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Equazioni differenziali ordinarie. — On the behavior of the solu-
tions of x"+ q(f)f(x) =r(#). Nota di Joun R. GRAEF® e Paur
W. Srikes @, presentata ™ dal Socio G. SANSONE.

RIASSUNTO. — Si esamina il comportamento asintotico delle soluzioni nel caso che
lim 7 (#)/g(¢) sia positivo e » (£)/¢ (¢) sia monotona.
?->00

1. INTRODUCTION

In [1] the Authors studied the asymptotic behavior of solutions of
2 g F(x) = (@)

under the assumption that the quotient #(#)/g(f) approaches zero monoto-
nically as # —oco. In this paper we discuss the behavior of solutions of the
above equation assuming that 7(¢)/g(#) monotonically approaches a positive
constant. We begin first with a boundedness result.

2. BOUNDEDNESS OF SOLUTIONS

We consider the equation
(D) g f(x) = 7@

where ¢,7:[fg,00) >R ,/: R —+R,¢,r and f are continuous, ¢ (#)> o,
and 7(#) > 0. We define F(x) = f f(s)ds and make the following assump-

tions about equation (1). We assoume that

(2) ') >o0

and that there are positive constants &,/ , £ and M such that

3) F@)=d|x """ for |x| >4,

(4) H@ =7»(@)/qg@) increases monotonically to M as ¢ — oo.

We note that, by Theorem 2.1 in [1], condition (3) guarantees that solutions
of (1) are defined for all #>¢,.
It will often be convenient to write equation (1) as the system

() =y , Y=—q@O)f@) +r@.

(*) Supported in part by Mississippi State University Biological and Physical Sciences
Research Institute.

(¥¥*) Nella seduta del 14 aprile 1973.
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THEOREM 1. Under conditions (2)~(4) all solutions of (1) are bounded.

Proof. By (3), F(x) is bounded from below so F(x)>-—K for
some K>o. Let V(x,y,? = 3227 + (¢g@®r@®) (F(x) + K). Then
Vi=y —y27'®)[27%() + (¢(Or @) (F(x) + K) <y. Integrating, we have
(gD (®) Flx () < K1+ x(#) for some Kyi>o. Thus F(x(8)) < (Ki+x(¢)M.
If |x()|> 4, then & |x()|'"" < F(x())< KiM+ |2(9)|M so x(#) is bounded.

COROLLARY 2. Under conditions (2)—~(4), if »(¢) is bounded, then all solu-
tions of system (5) are bounded. '

Proof. From the proof of Theorem 1, V(#) is bounded so 32(#)/27(f) < B
for some B >o0. Hence »2(¢) < 2 Br(¢) so y(#) is bounded and thus solu-
tions of (5) are bounded.

In order to see that condition (3) is sharp, consider the equation
12 2 2 2
x4+ tanhx = (" — 1)/(2° + 1) — 1/£.

Now F(x)=1In (cosh x) satisfies |x|—1In2< F(x) < |x| for all x. However
x(#) =Int¢ is an unbounded solution of the above equation.

3. ASYMPTOTIC BEHAVIOR

The classification of solutions used in this part of the paper is the same
as that used in Section 4 of [1]. Clearly the conclusion of Theorem 3 holds
for Z-type solutions (have arbitrarily large zeros but do not change sign).
A trivial modification of the proof of Theorem 4 shows that it also holds
for Z-type solutions.

We shall make the following additional assumptions on equation (1).
We assume that

6) 7' # >0

(7) geC? and ¢ (f) >o0 as #->o0
® [1G1e) 1ds=0tng@), o0
(9) xf (%) >o0 if x=Fo

(10) f(x) =o0  for all x

and that there are positive constants 4 and j such that

(11) Fx)>d|« """  for all «x.
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THEOREM 3. Suppose conditions (2), (4), and (6)~(11) hold. Let x (%)
be an oscillatory solution of (1) and let h> o be given. Then there exists a> Z,
such that:

D If t=a and x(¢) <o, then |x(¢)|< A
(i) If for ¢>b>a,x()=x()=0 and x({) <o for t in (6,0).
then ¢—b <h.

