Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Udai Pratap Singh, Shri Krishna Deo Dubey

 Induced and intrinsic derivatives on the subspace of

 Induced and intrinsic derivatives on the subspace of special Kawaguchi space

 special Kawaguchi space}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.5, p. 724-729.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_54_5_724_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria differenziale. - Induced and intrinsic derivatives on the subspace of special Kawaguchi space. Nota di Udai Pratap Singh e Shri Krishna Deo Dubey, presentata ${ }^{(*)}$ dal Socio E. Bompiani.

Abstract

Riassunto. - Nella teoria degli spazi speciali di Kawaguchi esistono due tipi di connessione (indotta e intrinseca) su una varietà immersá (come nella geometria di Finsler). La loro differenza è stata determinata da Yoshida [2] (1).

In questa Nota si definiscono e studiano due tipi di vettori normali di curvatura. Si discutono inoltre i due tipi di parallelismo di un campo vettoriale.

i. Introduction

We shall consider an n-dimensional metric space $\mathrm{K} n$ in which the arc length of a curve $x^{i}=x^{i}(t)^{(2)}$ is given by following integral:

$$
\begin{equation*}
\mathrm{S}=\int\left[\mathrm{A}_{i}\left(x^{i}, x^{i}\right) \ddot{x}^{i}+\mathrm{B}\left(x^{i}, x^{i}\right)\right]^{1 / t} \mathrm{~d} t, \tag{I.I}
\end{equation*}
$$

where

$$
x^{\prime}=\frac{\mathrm{d} x^{i}}{\mathrm{~d} t} \quad, \quad \ddot{x}^{i}=\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}
$$

and $\mathrm{A}_{i}, \mathrm{~B}$ are differentiable functions of x^{i} and x^{i}. If $p=3, n$ is even then the space $\mathrm{K} n$ is called an n-dimensional special Kawaguchi space of order 2. The theory of such a space was established by A. Kawaguchi [I] and was studied by several authors.

In order that the arc length in the space should remain unaltered under any transformation of the parameter t, we must have the so-called Zermelo's conditions,

$$
\begin{equation*}
\mathrm{A}_{i} x^{\prime i}=0 \quad, \quad \mathrm{~A}_{i(j)} x^{j}=(p-2) \mathrm{A}_{i} \quad, \quad \mathrm{~B}_{(i)} x^{i}=p \mathrm{~B}, \tag{1.2}
\end{equation*}
$$

where

$$
\mathrm{A}_{i(j)}=\frac{\partial \mathrm{A}_{i}}{\partial \dot{x}^{i}} \quad, \quad \mathrm{~B}_{(i)}=\frac{\partial \mathrm{B}}{\partial \dot{x}^{i}} .
$$

And, since (I.I) is scalar, it follows that A_{i} is a vector.
Let us consider an m-dimensional subspace $\mathrm{K} m$ of $\mathrm{K} n$ represented by the equations $x^{i}=x^{i}\left(u^{\alpha}\right)$ and the matrix of the projection factors $p_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}}$ has rank m. If we denote a_{α} and b the quantities in $\mathrm{K} m$ corresponding to A_{i}
(*) Nella seduta del 12 maggio 1973.
(I) Numbers in the brackets refer to the references at the end of the paper.
(2) Throughout this paper, Latin indices run from I to n, Greek ones $\alpha, \beta, \gamma, \delta, \varepsilon$ from I to m and μ, ν from $m+\mathrm{I}$ to n.
and B in $\mathrm{K} n$ respectively, it follows that the same equations concerning a_{α} and b as (I.2) hold.

