Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

K. W. Chang

On Coddington and Levinson's results for a nonlinear boundary value problem involving a small parameter

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.4, p. 536-543.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_54_4_536_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali ordinarie.- On Coddington and Levinson's results for a nonlinear boundary value problem involving a small parameter ${ }^{(*)}$. Nota di K. W. Chang, presentata ${ }^{(*)}$ dal Socio G. Sansone.

Riassunto. - Supposto $f, g \in \mathrm{C}^{1}, f \geq \mu>0, f(t, y) y^{\prime}+g(t, y)=0$ abbia una soluzione $y=\bar{y}(t)$ tale che $\bar{y}(\mathrm{I})=\beta$, Coddington e Levinson hanno dimostrato che per ε sufficientemente piccolo, il sistema non lineare

$$
\varepsilon y^{\prime \prime}+f(t, y) y^{\prime}+g(t, y)=0 \quad, \quad y(\mathrm{o})=\alpha \quad, \quad y(\mathrm{I})=\beta
$$

ha una soluzione $y=y(t, \varepsilon)$ in [O, I] e inoltre

$$
y(t, \varepsilon) \rightarrow \bar{y}(t) \quad, \quad y^{\prime}(t, \varepsilon) \rightarrow \bar{y}^{\prime}(t) \quad \text { per } \quad 0<\delta \leq t \leq \mathrm{I}
$$

Con un nuovo metodo si dimostra che se $f, g \in \mathrm{C}^{2}$ allora $y(t, \varepsilon)=\bar{y}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(e^{-\mu t / \varepsilon}\right), y^{\prime}(t, \varepsilon)=\bar{y}^{\prime}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(\varepsilon^{-1} e^{-\mu t / \varepsilon}\right)$ per $\mathrm{o} \leq t \leq \mathrm{I}$.

i. Statement of Results

In [I], Coddington and Levinson studied the nonlinear boundary value problem

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+f(t, y) y^{\prime}+g(t, y)=0 \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
y(\mathrm{o})=\alpha \quad, \quad y(\mathrm{I})=\beta \tag{2}
\end{equation*}
$$

where ε is a small positive parameter. It is natural to expect that an approximate solution to the problem (I), (2) will be given by the function $\bar{y}(t)$ which satisfies the degenerate equation

$$
f(t, \bar{y}) \bar{y}^{\prime}+g(t, \bar{y})=0
$$

and one of the boundary conditions (2). In fact they obtained the following result.

Theorem I. Suppose
(I) the functions $f(t, y)$ and $g(t, y)$ are such that the problem

$$
f(t, \bar{y}) \bar{y}^{\prime}+g(t, \bar{y})=0 \quad, \quad \bar{y}(\mathrm{I})=\beta
$$

has a solution $\bar{y}(t)$ on $\mathrm{o} \leq t \leq \mathrm{I}$;
(*) Research supported by N.R.C. grant n. 5593 and completed while attending S.R.I., Edmonton.
(**) Nella seduta del 14 aprile 1973.
(II) f, g are of class C^{1} in a region

$$
\mathrm{R}_{\sigma}=\{(t, y): \mathrm{o} \leq t \leq \mathrm{I},|y-\bar{y}(x)| \leq \sigma, \sigma>\mathrm{o}\}
$$

which includes the point (o, α);
(III) there exists a constant $\mu>0$ such that

$$
f(t, y) \geq \mu \quad \text { in } \quad \mathrm{R}_{\sigma}
$$

Then, for ε sufficiently small, a solution $y(t)=y(t, \varepsilon)$ of (I$)$, (2) exists in R_{σ} such that $y(t, \varepsilon) \rightarrow \bar{y}(t)$ and $y^{\prime}(t, \varepsilon) \rightarrow \bar{y}^{\prime}(t)$ uniformly on any subinterval $0<\delta \leq t \leq \mathrm{I}$. Moreover, in a region $\mathrm{R}_{\mathrm{\sigma}_{0}}\left(0<\sigma_{0}<\sigma\right)$, there exists at most one solution of (1), (2).