Proof. Let V(x,y,8)=9%27{) +q¢@F @)|r(@); then V' <y—
— %7 (£)[272 (£). Integrating, we obtain

Ve + [ [p2() 7' (D272(] ds <V (&) + 2 —x (2,

to

and since x (#) is bounded by Theorem 1, we have

[o9)

J~[J’2(\5‘> 7' (8)[272(s)] ds < oo.

to

Since H(#) =7(#)/g (#) is increasing, H'() >0 so ¢ (]2 ¢? @<
<M (' (#)[272(¢)). Thus

(x2) [ 267 @l 61 ds < oo
Next'we define

W.(x,,8) = 5?2 g(#) + F () — f [ () (5)lg ()] ds
and we see that W, (#) = —»2¢'()]2 ¢2(¢). Integrating, we have
W.(0) = W, (5) — f (52 () ¢’ ()/2 42()] ds .

Let {#,} be a monotonically increasing sequence of zeros of y(#) such that
Z,— o0 as n->oo. Then

W, (6) = F(x() — f [52(s) ¢ ()/2 ¢2(5)] ds.

Hence,
t

(13) @1x(0) W, 0 + [ 26 ¢ ©f2 2] ds.

t
n

Now let x (#) be an oscillatory solution of (1) and suppose that (i) does
not hold. Then there exists %> o such that for any a > ¢, there exists
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b >a with x(6) < —4%. By (12) we can choose a ># so that

f [32(5) ¢ (9)/2 g2(5)] ds < dA™ )2

a

By Theorem 1, x (¢) is bounded, Say |2 (#)] < B for some B > 0, so we let
m = M/k[4B. Since x(¢) is oscillatory and H(#) is increasing monotonically
to M, there exists 4 > a such that x () = o0 and for # >4 we have

(14) H{#) >M/2 and H@®—H(®) <m.

There is a sequence {a,} increasing monotonically to oo with @; >4 and such
that

(IS> x (an> < —h and y (an> =0.

Observe next that W,, () <o for # > a;, and by (13), W,, (¢) = dA'""//2
for #>ay, so W, () >L >0 as #-—>oco. Next we let R(¢)=¢1(?) and
P()=3W. () +R' )22 @}2—R ()« @y (@. Then

P'0)=R"(0) 222 + ¢ &) [— 22 D]2 ¢()—F =) x@) +7®) xOlg ()]lg @) .

From the proof of Theorem 4.5 in [1] we know that (10) implies
x (@) f(x () =F (x () so we have

P'(5) < R () 2O)f2 + /&) [— 2 Bl20(5) — Fx(0) + 7 (1) Dlg Ol &)
From a mean value theorem for integrals we have
’P Hy () ds=H@ 2 —H (@) x(a1) — x (w) [H (©) — H(ay)]

a1

where @y <w < ¢ Hence

[ H(5) y(s) ds — H ()2 (9) = — | x ()| [H(#) — H (2)] — H (a1) 2 (a1).

Now |x(w)| < B and by (14), o <H (¥) —H(a)) <7 and H(a;) >M]/2.
Also, x (a1) < —/% by (15). Thus we have

¢
fH(s)y(s) ds >H(@®) x® for ¢ >a.
Thus P'(2) <R"'(9)22()/2—¢ (/) Ljg(®). An integration of this inequality
from a; to a,,n > 1, yields

%

L In(g(a)) <Co+|R" (a,) | B2 + B f R (s) dsz.

ay
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But |R'(q,) ]| < {I R"()|ds +|R"(a))] so

L <Cifln(g(@) + |B° [IEe ds]/ln (7 @)

for each » > 1, which is impossible in light of conditions (7) and (8). This
completes the proof of (i).

