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Equazioni differenziali ordinarie. — On Coddington and Levinson’s
results for a nonlinear boundary value problem involving a small
parameter ©. Nota di K. W. Cuang, presentata ®® dal Socio
G. SANSONE. ’

RIASSUNTO. — Supposto f,geCl, f>u>o, f(£,9)y’ +g(¢,y) =0 abbia una
soluzione y = 7 (¢) tale che 7 (1) = B, Coddington e Levinson hanno dimostrato che per €
sufficientemente piccolo, il sistema non lineare

9"+ +e, ) =0 , y@)=a , y(1)=8
ha una soluzione y = y (¢, €) in [0, 1] e inoltre
y(,e)=>7@&) , y(E,e) =7 per o<d<z<1.
Con un nuovo metodo si dimostra che se f,geC? allora

Y@, &) =F@)+o@E) +o( ™™ | y(t, ) =F@B 4o +o(e e ™ per o<t<1.

1. STATEMENT OF RESULTS

In [1], Coddington and Levinson studied the nonlinear boundary value
problem

(1) '+f, )y +gt,y)=o0
(2)‘ yO©=ao , y@ =8,

where ¢ is a small positive parameter. It is natural to expect that an appro-
ximate solution to the problem (1), (2) will be given by the function 7 ()
which satisfies the degenerate equation

f(try_)yl +eg,)=o0

and one of the boundary conditions (2). In fact they obtained the following
result.

THEOREM 1. Swuppose
() the functions f(t,y) and g (t,y) are such that the problem

f(f,_’/l_/)j_/'—]—g(l‘,y)zO , J(m=8
has a solution 7 (£) on 0 <t < 1

(*) Research supported by N.R.C. grant n. 5593 and completed while attending
S.R.I., Edmonton.

(**) Nella seduta del 14 aprile 1973.
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(D) f,g are of class C* in a region
Ro={(¢,»):0<t¢<1,|y—7@)|<0,06>0}

which includes the point (0, o);
(I1I)  there exists a constant p. > 0O such that

SEy) = in R,.

Then, for e sufficiently small, a solution y(t) =y (¢, <) of (1), (2) exists in R,
such that y(t,e) —j&) and y'(¢,<) =7 (&) uniformly on any subinterval
0 <3 <¢t<1. Moreover, in a region R,, (0< 0y <o), there exists at most
one solution of (1), (2).

The behaviour of the solution in the boundary layer (i.e. near the end-
point # = 0) was not discussed in [1]. Wasow [5] and Erdélyi [2] studied
this boundary layer behaviour and showed that there exists a solution
¥ (¢,¢) such that

vy, &) =5@ +o() +olm
Y, =7 +o() +o(ewr)

uniformly throughout the whole interval o < # < 1. However, they needed
an extra assumption, namely, some restriction on the size of the boundary
layer jump |a—7(0)|. Recently, by assuming f,g to have power series
expansions in t = #fe, O'Malley [4] removed this restriction on the small-
ness of |a— 7(0)].

In this paper we show that the results of Theorem 1 can be extended
to include the results (3), without requiring | — 7(0)| to be small or f, g to
be analytic. We require only that /, g are twice continuously differentiable.

(3)

THEOREM 2. Swuppose assumptions (1) and (111) of Theorem I hold and
suppose (11') f and g are of class C* in Ry. Then for < sufficiently small, a
solution y (¢, <) of (1), (2) exists in Ry and

y(#,9=7@ +o() +o( )
Y@, e)=7@ +o() +o(tewh)

uniformly for the interval o< t< 1. Moreover, in a region Re, (with 0< 6y< o),
there exists at most one solution of (1), (2).

(3)

In view of Theorem 1, it suffices to prove only the results (3) of Theorem 2.
Our method of proof is to replace the problem (1), (2) by a more tractable
problem for a diagonalized system of two first order equations. This approach
obviates the necessity, encountered by earlier writers, of breaking up the
error term into the so-called inner and outer corrections.

We note that the boundary value problem

'+y' +ytt=0 , yoO)=a , y()=8p
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was cited by Willet [6] and Erdélyi [3] to illustrate the usefulness of employ-
ing a more refined approximate solution. It follows from Theorem 2 that
for the whole class of problems (1), (2) (of which the above problem is a special
case) the existence of 7(#) already ensures results (3); therefore it is not
necessary to employ approximate solutions more refined than 7(z).