The behaviour of the solution in the boundary layer (i.e. near the endpoint $t=0$) was not discussed in [1]. Wasow [5] and Erdélyi [2] studied this boundary layer behaviour and showed that there exists a solution $y(t, \varepsilon)$ such that

$$
\begin{align*}
& y(t, \varepsilon)=\bar{y}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(e^{-\mu t / \varepsilon}\right) \tag{3}\\
& y^{\prime}(t, \varepsilon)=\bar{y}^{\prime}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(\varepsilon^{-1} e^{-\mu t / \varepsilon}\right)
\end{align*}
$$

uniformly throughout the whole interval $\mathrm{o} \leq t \leq \mathrm{I}$. However, they needed an extra assumption, namely, some restriction on the size of the boundary layer jump $|\alpha-\bar{y}(0)|$. Recently, by assuming f, g to have power series expansions in $\tau=t / \varepsilon$, O'Malley [4] removed this restriction on the smallness of $|\alpha-\bar{y}(\mathrm{o})|$.

In this paper we show that the results of Theorem I can be extended to include the results (3), without requiring $|\alpha-\bar{y}(\mathrm{o})|$ to be small or f, g to be analytic. We require only that f, g are twice continuously differentiable.

Theorem 2. Suppose assumptions (I) and (III) of Theorem I hold and suppose $\left(\mathrm{II}^{\prime}\right) f$ and g are of class C^{2} in R_{σ}. Then for ε sufficiently small, a solution $y(t, \varepsilon)$ of (I$),(2)$ exists in R_{σ} and

$$
\begin{align*}
& y(t, \varepsilon)=\bar{y}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(e^{-\mu t / \varepsilon}\right) \tag{3}\\
& y(t, \varepsilon)=\bar{y}^{\prime}(t)+\mathrm{o}(\varepsilon)+\mathrm{o}\left(\varepsilon^{-1} e^{-\mu t / \varepsilon}\right)
\end{align*}
$$

uniformly for the interval $\mathrm{o} \leq t \leq \mathrm{I}$. Moreover, in a region $\mathrm{R}_{\sigma_{0}}\left(\right.$ with $\left.\mathrm{o}<\sigma_{0}<\sigma\right)$, there exists at most one solution of (1), (2).

In view of Theorem I , it suffices to prove only the results (3) of Theorem 2. Our method of proof is to replace the problem (I), (2) by a more tractable problem for a diagonalized system of two first order equations. This approach obviates the necessity, encountered by earlier writers, of breaking up the error term into the so-called inner and outer corrections.

We note that the boundary value problem

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y^{n+1}=0 \quad, \quad y(\mathrm{o})=\alpha \quad, \quad y(\mathrm{x})=\beta
$$

was cited by Willet [6] and Erdélyi [3] to illustrate the usefulness of employing a more refined approximate solution. It follows from Theorem 2 that for the whole class of problems (I), (2) (of which the above problem is a special case) the existence of $\bar{y}(t)$ already ensures results (3); therefore it is not necessary to employ approximate solutions more refined than $\bar{y}(t)$.

2. Transformation into a Diagonalized System

Set $v=y(t, \varepsilon)-\bar{y}(t)$, where $y(t, \varepsilon)$ is the solution of Theorem $\mathbf{1}$. Then by equation (I) we have

$$
\varepsilon v^{\prime \prime}=-f(t, y(t, \varepsilon))\left(\bar{y}^{\prime}+v^{\prime}\right)-g(t, \bar{y}(t)+v)-\varepsilon \bar{y}^{\prime \prime},
$$

or equivalently,

$$
\begin{equation*}
\varepsilon v^{\prime \prime}+\mathrm{A}(t) v^{\prime}+\mathrm{B}(t) v=\stackrel{\rightharpoonup}{\mathrm{G}}(t, \varepsilon, v), \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{A}(t)=\mathrm{A}(t, \varepsilon)=f(t, y(t, \varepsilon)), \\
& \mathrm{B}(t)=f_{y}(t, \bar{y}(t)) \bar{y}^{\prime}+g_{y}(t, \bar{y}(t)),
\end{aligned}
$$

and

$$
\stackrel{\rightharpoonup}{\mathrm{G}}(t, \varepsilon, v)=-f(t, \bar{y}(t)+v) \bar{y}^{\prime}-g(t, \bar{y}(t)+v)+\mathrm{B}(t) v-\varepsilon \bar{y}^{\prime \prime} .
$$

