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Geometria. — On the Indicatrix and Isotropy Group in Finster 
Spaces with Lorentz Signature. N ota di J o h n  K. B e e m , presentata (#) 
dal Socio B. S e g r e .

R ia ssu n t o . — Si studia l’indicatrice di uno spazio di Finsler indefinito con segnatura 
di Lorentz e si m ostra che, per spazi di dimensione >  3, la parte positiva dell’indinatrice 
possiede una sola componente. Si prova poi che i moti di un tale spazio costituiscono un gruppo 
di Lie e si assegnano condizioni sufficienti affinchè il gruppo di isotropia am m etta una rappre­
sentazione fedele quale sottogruppo del gruppo di Lorentz.

Per eventuali applicazioni alla fisica dei risultati qui ottenuti cfr. [4].

i .  I n t r o d u c t i o n

The ^-dim ensionai F insler M anifolds which have a m etric tensor with 
Lorentz signature have been investigated in [1 ]. In  [2] the motions of two 
dim ensional indefinite Finsler Spaces have been studied. The present article 
is concerned with the indicatrix  and isotropy group in higher dimensions. 
This article m ay be of some interest to physicists in connection with the study  
of space-tim es using Finsler spaces ra ther than  R iem annian spaces. Kordo [4] 
has investigated a Finslerian approach to space-times.

Let M be an ^-dim ensional indefinite Finsler manifold and let T '(M ) 
denote the reduced tangen t bundle of M which consists of the tangent bundle 
T (M ) less the zero vectors. I f  M has signature n —  2 ^ then T '(M ) has 
signature 2 n —  4 .s*. Consideration of the metric on T '(M ) shows th a t the 
group of motions of M is a Lie Group.

W hen M has the Lorentz signature and dimension n at least three we 
show th a t the positive p art of the indicatrix  at each point has exactly one 
com ponent. This implies the whole indipatrix m ust have an odd num ber 
of components for n >  3. Exam ples are given which show th a t there are 
spaces with Lorentz signature such th a t for n =  2 the indicatrix  has more 
than  four components and for n >  3 there are spaces in which the indicatrix  
has more th an  the expected three components.

W ang [10] has shown th a t for definite Finsler spaces the isotropy sub­
group I*(M) of the motions of M always has a faithful representation as a 
subgroup of the orthogonal group. One would therefore expect th a t for 
Finsler manifolds of Lorentz signature the isotropy group would always have 
a faithful representation as a subgroup of the Lorentz group. W e give a counter 
exam ple which shows this is not true in general.

(*) Nella seduta del io  marzo 1973.
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However, we are able to show th a t when M has the Lorentz signature, 
the light cone is elliptic and the indicatrix  has exactly  three com ponents 
then the isotropy group I*(M) always adm its a representation as a subgroup 
of the Lorentz group.

2. Indefinite F insler Manifolds

Let M be an ^-dim ensional connected and paracom pact differentiable 
manifold of class C°°. Denote the local coordinates of a point x  by 
OC , X , * * * , oc and let T  (oc) denote the tangent space at x. In  T  (x) we use the 
natu ra l fram e d/dx1, • • •, d/dxn and for a vector y  in T  (x) let y 1, • • •, y n be the 
com ponents of y  in the natu ra l basis. Let L (x , y) be a continuous function 
defined on the tangent bundle T  (M) of M which has the following properties:

(A) T he function L  (x , y)  is of class C°° if y  °.
(B) L  (x , ky) — /£2 L(x  , y) for all k >  o.
(C) The m etric tensor g {j (pc , y) =  — d2Ljdy* dyj  has negative and 

n —   ̂ positive eigenvalues for all (x , y) w ith y  =̂= o.
(D) J L(x  , — y)  I =  I L  ( x , y ) \ .

The function L  (x , y)  will be called the basic m etric function. It corre­
sponds to the square of the fundam ental function which is usually studied 
in definite F insler spaces. The manifold M with the function L (x  ,y )  is
called an indefinite F insler space of signature n — 2 s. I f  the basic metric
function L  (x , y) is replaced with — L ( x ,y ) ,  then M becomes a space of 
signature 2 s —  n.

W hen s =  o the space M is a definite Finsler space, com pare [7]. If 
s — I ,  (or s =  n — 1), then M has the Lorentz signature. In  this paper 
we consider 1 <  s <  n —  1 in Sections 1, 2 and 3. In  the rest of the paper 
we only consider s =  1.