Putting

$$
\begin{equation*}
\mathrm{G}_{i j}=2 \mathrm{~A}_{i(j)}-\mathrm{A}_{j(i)} \quad, \quad \mathrm{G}_{\alpha \beta}=2 a_{\alpha(\beta)}-a_{\beta(\alpha)} \tag{I.3}
\end{equation*}
$$

it has been shown ([2]),

$$
\begin{equation*}
\mathrm{G}_{i j} p_{\alpha}^{i} p_{\beta}^{j}=\mathrm{G}_{\alpha \beta} . \tag{I.4}
\end{equation*}
$$

Suppose $G^{\alpha \beta}$ is the tensor reciprocal to $G_{\alpha \beta}$ (i.e. $G^{\beta \alpha} G_{\beta \gamma}=\delta_{\gamma}^{\alpha}$) Yoshida [2] defines

$$
\begin{equation*}
p_{i}^{\alpha}=\mathrm{G}^{\alpha \beta} \mathrm{G}_{i j} p_{\beta}^{j} \tag{I.5}
\end{equation*}
$$

on the assumption that n, m are both even and $\operatorname{det}\left(\mathrm{G}_{i j}\right)\left\{\operatorname{det}\left(\mathrm{G}_{\alpha, \beta}\right)\right\}$ does not vanish identically. It is easy to show that

$$
p_{i}^{\alpha} p_{\beta}^{i}=\delta_{\beta}^{\alpha} .
$$

The connections Γ^{i} of $\mathrm{K} n$ and Γ^{α} of $\mathrm{K} m$ are given as

$$
\begin{equation*}
2 \Gamma^{i}=\left(2 \mathrm{~A}_{l m} \dot{x}^{m}-\mathrm{B}_{(l)}\right) \mathrm{G}^{l i} \quad, \quad 2 \Gamma^{\alpha}=\left(2 a_{\beta \gamma} \hat{u}^{\gamma}-b_{(\beta)}\right) \mathrm{G}^{\beta \alpha} . \tag{土.6}
\end{equation*}
$$

The covariant differential of a contravariant vector field $v^{i}\left(x^{i}, x^{i}\right)$ homogeneous of degree zero with respect to the \dot{x}^{i} is defined by Kawaguchi [I]

$$
\begin{equation*}
\delta v^{i}=\mathrm{d} v^{i}+\Gamma_{j k}^{i} v^{j} \mathrm{~d} x^{k} \tag{1.7}
\end{equation*}
$$

where

$$
\Gamma_{j k}^{i}=\frac{\partial^{2} \Gamma^{i}}{\partial x^{j} \partial x^{\prime k}}=\Gamma_{k j}^{i}
$$

If v^{α} is a vector field in $\mathrm{K} m$ such that $v^{i}=p_{\alpha}^{i} v^{\alpha}$, then the induced covariant differential $\check{\delta} v^{\alpha}$ is defined as (Yoshida [2])

$$
\begin{equation*}
\check{\delta} v^{\alpha}=p_{i}^{\alpha} \delta v^{i} \tag{1.8}
\end{equation*}
$$

Putting

$$
\check{\delta} v^{\alpha}=\mathrm{d} v^{\alpha}+\check{\Gamma}_{\beta \gamma}^{\alpha} v^{\beta} \mathrm{d} u^{\gamma},
$$

it has been shown in [2]

$$
\begin{equation*}
\check{\Gamma}_{\beta \gamma}^{\alpha}=p_{i}^{\alpha}\left(p_{\beta \gamma}^{i}+\Gamma_{j k}^{i} p_{\beta}^{j} p_{\gamma}^{k}\right) . \tag{r.9}
\end{equation*}
$$

Yoshida ([3]) defines for the projection parameters p_{α}^{i},

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i} \stackrel{\text { def }}{=} \mathrm{D}_{\beta} p_{\alpha}^{i} \stackrel{\text { def }}{=} p_{\alpha \beta}^{i}+\Gamma_{j k}^{i} p_{\beta}^{j} p_{\alpha}^{k}-\check{\Gamma}_{\alpha \beta}^{\gamma} p_{\gamma}^{i} . \tag{I.IO}
\end{equation*}
$$

Using (I.9) and normal vector ${\underset{\mu}{i}}_{n^{i}}$ of $\mathrm{K} n$, (I.IO) can be written as

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}=\mathrm{H}_{\beta \alpha}^{\mu} n_{\mu}^{i} \tag{I.II}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
\mathrm{H}_{\beta \alpha}^{\mu}=\mathrm{G}^{\nu \mu} \mathrm{G}_{i j}{\underset{\nu}{ } n^{2} \stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{j}=\mathrm{G}^{\mu \nu} n_{\nu} \stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}, ~}_{\text {, }} \tag{I.12}
\end{equation*}
$$

where $G^{\nu \mu}$ has the same meaning as in [2].

