ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

A generalization of closed mappings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.3, p. 412–415.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_3_412_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Topologia. — A generalization of closed mappings. Nota di TAKASHI NOIRI, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — Se X ed Y sono spazi topologici, un sottoinsieme di X è detto *semichiuso* se esso è intermedio fra un insieme chiuso di X ed il suo interno; inoltre, un'applicazione $f: X \to Y$ è detta *semichiusa* se essa trasforma ogni insieme chiuso di X in un insieme semichiuso di Y. La presente Nota dà alcune caratterizzazioni di tali applicazioni.

I. INTRODUCTION

N. Levine [4] defined a subset A of a topological space X to be *semi-open* if there exists an open set U in X such that $U \subset A \subset ClU$, where ClU denotes the closure of U in X. He also defined a mapping f of a topological space X into a topological space Y to be *semi-continuous* if for any open set V in Y, $f^{-1}(V)$ is a semi-open set in X. Recently N. Biswas [3] defined a mapping $f: X \to Y$ to be *semi-open* if for any open set U in X, f(U) is a semi-open set in Y. The purpose of the present note is to introduce a new class of mappings called *semi-closed* mappings which contains the class of closed mappings and to give some characterizations of such mappings.

Throughout the present Note X, Y and Z will always denote topological spaces on which no separation axioms are assumed. No mapping is assumed to be continuous otherwise stated. When A is a subset of a topological space X, the closure of A in X is denoted by ClA; the interior of A in X is denoted by IntA. Furthermore, we shall denote the family of all semi-open sets in X by SO (X).

2. Semi-closed mappings

DEFINITION 1. A subset A of a topological space X is said to be *semi-closed* if there exists a closed set F such that Int $F \subset A \subset F$ [2].

DEFINITION 2. A mapping $f: X \to Y$ is said to be *semi-closed* if the image f(F) of each closed set F in X is semi-closed in Y.

Remark 1. Every closed mapping is semi-closed, but the converse is false, as shown by the following example.

Example. Let $X = \{a, b, c\}, J_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $J_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Let $f: (X, J_1) \rightarrow (X, J_2)$ be the identity mapping. Then it follows from SO $(X, J_2) = J_1$ that f is semi-closed, but f is not closed.

(*) Nella seduta del 10 marzo 1973.

LEMMA (Biswas [2]). The following three properties of a subset A of X are equivalent:

- (I) A is semi-closed.
- (2) Int $ClA \subset A$.
- (3) X A is semi-open.

D. R. Anderson and J. A. Jensen [1] showed that if $f: X \to Y$ is a continuous and open mapping, then $f^{-1}(B) \in SO(X)$ for every $B \in SO(Y)$. The following theorem is a slight improvement of this theorem.

THEOREM 1. If $f: X \to Y$ is an open and semi-continuous mapping, then $f^{-1}(B) \in SO(X)$ for every $B \in SO(Y)$.

Proof. Suppose B is an arbitrary semi-open set in Y. Then there exists an open set V in Y such that $V \subseteq B \subseteq CIV$. By the openness of f, we have $f^{-1}(V) \subseteq f^{-1}(B) \subseteq f^{-1}(CIV) \subseteq CI[f^{-1}(V)]$ [5, (i), p. 13]. Since f is semi-continuous and V is open in Y, $f^{-1}(V) \in SO(X)$. Therefore by Theorem 3 of [4], we obtain $f^{-1}(B) \in SO(X)$.

COROLLARY. If $f: X \to Y$ is an open and semi-continuous mapping, then the inverse image $f^{-1}(B)$ of each semi-closed set B in Y is semi-closed in X.

Proof. This follows immediately from Theorem 1 and Lemma.

Remark 2. The composition mapping of two semi-closed mappings is not always semi-closed, as shown by Example 7 of [3] and Lemma.

THEOREM 2. Let $f: X \to Y$ and $g: Y \to Z$ be two mappings, and let $g \circ f: X \to Z$ is a semi-closed mapping. Then:

(1) If f is continuous and surjective, then g is semi-closed.

(2) If g is open, semi-continuous and injective, then f is semi-closed.