2. TRANSFORMATION INTO A DIAGONALIZED SYSTEM

Set v =y (¢,e) — 7 (¢), where y(¢,¢) is the solution of Theorem T.
Then by equation (1) we have

' =—f, ¢ NF+v)—g ¢, 7@ +v)—e,
or equivalently,
(1) '+ ADV+BBOov=G(,¢,0),

where

A<t)=A<t’e) =f(t,y(tas))»
BO=£ET70O)7+e¢,70),

and
G e,0)=—f(t,70) +0)7—gt, 5B+ o)+ B@v—e".
Let p(¢¥) = p(¢, ) be the solution of

(5) ep’=—-A(t)p—sp2—B(t), P(O) =0,
and let ¢(#) = ¢(#, €) be the solution of
©) g =[A@) +2@]g—1, g(1)=o0.

At the end of this section it will be shown that, for e sufficiently small the
solutions  (#), ¢ (¢) exist and are bounded on [0, 1]. With these functions
2 () ,¢9 @ let us introduce the new variables

(7 2) z=v—p@)v,
(7 b) w=uv+4eqt)z.

Applying the change of variable (7a) to the equation (4) we obtain the
following ‘¢ triangular ” system

vV=pv+z2
w'=—[A@®) +ep D]z +G(@¢,¢c,v)

Which reduces, under the further change of variable (7 b), to the * separated
or diagonalized system

w=pBOw+q9)G{¢,s,w,?2),
e =—[A@®)+ep()]z2+G(¢,c,w,s),

(®
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where
G(t,e,w,s) =G, c,w—zcq(t)2).

Similarly, under (7 b) the boundary conditions (2) become

o  (0) — g ()2 (0) = v(0) = «—7 (0),
. ,
w (1) = (1) — g ()2 (1) = v (1) = 0,

because ¢ (1) = o.

The diagonalized system (8) is more tractable than the equation (4);
in fact, the general solution of (8) satisfies the integral equations

1
w () = P()C1 — {P(t) PL(s)g(s) G s, c,w(s), 2 (s)] ds

() =Z(@)Cy + e f Z(#) Z7Y(s) P7Y(#) P(s) G [s, ¢, w(s),z(s)]ds
0
where

P = exp(ftp ) ds),

Z(@)=2Z(t,e) = exp{—s‘lff[s,y(s,a)] ds\}
0

and Ci, Cy are arbitrary constants. It only remains to choose C; and Cs so
as to satisfy the boundary conditions (9). The end results will appear as
equations (12) in the next section.

The existence of bounded nonzero functions p (¢), ¢ (¢) follow from the

LEMMA.  There exists & >0 such that the equations (5) and (6) have,
respectively, solutions p(t) and q(t) whick are uniformly bounded for o< t <1,
o<e< €.

Proof. For any continuous function F (£) defined on [0, 1] we set

IF @l = max [F@)].

It can be verified by differentiation that a solution p (¢) of the integral equation
2 () =Tp () where
E
T = 20290 rEO—BEI
y ,

is also a solution of the differential equation in (5). Moreover 2 (0) = o.
We will prove the existence of a unique solution of the integral equation by
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the contraction mapping principle. In fact, by (III)

I Tp &) =T @O =12@) +2"Oll 2@ ,—~P*(¢)Hf6"“‘(“"’s ds
and hence ’
ITp@A)—Tr* O = 2@ + 2Ol 2O— DI -
Choose &, > 0 so small that
aCu?IBOI < 1/2.
If |21, 12*l < p, where p=2u||B()], it follows immediately that
foro<e=sg
ITp@O—Tr @Ol = 2zeuell2@O—p DI 1/212O— DIl

Similarly we obtain
ITop@OI < e+ u IBOI = o4 +p/2 <p.

Therefore it follows by the contraction principle that the integral equation
2 (@) = Tp (¢) has a unique solution p (¢) in ||p (@) || < p.
We next obtain a bounded nontrivial solution ¢ (#) of the equation 6).
In fact, by integrating (6) between the limits # and 1 the required solution is
1

g(®)=¢7 fexp (— s‘lf [A (1) +2¢ep(7)] dr) ds.