2. DIFFERENCE BETWEEN INDUCED AND INTRINSIC CONNECTIONS

The connection coefficients of the imbedding space $\mathrm{K} n$ are denoted by $\Gamma_{j k}^{i}$ and the induced connection coefficients of subspace $K m$ have been given by (I.9). With the help of (I.5) and (I.9) we can write,

$$
\begin{equation*}
\mathrm{G}_{\alpha \delta} \check{\Gamma}_{\beta \gamma}^{\alpha}=\mathrm{G}_{i j} p_{\delta}^{j}\left(p_{\beta \gamma}^{i}+\Gamma_{j k}^{i} p_{\beta}^{j} p_{\gamma}^{k}\right) \tag{2.I}
\end{equation*}
$$

The most significant motivation for the definition (I.9) is in the fact that it leads directly to the fundamentally important induced normal curvature vector $\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}$, given by (I.IO), which derives its name from the circumstance that it is normal to Km , i.e.

$$
\begin{equation*}
\mathrm{G}_{i j} p_{\delta}^{j} \stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}=\mathrm{o} \tag{2.2}
\end{equation*}
$$

as is immediately evident by multiplication of (I.IO) by $G_{i j} p_{\delta}^{j}$ and subsequent application of (I.4) and (2.I).

The intrinsic connection coefficients $\Gamma_{\beta \gamma}^{\alpha} \stackrel{\text { def }}{=} \frac{\partial^{2} \Gamma^{\alpha}}{\partial u^{\beta} \partial u^{\gamma}}$ have been defined as ([2])

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\check{\Gamma}_{\beta \gamma}^{\alpha}+\Gamma_{(\beta)}^{* i} p_{i(\gamma)}^{\alpha}+\Gamma_{(\gamma)}^{* i} p_{i(\beta)}^{\alpha}+\Gamma^{* i} p_{i(\beta)(\gamma)}^{\alpha} \tag{2.3}
\end{equation*}
$$

where

$$
\Gamma^{* i} \stackrel{\text { def }}{=} \Gamma^{i}+\frac{\mathrm{I}}{2} p_{\alpha \beta}^{i} u^{\alpha} u^{\beta}
$$

In analogy with (I.IO) we construct the intrinsic curvature vector

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{H}_{\beta \alpha}^{i}} \stackrel{\text { def }}{=} p_{\alpha \beta}^{i}+\Gamma_{j k}^{i} p_{\beta}^{j} p_{\alpha}^{k}-\Gamma_{\alpha \beta}^{\gamma} p_{\gamma}^{i} \tag{2.4}
\end{equation*}
$$

Let us define the form,

$$
\begin{equation*}
\Lambda_{\beta \varepsilon \gamma} \stackrel{\text { def }}{=} \Gamma_{\beta \varepsilon \gamma}-\check{\Gamma}_{\beta \varepsilon \gamma}=G_{\alpha \varepsilon}\left(\Gamma_{\beta \gamma}^{\alpha}-\check{\Gamma}_{\beta \gamma}^{\alpha}\right) . \tag{2.5}
\end{equation*}
$$

This equation and (2.3) yield

$$
\begin{equation*}
\Lambda_{\beta \gamma}^{\alpha}=p_{i(\gamma)}^{\alpha} \Gamma_{(\beta)}^{*_{i}}+p_{i(\beta)}^{\alpha} \Gamma_{(\gamma)}^{* i}+\Gamma^{*_{i}} p_{i(\beta)(\gamma)}^{\alpha} \tag{2.6}
\end{equation*}
$$

In [2] Γ^{α} has been written in the form,

$$
2 \Gamma^{\alpha}=\left[2 \Gamma^{i}+p_{\beta \gamma}^{i} u^{\beta} u^{\gamma}\right] p_{i}^{\alpha}
$$

which gives

$$
\begin{equation*}
p_{\alpha}^{i} \Gamma^{\alpha}=\Gamma^{i}+\frac{1}{2} p_{\beta \gamma}^{i} u^{\beta} \dot{u}^{\gamma}=\Gamma^{* i} . \tag{2.7}
\end{equation*}
$$

