismo dei fibrati principali

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.5, p. 750–754. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_5_750_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia differenziale. — Una proprietà di bordismo dei fibrati principali (*). Nota di Fabrizio Cacciafesta, presentata (**) dal Corrisp. E. Martinelli.

SUMMARY. — Every compact Lie group of dimension $\geq I$ is shown to be the bord of a G-variety; in consequence of that, every principal fibre bundle having G as structural group and a variety without boundary as base is shown to be a bord as well.

I. Sia G un gruppo di Lie compatto ad $n \geq 1$ dimensioni, G_e lo spazio lineare tangente ad esso in e (elemento unità del gruppo). Una qualunque base $\{\varepsilon_i\}$ ($i=1,\cdots,n$) di G_e individua n campi di vettori linearmente indipendenti invarianti a sinistra su G_e , e dunque n sezioni globali linearmente indipendenti del fibrato tangente a G_e , G_e , G_e , pertanto, banale. Un teorema di Thom ([4]), secondo il quale una varietà differenziabile, compatta e priva di bordo è un bordo se e soltanto se tutti i suoi numeri di Stiefel-Whitney sono zero (ciò che avviene, in particolare, se il fibrato tangente alla varietà è banale) ci assicura, allora, che G_e è bordo d'una varietà (n+1)-dimensionale G_e . (Tale fatto sarà, d'altronde, confermato direttamente al G_e .

Indicheremo con [M] la classe di bordismo non orientato d'una varietà M, differenziabile, compatta e priva di bordo. Si ha allora, per ogni varietà cosiffatta, $M \times G = \vartheta(M \times \Gamma)$, ossia $[M \times G] = o$. Scopo della presente nota è di mostrare che, più in generale, anche ogni fibrato principale $P(M \, , G)$ sulla varietà M, avente G come gruppo strutturale, è un bordo; ossia, che è $[P(M \, , G)] = o$.

La tesi sarà conseguita col mostrare che, tra le varietà bordate da G, ne esiste una, \overline{G} , che è una G-varietà (nel senso che G opera differenziabilmente su di essa). Da ciò seguirà, in effetti, la possibilità di costruire un fibrato differenziabile $B(M,\overline{G},G)$, di base M, fibra \overline{G} e gruppo G, il cui bordo sarà proprio P(M,G).

La varietà \overline{G} sarà ottenuta come spazio totale d'un fibrato associato al fibrato principale che si ha fattorizzando G per un suo opportuno sottogruppo chiuso. La scelta di tale sottogruppo introduce pertanto, nella costruzione di $B(M,\overline{G},G)$, un elemento d'arbitrarietà la cui influenza, in un caso particolare, è studiata nei nn. 6 e 7.

Desidero ringraziare i proff. A. Dold ed N. Teleman per gl'insegnamenti ed i suggerimenti fornitimi.

^(*) Lavoro eseguito nell'ambito del Gruppo di Ricerca del C.N.R. «Strutture algebriche e geometriche».

^(**) Nella seduta del 12 maggio 1973.

2. Sia G un gruppo di Lie compatto, di dimensione ≥ 1 ; esso contiene, di necessita, dei sottogruppi isomorfi al gruppo di Lie unitario U (1). (Infatti, è noto (1) che ogni gruppo di Lie compatto contiene dei tori di dimensione ≥ 1 , e quest'ultimi contengono evidentemente dei gruppi isomorfi ad U (1)).

Fissiamo ad arbitrio uno di tali gruppi, che indicheremo con S^1 . Poiché S^1 è chiuso in G, un classico teorema della teoria degli spazi fibrati ci assicura che G può riguardarsi come spazio totale d'uno spazio fibrato differenziabile principale, di base $G/S^1 = \{gS^1 | g \in G\}$ e di gruppo strutturale S^1 (2).

