
ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

John R. Graef, Paul W. Spikes

On the behavior of the solutions of x′′ + q(t)f(x) = r(t)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.4, p. 544–550.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_4_544_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di
ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLINA_1973_8_54_4_544_0
http://www.bdim.eu/


544 Lincei -  Rend. Se. fis. mat. e nat. -  Vol. LIV -  aprile 1973 [364]

Equazioni differenziali ordinarie. —- On the behavior o f the solu
tions of x" q { f ) f  (x) =  r(f).  N o ta  di Jo h n  R. G r a e f  e P a u l
W . S p ik es  (* (**)\  p re s e n ta ta  (#,) dal Socio G . S a n so n e .

R ia s s u n to . — Si esam ina il com portam ento asintotico delle soluzioni nel caso che 
lim r{t)!q(t) sia positivo e r(t)jq(t)  sia monotona.i->co

i. Introduction

In  [1] the A uthors studied the asym ptotic behavior of solutions of

x " + q ( t ) f ( x )  =  r(t )

under the assum ption th a t the quotient r(t)jq(f)  approaches zero monoto- 
nically as /  -»  00. In  this paper we discuss the behavior of solutions of the 
above equation assum ing th a t r ( t ) l q f )  m onotonically approaches a positive 
constant. We begin first w ith a boundedness result.

2. Boundedness of S o lu tions 

W e consider the equation

00 x " +  q ( f ) f ( x )  — r(t)

where q , r  : [t0 ,00) —̂ R : R R , q  , r  and f  are continuous, q ( f ) >  o,
X

and r(f )  >  o. We define F (x) =  j f  (s') d^ and m ake the following assump-

0
tions about equation (i). We assume tha t

(2) r ' ( t ) >  o

and th a t there are positive constants d  J  , k  and M such tha t

(3) F(F) >  d  I x  \1+J for \ x  \ >  k  ,

(4) H (/) =  r ( / ) / ? :(0 increases m onotonically to M as t  oo.

W e note that, by  Theorem  2.1 in [1], condition (3) guarantees th a t solutions 
of (1) are defined for all t > t 0 .

It will often be convenient to write equation (1) as the system

(5) x r= y  , ÿ = - — ç ( t ) f ( x ) + r ( t ) .

(*) Supported in part by Mississippi State University Biological and Physical Sciences 
Research Institute.

(**) Nella seduta del 14 aprile 1973.
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THEOREM i. Under conditions (2)—(4) all solutions o f (1) are bounded.

Proof. By (3), F(x)  is bounded from below so F (V )>  —  K for 
some K  >  o. Let V  ( x ,  y  , t )  =  y 2/2 r(t)  +  (q f ) / r ( t ) )  (F(x)  +  K). Then 
V ' — y — y 2r'(f)j2 r 2(t) +  ( ç (t)/r (t))f ( F (x) +  K) <  y.  Integrating, we have 
( ç (t)/r(t)) F(x(t)) <  K i + x ( t )  for some K i>  o. Thus F(x(t)) <  (K i+a:(* ))M . 
If  |;r(Y )|>/è, then d  \x(f ) \1+J <  F(at(£))< K iM -f  |#(£)|M  so x( t )  is bounded.

C o ro lla ry  2. Under conditions (2)~(4), i f  r(f) is bounded, then all solu
tions o f system  (5) are bounded.

Proof. From  the proof of Theorem  1, V (f) is bounded so y 2(f )/2r(t )  <  B 
for some B >  o. Hence y 2(t) <  2 Br(t )  so y  (f) is bounded and thus solu
tions of (5) are bounded.

In order to see th a t condition (3) is sharp, consider the equation 

x "  +  tanh  x  =  (t2 —  1 )j(t2 +  1) —  i f 2.

Now F(x) =  In (cosh x)  satisfies \ x \-— In 2 <  F(*) < \ x \  for all x. However 
x  (t) =  \ n t  is an unbounded solution of the above equation.

3. Asymptotic Behavior

The classification of solutions used in this part of the paper is the same 
as th a t used in Section 4 of [1 ]. C learly the conclusion of Theorem  3 holds 
for Z-type solutions (have arb itra rily  large zeros but do not change sign). 
A  trivial modification of the proof of Theorem  4 shows th a t it also holds 
for Z-type solutions.

W e shall m ake the following additional assum ptions on equation (1).
We assume tha t

(6) q' (f) >  0

(7) q 6 C3 and q (f) -> oo as t  00

(8)

tf  K s^C O )'" 1 ds =
f

= 0 (In q (f)) , t -> 00

(9)

ro

x f  (oc) > 0 if x  =f= 0

(10) / '  (x) >  0 for all x'

and tha t there are positive constants d  and j  such that

( ” ) F(x)  > d \ x  |1+y for all x  .
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T h eo rem  3. Suppose conditions (2), (4), and  (6 ) - (n )  hold. L e t x  (t) 
be an oscillatory solution o f (1) and let h >  o be given. Then there exists a >  t0 
such that'.