If we use (2.7), then the equation (2.6) can be expressed as

$$
\begin{align*}
\Lambda_{\beta \gamma}^{\alpha} & =\Gamma_{(\beta)(\gamma)}^{\alpha}-\Gamma_{(\beta)(\gamma)}^{* i} p_{i}^{\alpha} \tag{2.8}\\
& =\Gamma_{(\beta)(\gamma)}^{\alpha}-\left(p_{\alpha}^{i} \Gamma^{\alpha}\right)_{(\beta)(\gamma)} p_{i}^{\alpha},
\end{align*}
$$

since $p_{\alpha}^{i} \Gamma^{\alpha}=\Gamma^{*_{i}}$, the above equation becomes

$$
\begin{equation*}
\Lambda_{\beta_{\gamma}}^{\alpha}=\Gamma_{\beta \gamma}^{\alpha}-\Gamma_{\beta_{\gamma}}^{*_{i}} p_{i}^{\alpha} . \tag{2.9}
\end{equation*}
$$

If $\mathrm{A}_{i(j)(k)}=0$ and m, n are both even, then it has been proved in [2] that the intrinsic and induced connection parameters coincide, i.e.

$$
\begin{equation*}
\Lambda_{\beta_{\gamma}}^{\alpha}=\mathrm{o} . \tag{2.10}
\end{equation*}
$$

Now substituting (1.10) from (2.4) and using (2.5), we get

$$
\begin{equation*}
\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}=\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}-p_{\delta}^{i} \Lambda_{\beta \alpha}^{\delta} . \tag{2.1I}
\end{equation*}
$$

Hence, we get
THEOREM (2.1). The intrinsic curvature vector differs from induced normal curvature vector merely by a tangential component.

Further the equation (2.1I) proves:
Corollary (2.1). The vector $\stackrel{\circ}{4}_{\beta \alpha}^{i}$ is not, in general, normal to the subspace.

If in analogy to equation (I.12) we define

$$
\begin{equation*}
\stackrel{*}{\mathrm{H}}_{\beta \alpha}^{\mu}=\stackrel{\stackrel{i}{\mathrm{H}}}{\beta \alpha}_{i}^{\mathrm{G}_{i j}}{\underset{\nu}{n}}^{j} \mathrm{G}^{\mu \nu} \tag{2.12}
\end{equation*}
$$

then in view of the equations (2.11) and (2.12) we obtain,

$$
\begin{equation*}
\stackrel{*}{H}_{\beta \alpha}^{\mu}=\mathrm{H}_{\beta \alpha}^{\mu} \tag{2.13}
\end{equation*}
$$

Therefore,
Theorem (2.2). The same second fundamental tensor can be used in both the induced and intrinsic theories.

3. Derivatives of a vector field

For the curve $\mathrm{C}: x^{i}=x^{i}(t)$ [or $\left.u^{\alpha}=u^{\alpha}(t)\right]$ of the subspace $\mathrm{K} m$, the unit tangent vectors $\dot{x}^{i}=\frac{\mathrm{d} x^{i}}{\mathrm{~d} t}$ and $u^{\alpha}=\frac{\mathrm{d} u^{\alpha}}{\mathrm{d} t}$ are related by

$$
\dot{x}^{i}=p_{\alpha}^{i} u^{\alpha} .
$$

Let

$$
\begin{equation*}
\mathrm{X}^{i}(t)=p_{\alpha}^{i} \mathrm{U}^{\alpha}(t) \tag{3.1}
\end{equation*}
$$

be a vector field tangent to $\mathrm{K} m$. It is supposed that X^{i} is a differentiable function of $\left(x^{j}, x^{j}\right)$. We shall now obtain a relation between the covariant derivative $\delta \mathrm{X}^{i} / \delta t$ (with respect to the connection of the imbedding space $\mathrm{K} n$) and the intrinsic covariant derivative $\delta U^{\alpha} / \delta t$ (with respect to the intrinsic connection of $\mathrm{K} m$). The latter is defined by

$$
\begin{equation*}
\frac{\delta \mathrm{U}^{\varepsilon}}{\delta t}=\frac{\mathrm{d} \mathrm{U}^{\varepsilon}}{\mathrm{d} t}+\Gamma_{\alpha \beta}^{\varepsilon} \mathrm{U}^{\alpha} \varkappa^{\beta} . \tag{3.2}
\end{equation*}
$$