Proof. In order to prove the statement (1) suppose H is an arbitrary closed set in Y. Then $f^{-1}(H)$ is closed in X because f is continuous. Since $g \circ f$ is semi-closed and f is surjective, $(g \circ f)[f^{-1}(H)] = g[f\{f^{-1}(H)\}] = g(H)$ is semi-closed in Z. This implies that g is a semi-closed mapping. In order to prove the statement (2) suppose F is an arbitrary closed set in X. Then $(g \circ f)(F)$ is semi-closed in Z because $g \circ f$ is semi-closed. Since g is injective, we have $g^{-1}[(g \circ f)(F)] = f(F)$. It follows immediately from Corollary that f(F) is a semi-closed set in Y because g is open and semi-continuous. This implies that f is semi-closed.

3. CHARACTERIZATIONS

THEOREM 3. $f: X \to Y$ is a semi-closed mapping if and only if $f(ClA) \supset$ \supset Int Cl[f(A)] for every subset A of X.

Proof. Necessity. Suppose f is a semi-closed mapping and A is an arbitrary subset of X. Then f(ClA) is semi-closed in Y. By Lemma, we

413

obtain $f(ClA) \supset Int Cl[f(ClA)] \supset Int Cl[f(A)]$. The proof of this part is complete.

Sufficiency. Suppose F is an arbitrary closed set in X. Then by hypothesis, we have Int $\operatorname{Cl}[f(F)] \subset f(\operatorname{ClF}) = f(F)$. It follows from Lemma that f(F) is semi-closed in Y. This implies that f is semi-closed.

DEFINITION 3. The intersection of all semi-closed sets containing a subset A of X is said to be the *semi-closure* of A and is denoted by $C_{s}(A)$ [2].

THEOREM 4. $f: X \to Y$ is a semi-closed mapping if and only if $C_s[f(A)] \subset f(ClA)$ for every subset A of X.

Proof. Necessity. Suppose f is semi-closed and A is an arbitrary subset of X. Then f(ClA) is semi-closed in Y. Since $f(A) \subset f(ClA)$, we obtain $C_{S}[f(A)] \subset f(ClA)$.

Sufficiency. Suppose F is an arbitrary closed set in X. By the hypothesis, we obtain $f(F) \subset C_S[f(F)] \subset f(ClF) = f(F)$ and hence $f(F) = C_S[f(F)]$. By Theorem 3 of [2], f(F) is semi-closed in Y. This implies that f is semi-closed.

It is well known that if $f: X \to Y$ is a closed mapping, then for each point y in Y and each open set U in X containing $f^{-1}(y)$ there exists an open set V in Y containing y such that $f^{-1}(V) \subset U$. The following theorem is a generalization of this theorem.

THEOREM 5. A surjective mapping $f: X \to Y$ is semi-closed if and only if for each subset B in Y and each open set U in X containing $f^{-1}(B)$, there exists a semi-open set V in Y containing B such that $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose B is an arbitrary subset in Y and U is an arbitrary open set in X containing $f^{-1}(B)$. We put V = Y - f(X - U). Then by Lemma, V is semi-open in Y. Since $U \supset f^{-1}(B)$, it follows from a straightforward calculation that $V \supset B$. Moreover, we have $f^{-1}(V) = X - -f^{-1}[f(X - U)] \subset U$. The proof of this part is complete.

Sufficiency. Suppose F is an arbitrary closed set in X. Let y be an arbitrary point in Y - f(F), then $f^{-1}(y) \subset X - f^{-1}[f(F)] \subset X - F$ and X - F is open in X. Hence by the hypothesis, there exists a semi-open set V_y containing y such that $f^{-1}(V_y) \subset X - F$. This implies that $y \in V_y \subset Y - f(F)$. By Theorem 2 of [4], we obtain that $Y - f(F) = \bigcup \{V_y \mid y \in Y - f(F)\}$ is semi-open in Y. Therefore, by Lemma, f(F) is semi-closed.

References

- D. R. ANDERSON and J. A. JENSEN, Semi-continuity on topological spaces, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.» (8) 42, 782-783 (1967).
- [2] N. BISWAS, On characterizations of semi-continuous functions, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. » (8) 48, 399-402 (1970).
- [3] N. BISWAS, On some mappings in topological spaces, «Bull. Calcutta Math. Soc.», 61, 127-135 (1969).
- [4] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, «Amer. Math. Monthly», 70, 36-41 (1963).
- [5] R. SIKORSKI, Closure homomorphisms and interior mappings, «Fund. Math. », 41, 12-20 (1955).