In order to prove (ii) we first note that it is easy to show, from the
properties of H (), F (x) and W, (x,y,#), that 32(#)/g (#) is bounded on
[@,00). And since we have that ¢ () — oo as £ —>o0, y(#)/g (£) 0 as ¢ — oo.
It then follows immediately from (4) that y (£)/r () =0 as # —oco. Now let
% >0 be given and choose @ so that | y(?) |[7(#) < //2 for ¢+ > a. Let [5, ]
be any interval such that é >a,x(6) =x(c)=o0, and x () <o for ¢
in' (6,¢). Integrating equation (1) twice we have

()= B)e—b) + f ([ b () — ¢8) (5] ds o

¢
~

=2 B0 + | ¢ —w) @) —g @)/ (v @)] du.
For z=¢ we obtain x'(8)(c—6) +7(6)(c— 8022 <o, so (c—b)f2 <
<|x'(6)|]r (6) < #/2 and (ii) is proved.
THEOREM 4. Swuppose conditions (2), (4) and (6)-(11) hold. Let x (¢) be

an oscillatory solution of (1) and let & >0 be given. Then there exists T > ¢,
such that —h <x(t) <(MJd + Y for ¢ >T.

Proof. If x (2) is an oscillatory solution of (1) and #% is a positive number,
then by Theorem 3 there exists @ > 7, such that if #>a and x (¢) < o, then

(16) x(£) > max {— % , — (dk/2 M) (M/d)*"'}

and

(17) F (x (2)) < (dhl4)(MJd)".

Since ¢(#)[r(#) - 1)M as #-—> oo, there exists 4> a such that
(18) g @Dlr @ <2/M

for #>4. Choose T > & so that x(T) <o and #'(T)=o0. If #>T and
x (#) <o, then the conclusion of the theorem follows from (16). If #>T
and z () =0, let V(x,y,8) =227 +¢ @ Fx)lr (), and by differ-
entiating and integrating V we obtain ¢ () F (x (0)/r (£) < x (£) — x (T) +
+¢ (T) F(x (T)/r (T). Hence, by (11), d[x )] < (M) (dk) + Mx (7).
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Thus
(19) x(2) [x7 (&) —M/d] < (M) 7 .

If x7(#) <M/d, then the theorem follows. If x/(#) >M/d from (19) we have
x7 (#) —M/d < %, and the proof of the theorem is now complete.

REMARK 1. If in equation (1),f(x) = x? where p is an odd positive
integer, then we may take 4 = 1/(p+ 1) and j = p in condition (11) above.
In this case the conclusion of Theorem 4 has the form

—h<x@) <[(p + DM + 1"

REMARK 2. It is interesting to note that the conclusions of Theorems 3
and 4 do not hold if the monotonicity condition of H (¢)is relaxed. The
equation

24P x=8F+6coss t>1

satisfies all the hypotheses of these theorems except that H () =2 -+
+ 3 (cos £%)/2#* is not monotonic. Here M = 2 and we can take & — 1/2
and j=1. Now x(¥)= 2 + 3sin#® is a solution of this equation which
does not satisfy — /% < x(#) <4 -+ % for any 4 < 1.

The following two theorems generalize Theorems 2.1 and 2.2 in [2].

THEOREM 5. Suppose conditions (4), (6), (9) and (10) hold. If x (¢) is
a nonoscillatory solution of (1), then either x (t) is ultimately monotonic, or
there exists a >ty such that x (¢) has a positive lower bound for t > a.

Proof. Let x (£) be a nonoscillatory solution of (1). By Lemma 4.1 in [1],
there exists @ >#, such that x () > o0 for # >a. Assume that x (#) is not
ultimately monotonic and that x (#) does not have a positive lower bound
on [a,00). Choose 6=>a such that H () =7 (#))g (£) > 3M/4 for ¢> é.
By (9) there exists A > o such that f(x) <M/4 for o <x < A. Also, there
exists ¢ > 4 such that y (¢) = 0 and x (¢) <A, and there exists & > ¢ such
that y (@) = o0 and x (d) < (c)/4. Defining W, (x,y,#) as in the proof of
Theorem 3 we have W, (d) < W, (¢)’ from which we obtain

(20) f H(s) y(s) ds > — F (x(c)) .

