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Topologia. — 7%e Cut Locus of a Finsler Manifold. Nota di
Bapie T. M. Hassan, presentata ® dal Socio E. Bompian.

RIASSUNTO. — In questa Nota si estendono agli spazi di Finsler completi e/o compatu

risultati noti negli spazi di Riemann concernenti la totality delle geodetiche uscenti da un
punto.

1. INTRODUCTION

The study of the cut locus @ of a Riemannian manifold has led to many
interesting results in Riemannian geometry. For example, the proof of the
so called “ Sphere theorem ” due to Rauch [6] depends on estimates of the
distance to the cut locus. Moreover, it was realized that much of the
topological interest of a manifold lies in its cut locus. A very good account
of these results and methods are contained in articles by Klingenberg [3],
Kobayashi [4], and Weinstein [7].

The aim of this paper is to extend these methods to the study of the
cut locus of a Finsler manifold. As in Riemannian geometry, the exponential
map is an important tool in forming the proofs. However, for Finsler
manifolds this map is not a C* map, as it is only of class C! on zero vectors.

2. NOTATIONAL CONVENTIONS

The following notations will be used throughout this paper.

M : a complete connected Finsler manifold of dimension 7, %> 2, endowed
with a general metric 4. By a general metric we mean one which
satisfies all metric properties except the symmetry property.

T(M),,: the tangent space to M at » € M.

| X'|| : norm of the tangent vector X € T (M),, .

exp : the exponential map of T (M), onto M.

dexp : the differential of exp.

S AX | IX)=1,XeT(M),}.

R+ : the set of positive real numbers.

Yx  {E Y @) | vx @) = exptX ,t€[o,00), X€S} is a geodesic starting
from 7 with initial vector X and parametrized by arc-length.

Ay @ {s| the segment of vy, from m to Yx (8) is minimizing, s€ R+ U {oco}}.

L(yy): the length of v, .

(*) Nella seduta del 14 aprile 1973.
(1) For a point 7 of a manifold M, the cut; locus K,, of m in M is the set of all

points # ¢ M such that there exists a minimal segment from  to p which is not minimizing
beyond 2.
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3.~ THE cut Locus

From the above definition of the set Ax it follows that:

(1) seA Nt <s=reA,,
(2) 7eRTA(s <r=s€A)=reA,
(3) Ay=(0,7] for some r€R* VA = R"U{oco}.

If Ay = (o, 7], then the point y, () is called the cut point of 7 along Yx -
If Ay =R*" U {co}, then no point of v, is a cut point of 7.
We define a real valued function

¢:S >R U{oo}
as
7 if A = (o,7]
_ b
C(X>_{oo if A, =R"'U{co}.

Set Sy = ¢1(R"). The function
f: SO - T<M)m

is defined as f(X) = ¢(X)X. The set £(Sy) CT(M),, is denoted by K,,.
The function

g:5,—>M

defined as g = exp o f is such that g(X) is a cut point of 7 along Yx- The
set £(Sg) CM is therefore the set of all cut points of # along all geodesics
starting from 7. The set g (So) is called the cut locus of # in M and is
denoted by K,,. It is clear that exp IZ,,, = K,,. The set IZ,,, is called the cut
locus of 7 in T(M),, and its points are called cut points of 7 in T(M),,.

From the fact that geodesics do not minimize arc-length beyond the
first conjugate point, it follows immediately that

ASSERTION A. If p is the first conjugate point of m along Yy then there
is a point of K,, along v, whick is not beyond p.

ASSERTION B. If v, is a minimal segment from m to p and p is conjugate
to m along vy, then peEK,,.