(i) I f  t >  a and  x  (t) <  o, then | x  (t) | <  h.
(Ü) U  f or c >  b >  a , x  (b) =  x  (c) =  o and x( t )  <  o f o r  t  in (b , c), 

then c —  b <  h.

Proof. Let V  (x  , y  , f) =  y 2j2 r ( f )  + q  (t) F (x)/r (t); then V ' < . y  —  
— y 2r' (t)/2 r 2 (t). Integrating, we obtain

I

v 00 +  I* [y 20 )  r ‘ 0 )/2  r2(j)] ds <  V (t0) + x ( t ) — x  (t0) ,
to

and since x  (t) is bounded by Theorem  i, we have
00

J  [y2(s) r ' (f)t2 r2(s)] ds <  00.
to

Since H (t) =  r(t)/q (t) is increasing, H ' ( V ) > o  so q' (t )j2 q2 (t) <  
< M ( r ' ( t ) l 2 r 2(fj). Thus

OO

(I2) j~ [p2(s) q' 00/2 q2(f)] d j <  00.
*0

N ext we define
t

W f x  , V , 0  -  rV 2 q(t)  +  F  (x) —  f  [r (s )y  (s)/q(s)] ds

and we see th a t W z (t) — — y 2 f  (f)\2 q2f ) .  Integrating, we have
t

W z(t) =  W z (z) — j [y2 (s) q ' (s) \2 ç2(s)] ds .
z

Let {/„} be a m onotonically increasing sequence of zeros of y ( t )  such th a t 
4 ^ 0 0  as n -+  oo. Then

t

=  F  (*(*»)) — j" [y2(*) q '( /) !2 ÿ20 )] às.
K

Hence,
t

(13) d \ x  (4) |1+y <  W  ̂  (/) +  I [y* (s) q' (s)/2 q2 (*)] ds.
In

Now let x  (f) be an oscillatory solution of (1) and suppose th a t (i) does 
not hold. Then there exists h >  o such tha t for any a >  t0 there exists
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b >  a w ith x  (b) <  — h. By (12) we can choose a >  to so that
00

[y 2(V) q! (s)l2 q2(s)] ds <  dh1+Jj2 .
a

By Theorem  1, x  (t) is bounded, say | x  (t) | <  B for some B >  o, so we let 
m  =  M/1I4B. Since x f  is oscillatory and H (0  is increasing m onotonically 
to M, there exists b >  a such th a t x  (b) — ö and for t  >  b we have

(14) H f  >  M /2 and H (t) — H (b) <  m  .

There is a sequence {an} increasing m onotonically to 00 with a±>  b and such 
th a t

(T5) x  (an) <  — h and y  (an) =  o .

Observe next th a t W'ai (t) < 0  for t  >  aly and by (13), W 01 (/) >  d/i1+J/2
for t  >  ait  so W af t )  -> L  >  o as t -> 00. N ext we let R  (t) =  q~x (t) and
p  00 -  3 w fll (0  +  R " (/) *2 (0 /2  —  R ' (/) a: (0  y  (0- Then

P rf = = R rnf  x 2(t)/2 +  q! (t) [— y 2( t ) l2q ( t )— f(x . ( t ) )  x f  +  r f  x f \ q f \ \ q  f  .

From  the proof of Theorem  4.5 in [1] we know tha t (10) implies 
x  f f  (x (0) >  F (x (0) so we have

P'(0 <  R'"(0  *2(0/2 + V (0  l - y \ t ) l 2 q f  —■ F(*(0) +  r (0 x(t)lq(t)-\lq(t).

From  a m ean value theorem  for integrals we have
/r

j H (s) y  (s) d^ =  H (0  x f  —  H (af) x  (af) ■— x  (w) [H (0  ■— H (af)]
j

a x

where ax <  w  <  t. Hence
t

j H ( s ) y  (s) —  H ( t )x  ( f ) >  —  \ x  (w) | [H (t) — H (ax)] —  H (aï) x(a{).
a x

Now I x  (w) I <  B and by (14), o <  H (t) —  H (ax) <  m  and H (ax) >  M/2. 
Also, x  (aï) < — h by  (15). Thus we have

t

H (s) y  (s) ds >  H (0  x  i f  for t  >  ax .
a x

Thus Frf < R " rf x 2f \ 2 -— q ' f L / q f .  A n integration of this inequality
from ax to an , n >  i, yields

a n

L  • In (q (an)) <  C0 +  | R "  (a„) \ B2/2 +  B2 f  R '"  (s) d.y/2.
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But
n

I R > „ )  I <  I* I R '" 0 )  I ds +  I R '"  (ai) \ SO

L  <  Ci/ln (q (a„)) - f £> J  | R ' " ( f) | d j
ai

lln(q(a„J)

for each n  >  i, which is impossible in light of conditions (7) and (8). This 
completes the proof of (i).

