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Topologia. — F ixed  points for mappings which are not 
necessarily continuous. Nota d i F ran cesco  S . D e  B l a s i , presentata (*} 
dal Socio G. S a n s o n e .

RIASSUNTO. —  Si dimostra l’esistenza di punti fissi per trasformazioni, non necessa­
riamente continue, di uno spazio metrico completo in sé. Si ottengono, come corollari, noti 
teoremi dovuti a Edelstein, Browder, Furi e Vignoli.

The aim of this Note is to prove the existence of fixed points for m ap­
pings /  from a complete metric space into itself, which are not necessarily 
continuous.

Denote by (M , d)  a complete metric space, (C(M) ,D ) the complete 
metric space of all nonempty closed and bounded subsets of M with the 
Hausdorff distance D (A , B) =  max {sup inf d  (a , b) , sup inf d (a , b)} .

a e A ò e B  b e B  a e A
Observe that (C(M ), D) is complete because (M , d ) is assumed to be so (see 
Kuratowski [3], Vol. I, Ch. III). Let (K(M ) , D) be the subspace of 
(C (M ),D ) consisting of all nonempty compact subsets of M. Since this 
subspace is closed (K(M ) , D) is complete. Note that (M , d ) can be regarded 
as a closed subspace of both (C (M) , D) and (K (M) , D) by virtue of 
the isometry x - > { x j .  For any nonempty subset X of a metric space, 
P(X) will represent the diameter of X. The following definition is due to 
Kuratowski [3].

Definition i . Let A be a bounded subset of M. We denote by a (A) 
the greatest lower bound of all s >  o such that A can be decomposed into 
a finite union of sets of diameter less than s.

We shall denote by % the class of all functions 9 : R+->- R+, R+=  [o , oo), 
which are non-decreasing, continuous on the right and which satisfy <p (r) <  r, 
for all r  >  o. If  a function/ : M ~>M satisfies d (J  (x) <  9 (d (x , y)') ,
x  , y e M, it is called a cp-contraction; if <p (r) =  kr , where o < k <  1 , /  is 
called a contraction. I f /  satisfies d ( f ( x )  , f ( y ) )  < d (x , y)  , x  , y  e M  , x  f  y,  

f  is called a weak contraction. For any function g  : X X, X any set, if 
*0 e X we define g \ x 0) =  g  (x0~) , g n+1(x0) =  g  (g ” (ar0)j , n =  1 , 2 , • • ■.

We have:

THEOREM i. Suppose that f  :M  ->M  satisfies the hypotheses'.
(i) there exists A e C (M) such that / (A )C A ;

(ii) fo r  any X e C ( M )  such that X C A , / ( X ) C X  and o (X) >  o, 
there exists a proper subset Y e C (M) satisfying /  (Y) C Y C X and  a (Y) <  
<  cp (a (X)), é)here 9 £ ^ .

(*) Nella seduta del 12 màggio 1973.
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Then f  has a fixed  point. This is unique i f  f  is a contraction, a ^-contraction 
or a weak contraction.

Proof. If p(A) =  o ,A  =  {^} and a is a fixed point of / .  Suppose 
p (A) > 0 .  From (ii) there exists Ai e C (M) such that / ( A i ) C À i C A  and 
a(A i) < 9  (a (A)). By the same reason, if p (Ai) >  o (the case p (Ai) — o 
is trivial) there exists A2eC fM )  such that / ( A 2) C A 2CA i  and a (A2) <  
<  <p (a (Ai)) <  (p2 (a (A)). So one obtains a sequence {A„} , A n e C (M) , 
P (A*) >  o, which satisfies / ( A J  C A„ C A «., and a (A„) <  cn , cn =  
=  cp” (a (A)), n =  2 , 3 , • • •. We have cn o as n 00. In fact {c„ ) is a 
non-increasing sequence with terms c„ >  o and therefore has limit y >  o. 
If y >  o, from c„+1 =  <p (r„) and the continuity of 9 on the right, we get 
Y =  <P (y), from which y =  o. Consequently a (A„) o as n -> 00. Since 
Vl D A2 D • • ■, and A„ e C (M), ^ =  1, 2, • • - , by virtue of the Cantor-Kuratowski