The equation (3.1), when differentiated with respect to t along the curve C , yields,

$$
\begin{equation*}
\frac{\mathrm{dX}}{\mathrm{~d} t}=p_{\alpha \beta}^{i} \mathrm{U}^{\alpha} u^{\beta}+p_{\varepsilon}^{i} \frac{\mathrm{~d} U^{\varepsilon}}{\mathrm{d} t} . \tag{3.3}
\end{equation*}
$$

Also, due to (1.7) and (3.1), we have

$$
\begin{equation*}
\frac{\delta \mathrm{X}^{i}}{\delta t}=\frac{\mathrm{dX}}{\mathrm{i} t}+\Gamma_{j k}^{i} \mathrm{U}^{\alpha} p_{\alpha}^{j} u^{\beta} p_{\beta}^{k} . \tag{3.4}
\end{equation*}
$$

The elimination of $p_{\alpha \beta}^{i}$ from (3.3) and (2.4) gives

$$
\frac{\mathrm{dX}}{\mathrm{~d} t}=\left[\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}-\Gamma_{j k}^{i} p_{\beta}^{j} p_{\alpha}^{k}+\Gamma_{\alpha \beta}^{\gamma} p_{\gamma}^{i}\right] \mathrm{U}^{\alpha} i^{\beta}+p_{\varepsilon}^{i} \frac{\mathrm{dU}}{\mathrm{~d} t} .
$$

After simplifying this equation with the help of (3.2) and (3.4), we get

$$
\begin{equation*}
\frac{\delta \mathrm{X}^{i}}{\delta t}=\stackrel{\left.\stackrel{\circ}{\mathrm{H}_{\beta \alpha}^{i}} \mathrm{U}^{\alpha} \ddot{u}^{\beta}+p_{\varepsilon}^{i}\left(\frac{\delta \mathrm{U}^{\varepsilon}}{\delta t}\right), ~()^{2}\right)}{ } \tag{3.5}
\end{equation*}
$$

which in view of (2.1I) and (I.II) takes the form,

$$
\begin{equation*}
\frac{\delta \mathrm{X}^{i}}{\delta t}=\mathrm{H}_{\beta \alpha}^{\mu} n_{\mu}^{i} \mathrm{U}^{\alpha} u^{\beta}+p_{\varepsilon}^{i}\left(\frac{\delta \mathrm{U}^{\varepsilon}}{\delta t}-\Lambda_{\beta \alpha}^{\varepsilon} \mathrm{U}^{\alpha} u^{\beta}\right) . \tag{3.6}
\end{equation*}
$$

This is the required result.
The following theorems are immediate from equation (3.6):
THEOREM (3.1). If the vector field X^{i} tangential to $\mathrm{K} m$ is parallel along a curve (of $\mathrm{K} m$) with respect to $\mathrm{K} n$, it is not necessary that the vector field U^{α} is parallel along the curve with respect to intrinsic connection of $\mathrm{K} m$. Under these circumstances, we have

$$
\begin{equation*}
\frac{\delta U^{\varepsilon}}{\delta t}=\Lambda_{\beta \alpha}^{\varepsilon} \mathrm{U}^{\alpha} \ddot{u}^{\beta} \tag{3.7}
\end{equation*}
$$

THEOREM (3.2). If the induced and intrinsic connection parameters coincide then the parallelism (along a curve of $\mathrm{K} m$) of the vector field X^{i} in $\mathrm{K} n$ implies the parallelism along the curve of the vector field U^{α} in $\mathrm{K} m$ and vice versa.