Let $p(t)=p(t, \varepsilon)$ be the solution of

$$
\begin{equation*}
\varepsilon p^{\prime}=-\mathrm{A}(t) p-\varepsilon p^{2}-\mathrm{B}(t), \quad p(0)=0, \tag{5}
\end{equation*}
$$

and let $q(t)=q(t, \varepsilon)$ be the solution of

$$
\begin{equation*}
\varepsilon q^{\prime}=[\mathrm{A}(t)+2 \varepsilon p(t)] q-\mathrm{I}, \quad q(\mathrm{I})=0 \tag{6}
\end{equation*}
$$

At the end of this section it will be shown that, for ε sufficiently small the solutions $p(t), q(t)$ exist and are bounded on [0, I]. With these functions $p(t), q(t)$ let us introduce the new variables

$$
\begin{align*}
& z=v^{\prime}-p(t) v, \tag{7a}\\
& w=v+\varepsilon q(t) z . \tag{7b}
\end{align*}
$$

Applying the change of variable (7a) to the equation (4) we obtain the following " triangular" system

$$
\begin{gathered}
v^{\prime}=p(t) v+z \\
\varepsilon z^{\prime}=-[\mathrm{A}(t)+\varepsilon p(t)] z+\stackrel{\mathrm{G}}{ }(t, \varepsilon, v)
\end{gathered}
$$

which reduces, under the further change of variable (7 b), to the "separated " or diagonalized system

$$
\begin{align*}
w^{\prime} & =p(t) w+q(t) \mathrm{G}(t, \varepsilon, w, z), \tag{8}\\
\varepsilon z^{\prime} & =-[\mathrm{A}(t)+\varepsilon p(t)] z+\mathrm{G}(t, \varepsilon, w, z),
\end{align*}
$$

where

$$
\mathrm{G}(t, \varepsilon, w, z)=\tilde{\mathrm{G}}(t, \varepsilon, w-\varepsilon q(t) z) .
$$

Similarly, under (7 b) the boundary conditions (2) become

$$
\begin{align*}
& w(\mathrm{o})-\varepsilon q(\mathrm{o}) z(\mathrm{o})=v(\mathrm{o})=\alpha-\bar{y}(\mathrm{o}), \tag{9}\\
& w(\mathrm{I})=w(\mathrm{I})-\varepsilon q(\mathrm{I}) z(\mathrm{I})=v(\mathrm{I})=0,
\end{align*}
$$

because $q(\mathrm{I})=\mathrm{o}$.
The diagonalized system (8) is more tractable than the equation (4); in fact, the general solution of (8) satisfies the integral equations

$$
\begin{aligned}
& w(t)=\mathrm{P}(t) \mathrm{C}_{1}-\int_{i}^{1} \mathrm{P}(t) \mathrm{P}^{-1}(s) q(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s \\
& z(t)=\mathrm{Z}(t) \mathrm{C}_{2}+\varepsilon^{-1} \int_{0}^{i} Z(t) \mathrm{Z}^{-1}(s) \mathrm{P}^{-1}(t) \mathrm{P}(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{P}(t)=\exp \left(\int_{0}^{t} p(s) \mathrm{d} s\right) \\
& Z(t)=Z(t, \varepsilon)=\exp \left\{-\varepsilon^{-1} \int_{0}^{t} f[s, y(s, \varepsilon)] \mathrm{d} s\right\}
\end{aligned}
$$

and C_{1}, C_{2} are arbitrary constants. It only remains to choose C_{1} and C_{2} so as to satisfy the boundary conditions (9). The end results will appear as equations (12) in the next section.

The existence of bounded nonzero functions $p(t), q(t)$ follow from the
Lemma. There exists $\varepsilon_{1}>0$ such that the equations (5) and (6) have, respectively, solutions $p(t)$ and $q(t)$ which are uniformly bounded for $0 \leqq t \leqq \mathrm{I}$, $0<\varepsilon \leqq \varepsilon_{1}$.

Proof. For any continuous function $\mathrm{F}(t)$ defined on $[\mathrm{O}, \mathrm{I}]$ we set

$$
\|\mathrm{F}(t)\|=\max _{t}|\mathrm{~F}(t)|
$$

It can be verified by differentiation that a solution $p(t)$ of the integral equation $p(t)=\mathrm{T} p(t)$ where

$$
\mathrm{T} p(t)=\int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}^{-1}(s)\left[-p^{2}(s)-\varepsilon^{-1} \mathrm{~B}(s)\right] \mathrm{d} s
$$

is also a solution of the differential equation in (5). Moreover $p(0)=0$. We will prove the existence of a unique solution of the integral equation by
the contraction mapping principle. In fact, by (III)

$$
\left|\mathrm{T} p(t)-\mathrm{T} p^{*}(t)\right| \leqq\left\|p(t)+p^{*}(t)\right\|\left\|p(t)-p^{*}(t)\right\| \int_{0}^{t} e^{-\mu(t-s) / \varepsilon} \mathrm{d} s
$$

and hence

$$
\left\|\mathrm{T} p(t)-\mathrm{T} p^{*}(t)\right\| \leqq \varepsilon \mu^{-1}\left\|p(t)+p^{*}(t)\right\|\left\|p(t)-p^{*}(t)\right\| .
$$