In  order to prove (ii) we first note th a t it is easy to show, from the 
properties of H ( t ) , F  (x) and W a (x , y  , t) ,  th a t y 2 (fj/q (t) is bounded on 
[a , 00). A nd since we have th a t q (t) 00 as t  ->oo, y ( t ) /q  (t ) -> o as t  00.
I t  then follows im m ediately from  (4) th a t y  o as t  ->■- 00. Now let
h >  o be given and choose a so th a t \ y ( t )  \\r(t) <  h \ i  for t  >  a. Let [è , c] 
be any  interval such th a t b >  a , x  (B) =  x  (c) =  o, and x  (t) <  o for t 
in (b , c). In tegrating  equation (1) twice we have

t w

x {£) =  x' (b)(t — b) +  j*  ̂J  [r (s) — q (s) f (x  (j))] dxj dw

=  x ' (b) (t  —  b) -f- I (t —  w) [r(w) —  q (w)/  (x (w ))] dw.
b

For t = c  we obtain x '  (b) (c —  b) +  r  (b) (c —  B fl  2 <  o, so (c —  b)f 2 <  
<  I x '  (b) \jr (b) <  A/2 and (ii) is proved.

Theorem 4. Suppose conditions (2), (4) (6)-(n) hold. L e t x  (t) be
an oscillatory solution 0 / (1 )  and let h  > 0  be given. Then there exists T >  t0 
such that —  h < x ( t )  <  (M jd  +  h)llj f o r  t  >  T.

Proof. If x  (f) is an oscillatory solution of (1) and h  is a positive number, 
then by Theorem 3 there exists a >  t0 such that if t  >  a and *  (t ) <  o, then

(16) x ( t )  >  max { —  h  , —  (dhj2 M) (M ld )lh'}

and

(17) F  (x (t)) <  (dh/4) (M  jd)llj.

Since q(t )l r(t ) -> i/M  as t  - r  00, there exists b > a  such that

( 18) q (t ) / r ( t ) <  2/M

for  ̂>  b. Choose T >  b so that ar (T) < 0  and x ' (T) =  0. If t  >  T and 
^ (0  °> then the conclusion of the theorem follows from (16). If t  ~> T
and x  (t) >  o, let V  (x  , y  , t) =  y 2/2 r  (t) +  q (f) F(x) /r  (t), and by differ
entiating and integrating V  we obtain q (t) F (x (t))/r (t) <  x  ( t ) — * (T) +  
+  q (T ) F (x (T))/r  (T). Hence, by (11), d  [x (t)]1+J <  (M / d f IJ (d h) +  M x  ( t ) .
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Thus

(19) x( t )  [x3 (/) — M/d] <  (M j d f u h .

If  x j  {t) < M Jd, then the theorem  follows. I f  x ] (f) > M jd from (19) we have 
x 3 it) — M jd  <  h, and the proof of the theorem  is now complete.

R em ark  I. I f  in equation (1) , f ( x )  =  x p where p  is an odd positive 
integer, then we m ay take d  =  1 /(/> +  1) and j  =  p  in condition (11) above. 
In  this case the conclusion of Theorem  4 has the form

—  h <  x  if) <  [(p +  i)M  +  h f p.

R em ark  2. It is interesting to note th a t the conclusions of Theorem s 3 
and 4 do not hold if the m onotonicity condition of H if) is relaxed. The 
equation

t2 =  8 t2 -f- 6 cos t2} t > i

satisfies all the hypotheses of these theorem s except tha t H (t) =  2 +  
+  3 (c°s t2)j2 t2 is not monotonie. Here M =  2 and we can take d  =  1/2 
and j  — I. Now x  (t) — 2 -f- 3 sin is a solution of this equation which 
does not satisfy — h <  x  (f) <  4 +  h for any h <  1.

The following two theorem s generalize Theorems 2.1 and 2.2 in [2].

T h e o re m  5. Suppose conditions (4), (6), (9) and (10) hold. I f  x  (t) is 
a nonosdilatory solution o f (1), then either x  (t) is ultim ately monotonie, or 
there exists a >  t0 such that x  (t) has a positive lower bound fo r  t  >  a.