Sia ora $D^2 = \{z \mid z \in \mathbf{C}, |z| \le 1\}$; è chiaro che il gruppo $U(1) = \{z \mid z \in \mathbf{C}, |z| = 1\}$ agisce su \mathbf{C} lasciando invariante D^2 , e che $\partial D^2 = U(1)$. L'azione di U(1) su D^2 può rappresentarsi, in coordinate polari, mediante:

$$z'(r,z) = (r,z'z)$$
 $(o \le r \le i; z, z' \in U(i)).$

Identificando S^1 con U(I) mediante un isomorfismo, possiamo pensare D^2 come un' S^1 -varietà con bordo. Sia allora $\overline{G} \xrightarrow{\overline{\pi}} G/S^1$ il fibrato di fibra D^2 associato al fibrato principale $G \xrightarrow{\pi} G/S^1$ rispetto alla suddetta azione di S^1 su D^2 (3).

In sostanza, il fibrato differenziabile $\overline{G} \xrightarrow{\overline{\pi}} G/S^1$ ha come fibra, su ciascun punto della base, il disco bidimensionale ottenuto «riempiendo» la circonferenza fibra, su quel punto stesso, del fibrato $G \xrightarrow{\pi} G/S^1$; il gruppo strutturale è ancora S^1 , e l'azione del gruppo S^1 sulla fibra D^2 estende l'azione di S^1 su ∂D^2 .

Il gruppo G risulta pertanto immerso in \overline{G} ; continueremo ad indicare con G l'immagine di G in \overline{G} .

3. Lo spazio totale \overline{G} del fibrato $\overline{\pi}$ è una varietà differenziabile, *il cui bordo è costituito proprio da* G.

Infatti, sia \bar{g} un qualunque punto di \bar{G} , e sia V un conveniente intorno aperto di $\bar{\pi}(\bar{g})$. Poiché la proprietà di \bar{g} «essere o non essere un punto di bordo» ha carattere locale, possiamo limitarci ad esaminare la porzione U di \bar{G} che si proietta sull'aperto V; per un'opportuna scelta di V, U è diffeomorfa con $V \times D^2$. Ora, un qualsiasi diffeomorfismo tra due varietà con bordo porta il bordo dell'una su quello dell'altra; poiché il bordo di $V \times D^2$ è proprio $V \times \partial D^2$, si conclude che \bar{g} è un punto di bordo per \bar{G} se e soltanto se appartiene a G.

4. Mostriamo ora come possa farsi, di G, una G-varietà (4).

A tale scopo, occorre definire un'applicazione differenziabile $\overline{\rho}: G \times \overline{G} \to \overline{G}$, cosiffatta che sia:

- $\overline{\rho}(e,\overline{g})=\overline{g},$
- 2) $\overline{\rho}(g,\overline{\rho}(g',\overline{g})) = \overline{\rho}(gg',\overline{g}),$

per ogni $g, g' \in G$, $\bar{g} \in \bar{G}$.

- (1) V. F. ADAMS [1], 81.
- (2) V. S. KOBAYASHI e K. NOMIZU [3], 54-55.
- (3) V. S. Kobayashi e K. Nomizu, loc. cit.
- (4) Per le generalità sulle G-varietà, vedi ad esempio P. E. CONNER ed E. E. FLOYD [2].

Defineremo $\overline{\rho}$ in modo tale che essa, inoltre, estenda la preesistente azione di G su $\partial \overline{G} = G$ per traslazione a sinistra (che indicheremo con ρ).

Indichiamo con $D_x = \overline{\pi}^{-1}(x)$ la fibra di $\overline{G} \xrightarrow{\overline{\pi}} G/S^1$ su $x \in G/S^1$; allora, se g, g' sono elementi di G, riesce $gD_{g'S^1} = D_{gg'S^1}$. Ogni punto \overline{g} di $D_{g'S^1}$ può individuarsi mediante una coppia (r,g_1) , dove $0 \le r \le 1$, e g_1 è un punto del bordo di $D_{g'S^1}$, e dunque un punto di G. Assumiamo allora, per definizione:

$$\overline{\rho}(g,\overline{g}) = (r,gg_1) \in D_{gg'S^1}.$$

Questa definizione può sembrare ambigua per r=0, ossia per il centro del disco $D_{g'S^1}$; ma in questo caso, $\overline{\rho}(g,\overline{g})$ risulterà il centro del disco $D_{gg'S^1}$. (Si osservi che il gruppo strutturale S^1 del fibrato $\overline{G} \xrightarrow{\overline{\pi}} G/S^1$ conserva la metrica euclidea su D^2 ed il centro del disco D^2 ; perciò in ogni fibra D_x è individuato il centro, nonché la distanza tra due punti qualunque).

Chiaramente, $\overline{\rho}$ è un'azione di G su \overline{G} che soddisfa le proprietà I) e 2) di cui sopra. Resta da provare la sua differenziabilità: e basterà provarla, dato il carattere locale di questa, in un intorno aperto U del punto g di G ed in un intorno aperto W del punto \overline{g} di \overline{G} .

Al solito, possiamo individuare un intorno aperto $V \subset G/S^1$ del punto $\mathcal{E}'\,S^1 = \overline{\pi}(\overline{\mathfrak{g}})$, tale che la restrizione del fibrato π (risp. $\overline{\pi}$) a V sia equivalente a $V \times S^1$ (risp. $V \times D^2$) tramite l'equivalenza φ_1 (risp. $\overline{\varphi}_1$).

Poiché il prodotto ρ nel gruppo G è differenziabile, esistono un intorno aperto $U \subset G$ di $g \in G$, ed un intorno aperto $T \subset V$ di $g' S^1$, tali che ρ $(U , T) \subset C g V$. Inoltre, la restrizione del fibrato π (risp. $\overline{\pi}$) a g V è, a sua volta, equivalente a $(g V) \times S^1$ (risp. $(g V) \times D^2$) tramite l'equivalenza φ_2 (risp. $\overline{\varphi}_2$).

Consideriamo il diagramma:

dove $h = \varphi_2^{-1} \circ \rho \circ (I \times \varphi_1)$, e pr_2 è la proiezione sul secondo fattore. Poiché φ_1 , φ_2 sono diffeomorfismi, e ρ è differenziabile, anche h risulta differenziabile. Tenuto conto del modo d'agire di G su G e su G/S^1 , e del fatto che φ_1 , φ_2 sono equivalenze tra S^1 -fibrati principali, potremo scrivere:

$$h(g', x, s) = (g'x, H(g', x)s)$$
 $(g' \in U, x \in T, s \in S^1)$

dove $H: U \times T \rightarrow S^1$ è, dunque, una funzione differenziabile.

Le stesse considerazioni, svolte nel fibrato $\overline{G} \xrightarrow{\overline{\pi}} G/S^1$, portano alla definizione dell'applicazione $\overline{h} = \overline{\varphi_2}^{-1} \circ \overline{\varphi} \circ (I \times \overline{\varphi}_1)$, che può descriversi mediante la formula:

$$\bar{h}(g', x, (r, s)) = (g'x, (r, H(g', x)s)) \qquad (g' \in U, x \in T, (r, s) \in D^2)$$

ed è, quindi, a sua volta differenziabile. Si conclude che la stessa $\overline{\rho}$ è differenziabile: ciò che volevasi dimostrare.

5. Resta così dimostrato che ogni gruppo di Lie compatto di dimensione $\geq I$ è bordo d'una varietà differenziabile \bar{G} , la quale è una G-varietà. Di più, la G-struttura di \bar{G} estende la G-struttura di G = $\Im \bar{G}$ data dalle traslazioni a sinistra.