Choose $\varepsilon_{1}>0$ so small that

$$
\varepsilon_{1}\left(2 \mu^{-1}\right)^{2}\|\mathrm{~B}(t)\| \leqq \mathrm{I} / 2
$$

If $\|p\|,\left\|p^{*}\right\| \leqq \rho$, where $\rho=2 \mu^{-1}\|\mathrm{~B}(t)\|$, it follows immediately that for $0<\varepsilon \leqq \varepsilon_{1}$

$$
\left\|\mathrm{T} p(t)-\mathrm{T} p^{*}(t)\right\| \leqq 2 \varepsilon \mu^{-1} \rho\left\|p(t)-p^{*}(t)\right\| \leqq \mathrm{I} / 2\left\|p(t)-p^{*}(t)\right\| .
$$

Similarly we obtain

$$
\|\mathrm{T} p(t)\| \leqq \mu^{-1} \varepsilon \rho^{2}+\mu^{-1}\|\mathrm{~B}(t)\| \leqq \rho / 4+\rho / 2<\rho .
$$

Therefore it follows by the contraction principle that the integral equation $p(t)=\mathrm{T} p(t)$ has a unique solution $p(t)$ in $\|p(t)\| \leq p$.

We next obtain a bounded nontrivial solution $q(t)$ of the equation (6). In fact, by integrating (6) between the limits t and I the required solution is

$$
q(t)=\varepsilon^{-1} \int_{t}^{1} \exp \left(-\varepsilon^{-1} \int_{t}^{s}[\mathrm{~A}(\tau)+2 \varepsilon p(\tau)] \mathrm{d} \tau\right) \mathrm{d} s
$$

Since ε_{1} has been chosen so small that $\varepsilon_{1} \rho \leq \mu / 4$, it follows that for $0 \leqq t \leqq \mathrm{I}$ and $0<\varepsilon \leqq \varepsilon_{1}$

$$
q(t) \leqq(\mu-2 \varepsilon \rho)^{-1} \leqq 2 / \mu .
$$

Note that if we set $t=0$ in the integral for $q(t)$ and integrate by parts, then $q(\mathrm{o})>\mathrm{o}$.

3. Proof of Theorem 2

As we have mentioned, it suffices to prove only the results (3) of Theorem 2. If $\|\mathrm{P}(t)\| \leq \rho$ as in the proof of the Lemma, it follows that the function

$$
\mathrm{P}(t)=\exp \left\{\int_{0}^{t} p(s) \mathrm{d} s\right\}
$$

which is the solution of $x^{\prime}=p(t) x$ such that $\mathrm{P}(\mathrm{o})=\mathrm{I}$, satisfies

$$
\begin{equation*}
\left|\mathrm{P}(t) \mathrm{P}^{-1}(s)\right| \leq e^{\rho}=\mathrm{L} \quad \text { for } \quad 0 \leq t, s \leq \mathrm{I} \tag{іо}
\end{equation*}
$$

By assumption (III), we have

$$
\begin{equation*}
Z(t) Z^{-1}(s) \leq \exp (-\mu(t-s) / \varepsilon) \quad \text { for } \quad 0 \leq s \leq t \leq \mathrm{I} \tag{II}
\end{equation*}
$$

