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Topologia. — The Cut Locus of a Finsler Manifold. Nota di 
B a d ie  T .  M . H a s s a n , presentata^ dal Socio E .  B o m p i a n i .

R iassunto. •— In questa Nota si estendono agli spazi di Finsler completi e/o compatti 
risultati noti negli spazi di Riemann concernenti la totalità delle geodetiche uscenti da un 
punto.

x. Introduction

The study of the cut locus t9 of a Riemannian manifold has led to many 
interesting results in Riemannian geometry. For example, the proof of the 
so called “ Sphere theorem ” due to Rauch [6] depends on estimates of the 
distance to the cut locus. Moreover, it was realized that much of the 
topological interest of a manifold lies in its cut locus. A very good account 
of these results and methods are contained in articles by Klingenberg [3], 
Kobayashi [4], and Weinstein [7].

The aim of this paper is to extend these methods to the study of the 
cut locus of a Finsler manifold. As in Riemannian geometry, the exponential 
map is an important tool in forming the proofs. However, for Finsler 
manifolds this map is not a C map, as it is only of class on zero vectors.

2. Notational conventions

The following notations will be used throughout this paper.

M : a complete connected Finsler manifold of dimension n, n >  2, endowed 
with a general metric d. By a general metric we mean one which 
satisfies all metric properties except the symmetry property. 

T(M )W: the tangent space to M at w e M .
Il X II : norm of the tangent vector X e T (M)w . 
exp : the exponential map of T(M )W onto M. 
dexp : the differential of exp.
S : {X I KX U =  I , X e T (M )m}.
R+ : the set of positive real numbers.
Yx • { (l ’ Yx 00) I Yx (?) ~  exP , t  c [o , 00) , X 6 S } is a geodesic starting 

from m  with initial vector X and parametrized by arc-length.
Ax : { J I the segment of yx from m  to yx (s) is minimizing, seR+  U {00}}. 
L (yx) : the length of y . (*)

(*) Nella sdduta del 14 aprile 1973.
(1) For a point m of a manifold M, the cut locus Km of m in M is the set of all 

points ft e M such that there exists a minimal segment from m  to ft which is not minimizing 
beyond ft.
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3. The cut locus

From the above definition of the set A x it follows that:

(1) s e A x A t  < s = $ f e A x ,

(2) r  e R + A (s <  r  =s> s e A x) =*• r  e Ax ,

(3) A x — (o , r \  for some r  e R+ _V Ax =  R + U {<=o} .

If Ax =  (o , r], then the point yx (r) is called the cut point of m  along y . 
If Ax =  R+ u  {00}, then no point of yx is a cut point of m.

We define a real valued function

c : S -> R+ u  { 00 }

Set S0

(X) =  {
if Ax =  (o , r] 
if A x =  R+ u  { 00 } .

c 1(R+). The function

/  • S0 -> T (M)„

is defined as / ( X )  =  c (X) X. The set / ( S 0) C T (M )m is denoted by K m. 
The function

g  • S0 -> M

defined as g  =  exp o f  is such that g  (X) is a cut point of m  along yx . The 
set ^ (S 0) CM is therefore the set of all cut points of m  along all geodesics 
starting from m. The set g  (S0) is called the cut locus of m  in M and is 
denoted by K m. It is clear that exp K m==Km. The set K m is called the cut 
locus bf m  in T (M)m and its points are called cut points of m  in T (M )W.

From the fact that geodesics do not minimize arc-length beyond the 
first conjugate point, it follows immediately that

ASSERTION A. I f  p  is the firs t conjugate point of m along yx , then there 
is a point of K m along yx which is not beyond p .

ASSERTION B. I f  yx is a m inim al segment from  m to p  and p  is conjugate 
to m  along yx , then p e K m.

THEOREM 3.1. Let { a 2 } be a sequence of curves from  m to p. I f  p&¥Lm 
and lim it L (pj) ~  d  (m , p), then {cr2-} converges to the unique m inim al 
segmeift from  m to p.