4. Induced derivatives

In analogy to article 3, we shall derive an expression involving the covariant derivative $\delta \mathrm{X}^{i} / \delta t$ of a vector field X^{i} and induced covariant derivative $\check{\delta} \mathrm{U}^{\alpha} / \check{\delta} t$. The latter is given by

$$
\begin{equation*}
\frac{\check{\delta} U^{\varepsilon}}{\check{\delta} t}=\frac{\mathrm{d} U^{\varepsilon}}{\mathrm{d} t}+\check{\Gamma}_{\alpha \beta}^{\varepsilon} U^{\alpha} \ddot{u}^{\beta} . \tag{4.I}
\end{equation*}
$$

On eliminating $p_{\alpha \beta}^{i}$ from (1.10) and (3.3), we get

$$
\frac{\mathrm{dX}}{\mathrm{~d} t}=\left[\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i}-\Gamma_{j k}^{i} p_{\beta}^{j} p_{\alpha}^{k}+\check{\Gamma}_{\alpha \beta}^{\gamma} p_{\gamma}^{i}\right] \mathrm{U}^{\alpha} u^{\beta}+p_{\varepsilon}^{i} \frac{\mathrm{dU}}{\mathrm{~d} t} .
$$

Taking the help of equations (3.4) and (4.1) this equation becomes,

$$
\begin{equation*}
\frac{\delta \mathrm{X}^{i}}{\delta t}=\stackrel{\circ}{\mathrm{H}}_{\beta \alpha}^{i} \mathrm{U}^{\alpha} \hat{u}^{\beta}+p_{\varepsilon}^{i} \frac{\check{\delta} U^{\Sigma}}{\check{\delta} t} . \tag{4.2}
\end{equation*}
$$

Using (I.II), we get

$$
\begin{equation*}
\frac{\delta \mathrm{X}^{i}}{\delta t}=n_{\mu}^{i} \mathrm{H}_{\beta \alpha}^{\mu} \mathrm{U}^{\alpha} u^{\beta}+p_{\varepsilon}^{i} \frac{\check{\delta} U^{\varepsilon}}{\check{\delta} t} . \tag{4.3}
\end{equation*}
$$

This yields the following:
Theorem (4.1). The necessary and sufficient condition that a vector field of the subspace be parallel along a curve in $\mathrm{K} n$ is that it is parallel along the curve with respect to induced connection of $\mathrm{K} m$.

Now we suppose that $\mathrm{U}^{\alpha}=\ddot{u}^{\alpha}$. On the assumption that Γ^{i} are homogeneous of degree two with respect to the x, it has been shown (Yoshida [2]),

$$
\begin{equation*}
\Gamma_{\beta \alpha}^{\varepsilon} u^{\beta} u^{\alpha}=\check{\Gamma}_{\beta \alpha}^{\varepsilon} u^{\beta} \dot{u}^{\alpha} . \tag{4.4}
\end{equation*}
$$

Hence, by (2.5) we get

$$
\begin{equation*}
\Lambda_{\beta \alpha}^{\varepsilon} \tilde{u}^{\beta} u^{\alpha}=\mathrm{o} . \tag{4.5}
\end{equation*}
$$

Thus, Theorem (3.I) takes the form:
Theorem (4.2). The necessary and sufficient condition that a curve of the subspace be auto parallel in $\mathrm{K} n$, is that, it is auto parallel in $\mathrm{K} m$ with respect to the intrinsic connection parameter.

References

[I] A. Kawaguchi, Geometry in an n-dimensional space with the arc length $s=\int\left(\mathrm{A}_{i}{ }^{\prime}{ }^{i}{ }^{i}+\mathrm{B}\right)^{1 / p} \mathrm{~d} t$, «Trans. of the Amer. Math. Soc.», 44, 153-167 (1938).
[2] M. Yoshida, On the connections in a subspace of the special Kawaguchi space, "Tensor (N. S.)», 17 (1), 49-52 (1966).
[3] M. Yoshida, The equations of Gauss and Codazzi in the special Kazeaguchi Geometry, «Tensor (N. S.)», I8 (1), 13-I7 (1967).