By assumption (II^{\prime}) and the Lemma, there exists a positive constant k such that

$$
\left.\left(\left|f_{y y}\right|\left|\bar{y}^{\prime}\right|\right)+\left|g_{y y}\right|\right)(\mathrm{I}+\|q(t)\|)^{2} \leq k / 4
$$

and we obtain, by applying the mean value theorem twice as in [2],

$$
\left|\mathrm{G}\left(t, \varepsilon, w_{1}, z_{1}\right)-\mathrm{G}\left(t, \varepsilon, w_{2}, z_{2}\right)\right| \leq k h\left(w_{1}, w_{2}, z_{1}, z_{2}\right)
$$

where
$h\left(w_{1}, w_{2}, z_{1}, z_{2}\right)=\max \left(\left|w_{1}\right|,\left|w_{2}\right|, \varepsilon\left|z_{1}\right|, \varepsilon\left|z_{2}\right|\right) \max \left(\left|w_{1}-w_{2}\right|, \varepsilon\left|z_{1}-z_{2}\right|\right)$.
Also, there exists $c>0$ such that

$$
|\mathrm{G}(t, \varepsilon, o, o)|=\varepsilon\left|\bar{y}^{\prime \prime}\right| \leq c \varepsilon .
$$

It can readily be verified that the solution of the problem (8), (9) satisfies the integral equations

$$
\begin{align*}
w(t) & =-\int_{t}^{1} \mathrm{P}(t) \mathrm{P}^{-1}(s) q(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s \tag{I2}\\
z(t) & =\varepsilon^{-1} \mathrm{Z}(t) \mathrm{P}^{-1}(t)[w(0)-\alpha+\bar{y}(\mathrm{o})] / q(\mathrm{o}) \\
& +\varepsilon^{-1} \int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}^{-1}(s) \mathrm{P}^{-1}(t) \mathrm{P}(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s
\end{align*}
$$

We shall prove the existence of a solution of (12) with the required properties by the method of successive approximations, setting $\left(w_{0}, z_{0}\right)=(\mathrm{o}, \mathrm{o})$, $\left(w_{n}, z_{n}\right)=\mathrm{T}\left(w_{n-1}, z_{n-1}\right), n=\mathrm{I}, 2, \cdots$ where

$$
\begin{align*}
\mathrm{T} w(t) & =-\int_{t}^{1} \mathrm{P}(t) \mathrm{P}^{-1}(s) q(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s \tag{13}\\
\mathrm{~T} z(t) & =\varepsilon^{-1} \mathrm{Z}(t) \mathrm{P}^{-1}(t)[\mathrm{T} w(0)-\alpha+\bar{y}(0)] / q(\mathrm{o}) \\
& +\varepsilon^{-1} \int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}^{-1}(s) \mathrm{P}^{-1}(t) \mathrm{P}(s) \mathrm{G}[s, \varepsilon, w(s), z(s)] \mathrm{d} s .
\end{align*}
$$

We collect here the following elementary estimates while will be used:

$$
\begin{aligned}
& \int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}^{-1}(s) \mathrm{d} s \leq \varepsilon / \mu, \\
& \int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}(s) \mathrm{d} s \leq \varepsilon Z(t) / \mu, \\
& \int_{t}^{1} \mathrm{Z}^{m}(s) \mathrm{d} s \leq \varepsilon Z^{m}(t) / m \mu, \quad \text { if } m>0 .
\end{aligned}
$$

39. - RENDICONTI 1973, Vol. LIV, fasc. 4.

Take

$$
\begin{align*}
& c_{0}=\sup _{t, \mathrm{~s}}[c|q|,(\mathrm{L} c|q|+|\alpha-\bar{y}(\mathrm{o})|) / q(\mathrm{o})] \tag{15}\\
& c_{1}=\mathrm{L}\left(c_{0}+\mu^{-1}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=4 c_{1} \mathrm{~L} k\left(\mathrm{I}+2 \mu^{-1}\right)(\mathrm{I}+\mathrm{L}\|q\| / q(\mathrm{o})) . \tag{16}
\end{equation*}
$$

Finally choose ε_{0} so small that

$$
\lambda \varepsilon_{0} \leq \mathrm{I} / 2 \quad \text { for } \quad 0<\varepsilon \leq \varepsilon_{0} .
$$

In view of (10), (14) and (15) we obtain

$$
\begin{aligned}
& \left|w_{1}(t)\right| \leq \mathrm{L} c\|q\| \varepsilon \leq c_{1}(\mathrm{Z}(t)+\varepsilon) \\
& \varepsilon\left|z_{1}(t)\right| \leq \mathrm{L}|\alpha-\bar{y}(\mathrm{o})| c \mathrm{Z}(t) / q(\mathrm{o})+\mathrm{L} c \mu^{-1} \varepsilon^{2} \leq c_{1}\left(\mathrm{Z}(t)+\varepsilon^{2}\right)
\end{aligned}
$$