- THEOREM 3.1. Let {6,} be a sequence of curves from m to p. If peK,
and limit L (o;) = d (m , p), then {c;} converges to the unigue minimal
segment from m to p. ‘

Pfoqf. Since M is complete, then there exists a minimal segment Yx
from m to p. Set d(m ,p)=6,L (6,)=26,, and let

o; = {(¢t,expeX,)|2€[o, 4], X;€S}.
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For each value of 8,0 < § < 4, the set of vectors (6;— 3) X, is contained
in some compact subset of T(M),,. We may assume, by taking a subsequence
if necessary, that

limit (6, —8) X, =(©¢—3) Y, YeS.
Then,
Yy = {(¢,expsY) | o <z < b}
is a minimal segment from » to p. It is clear that limit o, = Yy -
If X =Y, then Yx = Yy and the theorem is proved.
If X=£Y, then Yx(#), 0 <t < ¢, is no longer minimizing for every &'
greater than 4. This contradicts the assumption p¢K,,.
Hence the assumption X ==Y is false and the theorem is proved.

THEOREM 3'.2. If peK,, along a geodesic Yy then at least one of the
Jollowing statements holds

(1) p is the first conjugate point of m along Yy,
(2) there exist, at least, two minimizing geodesics from m to 2.
Proof. 1f p =y, (r), then we choose a monotone decreasing sequence
{@:}, @, € R", such that limit @,=7. Let b, = d(m, Yx (@), £€N. Since M
is complete, then 7 and vy, (2,) can be joined by a minimal segment, namely

Gé={<f,exthé>lfe [O,bé],XéES}.
It is clear that

XZI:X/& y ak >éé y limit bk=7".
The set of vectors 4, X, is contained in some compact subset of T (M),,. We
may assume, by taking a subsequence if necessary, that

limit 6, X, =#»Y , YEe€S.
Then,

Yy=1{(,exptY)|t€[o,r]}

is a minimal segment from = to p.
Now, we have two cases:

Case I. X =Y. Then,
exp b, X, = exp a; X,
and
limit 4, X, = »X = limit ¢, X ,

implie that exp is not one-to-one in a neighborhood U of #»X = »Y. Thus
dexp is singular there and » is conjugate to along v,

On the other hand, if Yx (s), 0 <s <7, were conjugate to 7 along Yx o
then y would not be minimizing beyond Yi (s). Hence p¢K,,, which is
a contradiction. Thus p is the first conjugate point of along y,, and (1)
holds.

Case I1. X ==Y. Inthis case v, ==y, and (2) holds.

52. — RENDICONTI 1973, Vol. LIV, fasc. 5.
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THEOREM 3.3. The mapping ¢ is continuous over S.

Proof. Let X €5, and {X,} be a sequence of points of S such that
limit X, = X. Set ¢ (X,) = ;. We may assume, by taking a subsequence if
necessary, that limit {a;} exists in R*U{oco}. Denote this limit by @. Then

a=cX)VafcX).

We are going to prove that a==¢(X) is impossible. Hence @ = ¢ (X),
and ¢ is continuous at X € S. Since X is arbitrary, this proves that ¢ is con-
tinuous over S.

Let us first assume that ¢ (X) > a. Then,

(1) Yx (@) is not conjugate to » along v,
and
(2) Yx (@) €K, along v.

From (1) it follows that exp is non-singular at @X. Hence, there exists a
neighborhood U of ¢X in T (M), on which exp is a diffeomorphism.
As {4, X;} converges to aX, we may assume, by omitting a finite number
of @, X, if necessary, that all of @, X, are in U. Since exp is a diffeomor-
phism from U onto exp U, it follows that v, (z;) cannot be conjugate
to m along y,, where

Y, = {(t,exp2X,)|t€fo, a]}.

Noting that y,(a;) € K,, along v,, it follows from theorem (2) that there exists
another minimizing geodesic o, from 7 to vy,(a,), namely

Cp = {(z‘,expz‘Yk)]ZE[o,ak] ’ Ykes}'
We have to note that, for every £,
Yk f%= Xk ) Y,g (a/é) = O (ak) y a Yke U.

By taking a subsequence if necessary, we may assume that {Y,} converges
to some point Y€S. Then ¢Y¢U and the geodesic

Yy ={({,exptY)|z€ [0, a]}

is a minimal segment from # to Yy (@) = v, (2). Hence, both v and vy
are minimal segments from 7 to vy (@) = vy (@). From (2) and Theorem (1)
we can see that this is impossible. Hence ¢ (X)> a is false.