OO
theorem (see [3], Vol. I, p. 412), B =  n  A„ is nonempty and compact,

n =  1

that is 'B e K (M ) .  From B C A „ ,  n =  i , 2 , - . - ,  we get / (B )C /(A „ )C A „ , 
hence / ( B ) C B .  Denote by V the family of all those X e K ( M )  satisfying 
/  (X) C X C A. B e V ,  so V is nonempty. Introduce in V the partial 
ordering which is induced by the inclusion. Let (Pj)J6x be any completely 
ordered subset m V . P =  n  Py is nonempty and compact so P e K (M)

jel
and, s ince / ( P )  C P ,  P is in V and is a lower bound for (Pj)jei. From 
the Kuratowski-Zorn lemma, there exists in V a minimal element Q. We 
have /  (Q) C Q. Assume p (Q) >  o. Then, from (ii), there exists a proper 
subset Qi C Q , Qi e K(M ), such that ./(Q i)C Q i, in contradiction to the 
minimality of Q. Thus p (Q) =  o and f  has a fixed point. The last statement 
is obvious.

Remark 1. Similar applications of the Kuratowski-Zorn lemma in 
theorems of fixed points occur in Kirk [2], Martelli [6] and Jones [7]. 
(I am indebted to M. Martelli for bringing to my attention the recent work 
of Jones [7] in which results similar to those of this Note have been proved). 
Observe that, in the above Theorem, /  can be discontinuous.

COROLLARY i (Browder [4])- Let f :  M -^M , M boundedy be a 9—contrac­
tion. Then f  has a unique fixed  point.

Proof. By taking A =  M, hypothesis (i) of the above theorem is satisfied. 
Let X C A , X € C (M), be such that /  (X) C X and p (X) >  o. Then Y =  /  (X) 
is a proper subset of X, because p (Y) <  9 (p (X)) <  p (X), and satisfies 

/ ( Y) C Y. By virtue of the definition of a, a (Y) =  a ( /(X ))  <  9 (oc(X)) 
and also condition (ii) is fulfilled. Then, by Theorem 1, f  has a unique fixed 
point.

Remark 2. Observe that, under the hypotheses of Corollary 1, for each 
, { / ” (#)} converges to the unique fixed point of f  (see Browder [4]).
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COROLLARY 2. Suppose that f  : M  -> M  satisfies the hypotheses'.

(i) there exists A G K (M) such that f  (A) C A;
(ii) fo r  any X G K (M) such that /  (X) C X and  p (X) >  o, there exists 

a proper subset Y G K(M") satisfying f  (fi) C Y C X.

Then f  has a fixed  point.

Proof. By Theorem 1 because, for any X G K(M) , a (X) =  o.

Since any weak contraction has at most one fixed point and satisfies 
condition (ii) of Corollary 2, we have:

COROLLARY 3. A n y  weak contraction, in particular a 9 - contraction or a 
contraction f  : M  which satisfies hypothesis (i) of Corollary 2, has a unique 

fixed  point.

COROLLARY 4 (E delste in  [1]). A n y  weak contraction f :  M ->M  such 
that f  (M) G K (M) has a unique fixed  point.

Proof. From Corollary 3, because / ( /  (M)) C /(M ).

COROLLARY s (C on trac tion  princip le). A n y  contraction f  :M  has
a unique fixed  point.

00
Proof. Since { f n (x0)} , r 0GM, is a Cauchy sequence, the set -A =  U f \ x 0)

n= 1
is compact, so A G K(M ). Clearly /  (A) C A and hypothesis (i) of Corollary 2 
is satisfied. Then, by Corollary 3, f  has a unique fixed point.

COROLLARY 6 (Furi-Vignoli [5 ]). Let f :  M -^M  be weakly contractive 
and such that f i  or any bounded subset XCM , a(X) >  o implies a ( / ( X ) ) <  
<  a(X ). I f  fo r  some x 0 G M, the sequence { f n (x0)} is bounded, f  has a 
unique fixed  point.