Also, from (i3) we have

$$
\begin{aligned}
& \left|w_{a+1}(t)-w_{n}(t)\right| \leq \mathrm{L} k\|q\| \int_{t}^{1} h\left(w_{n}(s), w_{n-1}(s), z_{n}(s), z_{n-1}(s)\right) \mathrm{d} s \\
& \varepsilon\left|z_{n+1}(t)-z_{n}(t)\right| \leq \mathrm{Z}(t) \mathrm{L} \mid w_{n+1}(\mathrm{o})-w_{n}(\mathrm{o}) \| q(\mathrm{o}) \\
& \quad+\mathrm{L} k \int_{0}^{t} \mathrm{Z}(t) \mathrm{Z}^{-1}(s) h\left(w_{n}(s), w_{n-1}(s), z_{n}(s), z_{n-1}(s)\right) \mathrm{d} s
\end{aligned}
$$

and it follows by induction that

$$
\begin{aligned}
& \left|w_{n}(t)-w_{n-1}(t)\right| \leq(\lambda \varepsilon)^{n-1} c_{1}(Z(t)+\varepsilon), \\
& \varepsilon\left|z_{n}(t)-z_{n-1}(t)\right| \leq(\lambda \varepsilon)^{n-1} c_{1}\left(Z(t)+\varepsilon^{2}\right), \\
& \left|w_{n}(t)\right| \leq 2 c_{1}(Z(t)+\varepsilon), \\
& \varepsilon\left|z_{n}(t)\right| \leq 2 c_{1}\left(Z(t)+\varepsilon^{2}\right),
\end{aligned}
$$

where λ is defined by (16). Therefore, since $\lambda \varepsilon \leq 1 / 2$, the series

$$
\sum_{n=1}^{\infty}\left[w_{n}(t)-w_{n-1}(t)\right] \quad, \quad \sum_{n=1}^{\infty}\left[z_{n}(t)-z_{n-1}(t)\right]
$$

converge uniformly in (t, ε) to a solution $w(t), z(t)$ of (12) and for $\mathrm{o} \leq t \leq \mathrm{I}$

$$
\begin{aligned}
& |w(t)| \leq \sum_{n=1}^{\infty}\left|w_{n}(t)-w_{n-1}(t)\right| \leq 2 c_{1}(Z(t)+\varepsilon) \\
& |z(t)| \leq \sum_{n=1}^{\infty}\left|z_{n}(t)-z_{n-1}(t)\right| \leq 2 c_{1}\left(\varepsilon^{-1} Z(t)+\varepsilon\right) .
\end{aligned}
$$

Returning to the original variable we have for $\mathrm{o} \leq t \leq \mathrm{I}$

$$
\begin{aligned}
|y(t, \varepsilon)-\bar{y}(t)| & \leq|w(t)|+\varepsilon\|q\||z(t)| \leq \mathrm{C}(\mathrm{Z}(t)+\varepsilon) . \\
\left|y^{\prime}(t, \varepsilon)-\bar{y}^{\prime}(t)\right| & \leq\|p\|(|w(t)|+\varepsilon\|q\||z(t)|)+|z(t)| \\
& \leq \mathrm{C}\left(\varepsilon^{-1} Z(t)+\varepsilon\right)
\end{aligned}
$$

for some positive constant C, which implies (3).

References

[i] Coddington E. A. and Levinson N., A boundary value problem for a nonlinear differential equation with a small parameter, "Proc. Amer. Math. Soc. ", 3, 73-8I (1952).
[2] Erdélyi A., On a nonlinear boundary value problem involving a small parameter, "J. Austral. Math. Soc.》, 2, 425-439 (1962).
[3] Erdélyi A., Approximate solutions of a nonlinear boundary value problem, "Arch. Rational Mech. Anal.», 29, 1-17 (1968).
[4] O'Malley R. E., On a boundary value problem for a nonlinear differential equation with a small parameter, «SIAM J. Appl. Math.》, 17, 569-581 (1969).
[5] Wasow W., Singular perturbations of boundary value problems for nonlinear differential equations of the second order, "Comm. Pure Appl. Math.", 9, 95-113 (1956).
[6] Willet D., On a nonlinear boundary value problem with a small parameter multiplying the highest derivative, "Arch. Rational Mech. Anal.», 23, 276-287 (1966).