Let us now assume that ¢ (X)< «, and let & be a positive number such
that a>¢(X) 4+ 4. Set ¢(X) +6=a'. As {a,} converges to 2, we may
assume, by omitting a finite number of 4, if necessary that a,> @/, for all 4.

Since vy (') €K,, along vy, it follows from Theorem (1) that there
exists a unique minimal segment from 7 to vy (¢’). This means that there
exists a point X' €S such that X' 5= X and

Y. = {¢,exptX) o <t < c(X) + 6,8 <8}
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is a minimal segment from # to v, (¢). We have to note that
Ty (@) = 1, (€ (X) + 8.
We set 27 = 6-—24". It is clear that |
limit y, (") = vy (a') .

Hence we may assume, by omitting a finite number of X , if necessary, that
there exists a neighborhood U of X such that, for every £,

Xk € U 3 d <YX <(,Z’> ’ Y,& (dl>) <7.

Let o be a minimal segment from v, (&") to y,(a’). For each fixed %, consider
the curve = from 7 to y,(a") defined by

_ {expX' o<t<c(X)+ ¢

o
Hence,

Ln<eX)+6+r=cX)+b—r<L(y),

where L (y,) is the length of y, from » to vy,(a"). This means that the
geodesic segment of y, from # to y,(a) is not minimizing. This contradicts
the inequality a, > @'. Hence the assumption ¢(X) < a is false. This com-
pletes the proof. :

From the continuity of ¢ it follows immediately that the function f is
continuous over Sy. Also, from the continuity of ¢ and the exponential map
it follows that g is continuous over S,. We also have that

COROLLARY 1. The map
Ay Sy — RT
defined as h,,(X) =d (m ,g (X)) is continuous over S, .

4. THE CUT LOCUS OF A COMPACT MANIFOLD

For X €8S, let
E, ={Y|Y=¢X,2€[0,c(X)}.

The set E= UE,, for all X€S, is.an open cell in T (M),, called the interior
set in T(M),,. It is clear that En K, =g2.

THEOREM 4.1. exp | E: E —exp E 4s a diffeomorphism.

Proof. 1t is clear that exp is one-to-one onto exp E. For every X € E,
exp X € K,,. From assertion (B) it follows that exp X is niot conjugate to
for every X € E. Hence dexp is non-singular at every X € E. This completes
the proof.

The set E is such that: ‘

(1) exp is a diffeomorphism of E onto an open neighborhood of
in M, namely exp E. :
(2) E is star shaped in the sense that if Y€E then tY€E,z€[o, 1].
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Hence E is a normal neighborhood of the origin zero in T(M),,, and exp E
is a normal neighborhood of 72 in M, see [2]. In fact E and exp E are the
largest normal nelghborhoods of zero in T (M),, and of 7 in M respectlvely

Since ENK,, = 2, it follows that (expE)YNK,=02. Let B=E UKk,
then

THEOREM 4.2. exp B =M.
Proof. For any peM, let d (m, p) = 6 and
« =1, exptX) | X €S,0 <7 <6}

be a minimal segment from 7 to p. Then, 6 < ¢ (X) and therefore 46X € B.
Hence,
p=-expbXe€expB.
Hence, exp B =M.
From this it follows directly that M = (exp E)UK,,. Hence K,, is a
closed subset of M and K,, is a closed subset of T (M),,.

THEOREM 4.3. 7T%e manifold M is compact if, and only if, So = S.

Proof.‘ Suppose M is compact, and let & be the diameter of M. If 4> 4,
then
<=1, exptX)|z€fo, 4], X €S}

is not a minimal segment from 7 to vy, (6). Hence, ¢ (X) <d. Thus X €5
and S =S,.

Conversely, if S = S. Then from the continuity of %,,, it follows that B
is closed and bounded in T (M),,, and hence compact. But then M = exp B
is compact.

As an immediate consequence of this theorem it follows that.

COROLLARY 1. If every geodesic ray from m has a conjugate point of m,
then M is compact.

COROLLARY 2. M s compact z'f,' and only if, the function f is a homeo-
morphism of Sy onto K,
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