¢

Since g; has been chosen so small that ¢; p < p/4, it follows that foro < # < 1
and 0 <e < g

7O =@p—2e0)7" = 2/pn.
Note that if we set # = o in the integral for ¢ (#) and integrate by parts, then
g (0)>o.

3. PROOF OF THEOREM 2

As we have mentioned, it suffices to prove only the results (3) of
Theorem 2. If |P(#)|| < p as in the proof of the Lemma, it follows that the
function

PG = exp{ft_p(s) ds}

which is the solution of x'= p(#)x such that P(0) = 1, satisfies
(10) IPEOPLG) | <ee=L for o<, s<1
By assumption (III), we have

(11) ZOZNs) <exp(—u(t—s)fe) for o<s<t<1.
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By assumption (II) and the Lemma, there exists a positive constant 4 such
that

S 117 1)+ 1800 1) (1 +1lg @) 1)* < A4
and we obtain, by applying the mean value theorem twice as in [2],

lG(Z‘>€:w1’31)_G<l"e;w2:32>l gkﬁ(wlyw2’31r32)
where

/z(wl,wg,zl,zz)=max(lw1l lwal,ela], e l25|) max (|w; —wy], € l21—22]).
Also, there exists ¢ > o such that
|G (#,e,0,0)|=¢|7"]| <ce.

It can readily be verified that the solution of the problem (8), (9) satisfies
the integral equations '

1
(12) w ()= ——ffP(z‘) Pr()g(s)G[s,c,w(s),2z(s)] ds

2() =<t Z (@) P (@) [w(0) — a4 7(0)]lg (0)
e [Z(z)z—l@ PO PE) G [s,e,w(s),z ()] ds .
3

We shall prove the existence of a solution of (12) with the required proper-
ties by the method of successive approximations, setting (wy , 25) = (0, 0),
(w,,2,) =T (Wy1,2,1),72=1,2,--- where

1
(13) Tw ()= — [‘P OPHg@)G[s,e,w(s),z(s)] ds

Tz () = 7 Z () P (2) [Tw (0) — & + 7 (0)]/g (0)

¢ .
+ ¢t fZ OZTHPLAOPEG[s,e,w(s),z(s)]ds.
0
We collect here the following elementary estimates while will be used:
¢
fZ () Z7(s)ds< ¢fu.,

0
t

(14) f Z(OZ(s)ds <<Z (B,
0

fZ”’(s) ds < eZ”Omp, if m>o.

z

39. — RENDICONTI 1973, Vol. LIV, fasc. 4.
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Take

- 60=St1’1513[£lql,(L6Iql+lo<—-7(0)l)/q<0)],
e =L (e +p™

and

(16) A=4aLlb@+2p)@+Lgllg ).

Finally choose ¢, so small that
Aeg < 12 for o <e<g.
In view of (10), (14) and (15) we obtain
lwr ()| <Lellglle <a(Z(@) +e¢
sla@)| <Lla—7©)|cZ®lg©) +Lepf <o @@+,

Also, from (13) we have

1
I wa-(-l(t) ~w,, (l‘> ] g L'é H 9 ” fh (wn (S> y Wn—1 (‘Y) sy Zn (‘0 y &n—1 (S)) ds
el 21 —2,0) | <Z@L|w,.y1(0)—w, (0)]/7(0)

+ Lz {Z OZT(S) 2 (w,(s), w.1(5), 2,05, 2,1(s)) ds
0

and it follows by induction that
| |0, () — w01 ()| < 01 @ () + ),
elz, () — 2,1 | < Q)1 (Z(F) + €%,
()| <20 @@+,
s|zn(l‘)] <26 Z@¢) +<2),

where A is defined by (16). Therefore, since Ae < 1/2, the series

2 [, —wa @] 21 50 () — 201 (5]

converge uniformly in (#,¢) to a solution w(z‘),z(?) of (12) and for
o<t<1

lw @] < X |, () —waa(2) ]| < 26(Z() +2)

g i

@I X a® a0 <206 20 + 9.
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Returning to the original variable we have for o <# <1
1y¢, 0 —7@ | <lw@®)| +clgllz(®)] <CEZE + -
1y, 9 —7O1<l2l(w®| +ellgllz@®]) + 12|

<C(EZ(@) +2)

for some positive constant C, which implies (3).
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