Proof ‘ Since M is complete, then there exists a minimal segment yx 
from m  to p. Set d(rn , p) =  b , L (af.) =  bi} and let

<*,• =  { ( t , exp tX;) \ t  e [o , b,\ , X,- e S} .
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For each value of 8 , o <  8 < b, the set of vectors — 8) X,- is contained 
in some compact subset of T (M)m. We may assume, by taking a subseq uence 
if necessary, that

limit — 8)X,  =  (A— 8) Y ,  Y e S  .
Then,

Ty =  {(/ > exP /Y) I o <  t  <  b}

is a minimal segment from m  to p. It is clear that limit cr,- =  yy .
If X' =  Y, then yx = -y Y and the theorem is proved.
If X =J= Y, then yx (/) , o <Ç t <  b!, is no longer minimizing for every b' 

greater than b. This contradicts the assumption p<£ K m .
Hence the assumption X 4 = Y is false and the theorem is proved.

THEOREM 3.2. I f  p e K m along a geodesic yx , then at least one of the 
following statements holds'.

(1) p  is the firs t conjugate point of m along yx ,
(2) there exists at least, two minimizing geodesics from  m to p.

Proof . If p  =  yx (fi), then we choose a monotone decreasing sequence 
{ak} , a k e R+, such that limit ak =  r. Let bk =  d ( m ,  yx (ajj) , k e N. Since M 
is complete, then m  and yx fik) can be joined by a minimal segment, namely

** =  {(*, exp t X À) \ t e [ o , b k] , X Âe S } .
It is clear that

X ^ X ^  , ak >  bk , limit bk ~  r  .

The set of vectors bk X k is contained in some compact subset of T (M )W. We 
m ay assume, by taking a subsequence if necessary, that

limit bk X'k =  r Y  , Y e S .
Then,

TY =  {(* » exP ^Y) 11 e [o , r \ }

is a minimal segment from m to p.
Now, we have two cases:

Case I. X =  Y. Then,

exp bk X , =  exp ak X ,
and

limit bk X k =  fiX  =  limit ak X ,

implie that exp is not one-to-one in a neighborhood U of r X  =  rY . Thus 
dexp is singular there and p  is conjugate to m  along yx .

On the o^ther hand, if yx (s) , o < s <c r, were conjugate to m  along yx , 
then yx would not be minimizing beyond yx (y). Hence p  € K m, which is 
a contradiction. Thus p  is the first conjugate point of m  along y and fi) 
holds. X

Case I I .  X fi= Y .  In this case yx =L yy and (2) holds.

52. — RENDICONTI 1973, Voi. LIV, fase. 5.
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Theorem 3.3. The mapping c is continuous over S.

Proof. Let X e S, and {Xk} be a sequence of points of S such that 
limit =  X. Set c (X k) =  ak. We may assume, by taking a subsequence if 
necessary, that limit {ak} exists in R+u {°o} . Denote this limit by a. Then

a =  c (X) X  a = ^ c ( X ) .

We are going to prove that a =j= c (X) is impossible. Hence a =  c (X), 
and c is continuous at X e S. Since X is arbitrary, this proves that c is con­
tinuous over S.

Let us first assume that c (X) >  a. Then,

(1) yx (a) is not conjugate to m  along yx ,

and

(2) yx ( a ) e K m along yx •

From (1) it follows that exp is non-singular at aX.  Hence, there exists a 
neighborhood U of dX  in T (M)m on which exp is a diffeomorphism. 
As {aÂX Â} converges to aX,  we may assume, by omitting a finite number 
of ak X k if necessary, that all of ak X k are in U. Since exp is a diffeomor­
phism from U onto exp U, it follows that y k (aÂ) cannot be conjugate 
to m  along yk, where

yk =  {(*, exp t X h) I t e [o , aÂ] } .

Noting that yk(ak) e K m along yv  it follows from theorem (2) that there exists 
another minimizing geodesic Gk from m  to Y^(^)> namely

=  {(* . exP t Y k) \ t  e [o , ak] , Y t e S} .

We have to note that, for every k ,

Y,=*=X, , Y* (4s) =  fas) , ak Y ^ U .

By taking a subsequence if necessary, we may assume that {Y^} converges 
to some point YeS.  Then # Y € U  and the geodesic

Yy =  {(* > exP t Y ) 11 e [° . a \ }

is a minimal segment from m  to yx (a) =  yY (a). Hence, both yx and yY 
are rfiinimal segments from m  to yx (a) =  yY (a)< From (2) and Theorem (1) 
we can see that this is impossible. Hence c (X) >  a is false.