I 00

Proof. Following [5], consider the set A =  U f n (x(f. C learly/ ( A )C A .
n —1

From a (A) == max {a (/(A )) , a (/(% ))}  =  a (/(A )) and the hypothesis on / ,  
we deduce that a (A) — o. Then Ä G K (M) and since f  (Ä) C Ä, Corollary 3 
furnishes the existence of the fixed point.

Remark 3. Observe that, under the hypotheses of Corollary 6, for any 
j tgM, { f n (x)} converges to the unique fixed point of f  (see Furi-Vignoli [5]). 
Moreover, it is shown in [5] that Corollaries 1, 4 and 5 follow from 6.

D e f i n i t i o n  2. L e t / : M  -> M  be given and denote by S a closed sub­
space of C (M). The function /  is called a set-9 contraction on S, if there 
exists a 9-Gontraction F : S - > S  satisfying / ( X )  C F (X), for any X G S. 
When 9 (f) — k r , o <  k <  1, /  is called a set-contraction on S.

Since (S , D), S a closed subspace of C(M), is a complete metric space, 
for any bounded subset A C S ,  the number a (A) is well defined.
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D efin ition  3. The function/ :  M ->M  is called a weak set-acontract­
ion on S , S a closed subspace of C (M), if there exists a weak contraction 
F : S S satisfying / ( X )  C F (X), for any X e S, and a(F (U )) <  <x(U), for 
any bounded subset U C S with a (U) > 0 .

We have:

THEOREM 2 . Let f  : M -> M satisfy hypothesis (ii) of Corollary 2. I f  
any of the following conditions is fu lfilled : (J) M is bounded and f  is a 
set-(?contraction on K (M), (Jj) f  is a set-contraction on K (M), (jjf) f  is 
a weak set-a contraction on K (M) and, fo r  some X0 e K(M),  {F n (X0)} is 
bounded y then f  has a fixed  point.

Proof. Assume {jjf) and let F : K(M) -> K(M) correspond to /  accord­
ing to Definition 3. Since K(M) is complete and F satisfies the hypotheses 
of Corollary 6, there exists A e K(M) such that A == F (A). Therefore 

/ ( A ) C A  and the existence of a fixed point for /  follows from Corollary 2. 
The proof is similar when (/)  (or (jj)) holds.

THEOREM 3. Suppose that f  : M —>■ M is a weak set-a contraction on S, S 
a closed subspace of C(M), and let F : S -> S correspond according to Defini­
tion 3. I f  there exist Xo , Yo E S such that { Fn (Xo)} is bounded and 
lim p (F* (Yo)) =  o, then f  has a fixed  point.

n—> 00

Proof. By virtue of Corollary 6 and Remark 3, F has a unique fixed 
point A =  F (A), A e S, and we have F“ (Yo) -> A as n 00. Then, since
P (F (Yo)) - ^ o  as n -> 00, and p is a continuous function on S, we obtain 
P (A) =  o- From /(A )  C F (A )  =  A, we get p ( /(A ))  =  o and /  has a fixed 
point.

Remark 4. By a similar argument one can prove that, if is
a set-contraction and the corresponding function F satisfies lim p (FK(Xo)) =  o, 
for some Xo 6 S, then /  has a fixed point. n̂ °°

Remark 5. The function / :  R+-> R+,/ ( o )  =  o , f ( x )  =  xjz  +  1 , x  >  o, 
which is not a contraction, is a set-contraction on K (R+) if one defines F 
by F (I>  , Ò]) =  [o , bj2 +  I ] ,  F (X) =  F (I (X)), X 6 K (R), I (X) the small­
est compact interval containing X. It is clear that the discontinuous funct­
ion /  satisfies the hypotheses of Theorem 2. Moreover A =  [o , 2], for 
[o , 2] =  F ([o , 2]).

Remark 6. Define /  : R ’~ - R+ to be any discontinuous function such 
that f  (x) e [o , x/2] , x  e R+. If we take F ([a , b~\) =  [o , <5/2] , F (X) =  
=  F (I (X)) , X e K (R+)> then /  is a set-contraction on K (R+)- Moreover, 
for any Xo e K (R +), we have p (Fn (Xo)) -> o as n —> 00 andj by Remark 4, 

/  hais a fixed point.
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