But, by a mean value theorem for integrals, there is a number w in [¢, d]
such that

fH(s)y(s) ds =x(w) [H () — H(d)] + H (&) #(d) — H (c) x () < — Mz (0)/2

which contradicts (20) since F(x'(0)) <f (x (¢) x(c) < Mx (¢)/4.

REMARK 3. An example showing that the monoticity condition on H(#)
in Theorem 5 is essential can be found in [2].
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THEOREM 6. Suppose conditions (2), (4), (6) and (9)—(11) kold. Let x (¢)
be a solution of (1). Then:
@) If x (&) is witimately monotonic, then f(x () —M as ¢ — oo.
(i) If x (¢) ds nonoscillatory, then there exists b >0 and T > ¢, such
that h < x (&) < (MDY for t >T.

Proof. Assume that x (£) is a solution of (1) which is ultimately mono-
tonic. By Lemma 4.1 in [1] there exists @ > £, such that x (#) > o for # > a.
By Theorem 1 we have that x (#) is bounded. Since x (¢) is monotonic,
Flx (@) —A by (10). If A==M, an 1ntegrat10n of the second equation in (5)
leads to a contradiction.

To prove (ii) we first assume that x (¢) is ultimately monotonic. Then
there exist T >¢; and % >o0 such that M/2 < f(x (¢)) <M, f (&) =M]/2
and x (£) > /% for t > T. Now

(21) 2 [xOT < F@©) <f(x @) x(@) <Mz (0

for  >T so x(f) < (MJd)"” for # >T and (ii) holds.

If x(¢#) is not ultimately monotonic, then by Theorem 5 there exists
2 >o0 and @ >#y such that x (¢) > % for t = a. If f(x(?) <M for ¢ > a,
then, by (21), (ii) holds. Suppose that there exists & > a such that # (x (6)) > M.
Then there exists ¢ > 4 such that f (x (¢)) <M, for otherwise it can be shown
that x (#) must be monotonic. Now if f(x (£)) <M for # > ¢, we are done
so suppose there exists d > ¢ such that # (x (¢)) >M. Notice that x (¢) < x (&)
since f is monotonic. Since f is continuous there exists K such that
x(c) <K <x(d),f(K)=M, and f(x (¥)) >M for K <x(#) < x(d). There
exists @1 > ¢ such that x (d1) = K and x(#) > K for d1 <# < d since x (¢)
is continuous. Since there is again a value of ¢ for which f(x (?)) <M, a
similar argument will yield &> > & with the property that x (22) = K and for
d <t <ds we have f(x(¢#)) >M and x (¢#) > K. If x(#) attains its maxi-
mum value on [#1,d>] at ds, then d3 is in (41, d2) and y (d3) = 0. Now on
(&1 ,dg) Y'(t) <o so y(ds) <o. Let T >dz be such that ¥ (T) = o0 and
y (@ <ofords <¢ <T. Since ¥ (T) = y (d3) and since y'(¥) < o on (d3, d),
we must have H (m) > f (x (m)) for some 7 in (da, T). We have y (#) <o
on (d2,T) so x(¢) is decreasing on this interval and hence f(x(T)) <
- <fx(m) <H@m) <H(T). Define V(x,y,t)=132%24¢# -+ F (x); then

V' < yr(@®]g(f). Integrating we have V() < V(T) + H@) x(?) — H(T) »(T) +

+ 2 () [H(T) — H ()] where T <w <z Hence 4[x®]"" < f(x(D)x(T)
+H®O2 () —HM 2 (T) <Mx () for £t >T and so (ii) holds.

The equation "4 x = 1 demonstrates that the bounds in part (ii) of
Theorem 6 are sharp.
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