Proof. Let x  (f) be a nonoscillatory solution of (1). By Lem m a 4.1 in [1], 
there exists a >  t0 such th a t x  (f) > 0  for t >  a . Assume th a t x  (f) is not 
ultim ately  monotonie and th a t ^  (t) does not have a positive lower bound 
on [a , 00). Choose b >  a such th a t H (t) =  r  (t)\q (t), >  3 M /4 for t  >  b. 
By (9) there exists A  >  o such th a t f  (x) <  M /4 for o <  x  <  A. Also, there 
exists c >  b such th a t y  (c) =  o and ^  (c) <  A, and there exists d  >  c such 
tha t y  (d) — o and x  (d) <  x  (f)l4 - Defining W , (x , y  , t) as in the proof of 
Theorem  3 we have W c(d) <  W f (c)J from which we obtain

d
(20) J H (s) y  is) ds >  —  F (x (c)) .

c

But, by  a m ean value theorem  for integrals, there is a num ber w  in [c , d] 
such th a t

dJ H t»  y  »  às = x ( w )  [H if) — H (et)] +  H (d) x ( d )  — H (c) x  (c) < — M x  (F)/2
C

which contradicts (20) since F  (x(c)) < f  (x (c)) x(c) <  M x  (c)j4.

R e m a rk  3. A n exam ple showing tha t the m onoticity condition on H(V) 
in Theorem  5 is essential can be found in [2].
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THEOREM 6. Suppose conditions (2), (4 ), (6) and  ( 9 ) - ( n )  hold. L et x  (t) 
be a solution o f (1). Them

(i) I f  x ( t j  is ultim ately monotonie, then f  (x (tj) ->M  as t  -> 00.
(ii) I f  x  (t) is nonosd ila tory , then there exists h >  o and  T  >  t0 such 

that h <  x  (t) <  (M /d)llj f o r  t  >  T.

Proof. Assum e th a t x  (f) is a solution of (1) which is u ltim ately m ono
tonie. By Lem m a 4.1 in [1] there exists a >  t0 such th a t x  (t) >  o for /  >  a. 
By Theorem  1 we have th a t x  (t) is bounded. Since x  (f) is monotonie, 
f  (x (fj) -> A by (10). If  A H^M, an integration of the second equation in (5) 
leads to a contradiction.

To prove (ii) we first assume th a t x  (f) is ultim ately monotonie. Then 
there exist T  >  t0 and h > 0  such tha t M/2 < f ( x ( t ) )  <  M, f  (h) =  M/2 
and x  (t) >  h for t  >  T. Now

(21) d  [x(t)]1+J <  F-(x(tj) < f ( x  (tj) x ( t )  <  M x  (f)

for t  >  T  so x  (f) <  (M jd)llj for t  >  T  and (ii) holds.
If  ^  (t) is not ultim ately monotonie, then by Theorem  5 there exists 

h >  o and a >  to such th a t x  (f) >  h for t  ~>a. If  f  (x (fj) <  M for t  >  a, 
then, by (21), (ii) holds. Suppose th a t there exists b >  a such th a tf  (x (bj) >  M. 
Then there exists c >  b such th a t /  (x (c)) <  M, for otherwise it can be shown 
th a t x  (t) m ust be monotonie. Now if f  (x (tj) <  M for t >  c, we are done 
so suppose there exists d >  c such tha t f  (x (dj) >  M. Notice th a t x  (c) <  x  (d) 
since f  is monotonie. Since f  is continuous there exists K such tha t 
x  (c) < K  <  x  (d) , / ( K )  =  M, and f  (x (t)) > M  for K <  x  (f) <  x  (d). There 
exists di >  c such th a t (<d\) — K and x  (t) >  K for d\ <  t <  d  since ^  (t) 
is continuous. Since there is again a value of t for which f  (x (tj) < M , a 
sim ilar argum ent will yield d% >  d  with the property  th a t ^  (dj) =  K and for 
d  <  t <  d2 we have f  (x (tj) >  M and x  (t) >  K. If  x  (t) attains its m axi
m um  value on [di , df\  at d3, then ds is in (d\ , dj) and y  (dj) =  o. Now on 
(d\ , dj) , y r(t) <  0 so y  (dj) <  o. Let T  >  d% be such th a t y  (T) =  o and 
y  (f) < 0  for â% < t  <  T. Since y  (T) =  y  (dj) and since y' (t)  <  o on (d% , dj), 
we m ust have H (m) > f ( x  (mj) for some m  in (d^ , T). W e have y  (tj  <  o 
on (d,2, T) so ^  (t) is decreasing on this interval and hence f  (x  (T)) <  
< /  (x (mj) <  H (m) <  H (T). Define V  (x , y  , t) =  y 2/2 q (t) +  F  (x); then 
V '<  yr(t) lq(t) .  In tegrating we have V(t) <  V(T) +  H (t) x( t )  —  H (T) ^r(T) -f  
+  x (w)  [H (T) —  H (Z)] where T  < w < t .  Hence d  [x (t)]1Jrj <  f  (x (T)) x ( T )  
+  H00 ^  (f) —  H(T) x  (T) <  M^; (t) for t  ^  T  and so (ii) holds.

T he equation x n f  x  — 1 dem onstrates th a t the bounds in p art (ii) of 
Theorem  6 are sharp.
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