Let us now assume that c (X) <  a, and let b be a positive number such 
that a >  c (X)  +  b. Set c(X)  +  b =  a \  As {ak} converges to a, we may 
assume, by omitting a finite number of ak if necessary that ak> a \  for all k.

Since yx (a') GKm along yx > it follows from Theorem (1) that there 
exists1 a unique minimal segment from m  to yx  (#')• This means that there 
exists a point X ' e S such that X'-=j=X and

YX' =  {(ß y exP *X') I o <  t  <  c (X) +  b',.# < b}
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is a minimal segment from m  to yx (V). We have to note that

yx ( 0  =  y x * ( ' ( X ) + 0 -
We set 2 r =  b — b’. It is clear that

limit y* O ') =  Yx 0 ')  •

Hence we may assume, by omitting a finite number of if necessary, that 
there exists a neighborhood U of X such that, for every k,

X , e U  , d  (yx OO > YiOO) < ^  •

Let a be a minimal Segment from yx (a') to y^(V). F °r each fixed consider 
the curve t  from m to y^(V) defined by

_ I exp tYsJ o < t <  ^(X) +  b’
l oc

PI enee
L ( T ) < f ( X ) + i ' + r = « ( X ) + i - r < L ( ï j ) l '

where L (y^) is the length of yk from m to yk(ar). This means that the 
geodesic segment of yk from m  to y^(^') is not minimizing. This contradicts 
the inequality ak ~>a'. Hence the assumption c (K )< a  is false. This com­
pletes the proof.

From the continuity of c it follows immediately that the function /  is 
continuous over S0. Also, from the continuity of c and the exponential map 
it follows that g  is continuous over S0. We also have that

C o r o lla r y  i. The map
hm : S0 R+

defined as hm (X) =  d  (m , g  (X)) is continuous over S0 .

4. The c u t lo cu s  o f  a  compact m anifold  

F o r X  eS,  let
Ex =  { Y I Y — t X  , t  e \o  , c (X ))} .

The set E =  U Ex , for all X e S, is an open cell in T (M)m called the interior 
set in T (M )W. It is clear that E n K m =  0 .

THEOREM 4 .1. exp I E : E -> exp E is a diffeomorphism.

Proof. It is clear that exp is one-to-one onto exp E. For every X c E, 
exp X € Kw. From assertion (B) it follows that exp X is hot conjugate to m  
for every X eE . Hence dexp is non-singular at every X e E .  This completes 
the proof.

The set IE is such that:
(1) exp is a diffeomorphism of E onto an open neighborhood of m 

in M, namely exp E.
(2) E is star shaped in the sense that if Y e E  then / Y e E , / e [ o ,  1].
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Hence E is a normal neighborhood of the origin zero inT (M )w, and exp E 
is a normal neighborhood of m in M, see [2]. In fact E and exp E are the 
largest normal neighborhoods of zero in T (M)w and of m  in M respectively. 

Since E n K m =  0 , it follows that (exp E) D K m =  0 . Let B =  E u K ffl,
then

T h e o r e m  4.2. exp B =  M.

Proof. For any p  eM , let d  (m , p) =  b and

Yx =  {( t , exp /X) I X e S , o <  t <  b}

be a minimal segment from m  to p. Then, b <  c (X) and therefore bX  6 B. 
Hence,

p  =  exp bX £ exp B .
Hence, exp B =  M.

From this it follows directly that M =  (exp E) U K m. Hence K m is a 
closed subset of M and ¥Lm is a closed subset of T (M)w.

T h e o r e m  4.3. The manifold M is compact if, and only i f , So =  S.

Proof . Suppose M is compact, and let d  be the diameter of M. If b>  d,
then

Yx =  {0 , e x p t X ) U e [ o , £ ] , X e S }

is not a minimal segment from m  to yx (6). Hence, c (X) <  d. Thus X e So 
and S — S0.

Conversely, if So == S. Then from the continuity of hm, it follows that B 
is closed and bounded in T (M)m, and hence compact. But then M =  exp B 
is compact.

As an immediate consequence of this theorem it follows that.

COROLLARY i . I f  every geodesic ray from  m has a conjugate point of m, 
then M is compact.

COROLLARY 2. M is compact if, and only if, the function f  is a homeo- 
morphism of S0 onto K m,
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