Sia ora M una varietà differenziabile e priva di bordo, e P(M,G) il fibrato differenziabile principale di base M e gruppo strutturale il gruppo di Lie G. Consideriamo il fibrato differenziabile $B(M,\bar{G},G)$ associato a P(M,G), di base M, fibra \bar{G} e gruppo $G=\Im \bar{G}$. È chiaro che lo spazio totale di $B(M,\bar{G},G)$ è una varietà avente per bordo lo spazio totale del fibrato B(M,G,G) che si ottiene da $B(M,\bar{G},G)$ restringendo la fibra \bar{G} a $\Im \bar{G}=G$. D'altronde, B(M,G,G) e P(M,G) sono equivalenti, giacché il gruppo G di B(M,G,G) opera sulla fibra $\Im \bar{G}=G$ per traslazione a sinistra, ed i due fibrati sono costruiti con le stesse funzioni di collegamento. Si conclude col teorema: ogni fibrato differenziabile principale P(M,G) con base priva di bordo e gruppo compatto di dimensione $\geq I$, è bordo del fibrato differenziabile ad esso associato $B(M,\bar{G},G)$.

6. È essenziale, in quanto precede, la scelta del sottogruppo S^1 che si usa per fibrare G. In effetti, dati due sottogruppi di G , S_1 ed S_2 , entrambi isomorfi al gruppo di Lie U (1), la costruzione indicata porta a due diversi fibrati: $\overline{G}_1 \xrightarrow{\overline{\pi}_1} G/S_1$, $\overline{C}_2 \xrightarrow{\overline{\pi}_2} G/S_2$. Sorge allora il problema d'esaminare le relazioni esistenti tra le G-varietà \overline{G}_1 e \overline{G}_2 , ulteriori a quella, ovvia, d'avere per bordo comune G.

Ci proponiamo di mostrare che, se S_1 ed S_2 sono sottogruppi di G coniugati (se è, cioè, $S_2 = \gamma S_1 \gamma^{-1}$ per un qualche $\gamma \in G$) allora, identificando i gruppi S_1 ed S_2 tramite il coniugio, i fibrati $\overline{G}_1 \to G/S_1$ e $\overline{G}_2 \to G/S_2$ riescono equivalenti, e dunque le varietà \overline{G}_1 e \overline{G}_2 risultano diffeomorfe.

7. Sia dunque $S_2 = \gamma S_1 \, \gamma^{-1}$; denotiamo con $\sigma: G \to G$ il coniugio tramite γ in G. Esso stabilisce un isomorfismo tra le coppie di gruppi $(G \, , \, S_1)$ e $(G \, , \, S_2)$. Allora, poiché la costruzione del fibrato $G \to G/S_1$ utilizza soltanto la struttura di gruppo di Lie di G, e la proprietà di S_1 d'essere un sottogruppo di G, risulterà che – posta l'identificazione suddetta – i fibrati $G \to G/S_1$ e $G \to G/S_2$ saranno equivalenti.

I fibrati $\overline{G}_1 \to G/S_1$ e $\overline{G}_2 \to G/S_2$ risultano a loro volta equivalenti, in quanto associati a fibrati equivalenti ed aventi stessa fibra standard e stessa

azione del gruppo strutturale sulla fibra. Si conclude che esiste un diffeomorfismo Φ tra le varietà \overline{G}_1 e \overline{G}_2 .

Osserviamo che, se conveniamo d'identificare G con G stesso tramite σ , le due G-varietà diventano «G-equivalenti» nel senso che si ha

$$\Phi(g\bar{g}) = \sigma(g) \Phi(\bar{g}) \qquad (g \in G, \bar{g} \in \bar{G}_1).$$

Peraltro, ed in generale, \overline{G}_1 e \overline{G}_2 non risultano G-equivalenti nell'accezione usuale del termine.

BIBLIOGRAFIA

- [1] F. Adams, Lectures on Lie groups, Benjamin, New York 1969.
- [2] P. E. CONNER ed E. E. FLOYD, Differentiable periodic maps. Springer, Berlino 1964.
- [3] S. KOBAYASHI e K. NOMIZU, Foundations of differential geometry, vol. I, Interscience Publ., New York 1963.
- [4] R. THOM, Quelques propriétés globales des variétés différentiables, «Comment. Math. Helv.», 28, 17-86 (1954).