The pseudo-R iem annian manifolds are those in which the m etric tensor 
gij (x , y) depends only on position x. W hen g# (x  yy) depends only on 
direction y  we say th a t M is locally M inkowskian. If  M is R n and is locally 
M inkowskian we call M sim ply a M inkowskian space. A  M inkowskian space 
which is also pseudo-R iem annian is called pseudo-Euclidean. The above 
definition of M inkowskian space differs from the one .generally used by p hy­
sicists. In  physics M inkowskian space refers to the four dim ensional pseudo- 
Euclidean space of signature two.

3. Motions

For each fixed point x 0 of M there is an induced M inkowskian metric 
on T (*0) with basic m etric function L (x0 ,y ). Let M and M be indefinite 
F insler m anifolds with basic m etric functions L ( x ,y )  and L (x '} ÿ )  respec­
tively. A  diffeomorphism /  : M M is called an isom etry of M onto M if
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each of the tangent m aps ( ff)x : T  (x) ->■ T  (f(x))  preserves the indefinite m etric 
on the tangent spaces.

W hen M =  M we say /  is a m otion of M. The group of motions of M is 
denoted I (M). The subgroup of I (M) which leaves the point x  fixed is called 
the isotropy group at x  and is denoted IX(M).

Sasaki [8] has shown how to define an associated R iem annian m etric 
on the tangent bundle of a R iem annian manifold. The Sasaki m ethod m ay 
be used to define a R iem annian m etric on T '(M ) given a definite F insler m etric 
on M. This has been studied in [5], [6] and [11]. The same m ethod applied 
equally well to indefinite F insler spaces and we will not detail the m ethod 
in this paper. I t is clear (compare [6, p. 184]) th a t if M is a Finsler space 
of signature n —  2 s then T ' (M) becomes a pseudo-R iem annian space of 
signature 2 n —■ 4 s. Furtherm ore, any  motion / :  M ->M  has a natu ra lly  
associated m ap /*  [ T '(M ) : T '(M ) -> T '(M ) which is a m otion of T '(M ). We 
will use to denote | T '(M ) in the next lemma.

Lemma i. The group I (M) of motions of M is a Lie Group.

Proof. The space T '(M ) is pseudo-R iem annian and consequently its 
group of motions I (T '(M )) is a Lie Group. The correspondence / - > / *  is an 
isom orphism  of I (M) onto a closed subgroup of I(T '(M )). Since a closed 
subgroup of a Lie Group is a Lie Group the lemma is established.

4. The Indicatrix

In  the rest of this paper we assume M has signature n —  2. I f  x  is a 
fixed point of the manifold M we define the indicatrix ¥LX and light cone Cx 
as the following subsets of the tangent space at x

K t  =  { y e T ( z ) \ L ( x , y ) = i }

KF =  { y  e T  (x) I L (x , y) =  —  1}

K* -  K+ u  K“

Cx =  { y e  T ( x ) \  L(x  , y)  =  0} .

Properties (B) and (D) im ply the set Cx consists of a union of lines through 
the origin of T  (pc'). The sets K* and ~KX are called respectively the positive 
indicatrix  and negative indicatrix. If  M is a pseudo-R iem annian manifold 
of Lorentz signature, then at each point ^  the set has exactly four 
components if n =  2 and exactly three components if n >  3. On the other 
hand if M is a F insler space of Lorentz signature the set m ay have more 
th an  four components. Below we give two examples. In the first exam ple 
K* has eight com ponents at each point and in the second K* has five com po­
nents. The first exam ple is a two dimensional M irikowskian space and the 
second is an ^-dim ensional M inkowskian space for n >  3.
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Example 1. Let M =  R 2 and define

Example 2. Let M — and define (for sufficiently large a and n >  3)

It has been shown [1, p. 1036] th a t the negative components of are 
strictly  convex hypersurfaces in T  (pc'). In  the next lem m a we consider 
C* —  { x }  where x  is used to denote both a fixed point of M and the zero 
vector in T  (x). We recall th a t M has signature n —  2.

L e m m a  2. Let n >  3. The set Cx —  { x }  has exactly as many components 
as K.Z. The closure of each component of Cx —  { x }  is a convex hypersurface 
in T(x)  and is differentiable at each point except x. I f  y 0 is a point of some 
component S, then the tangent hyperplane to S at y 0 intersects S in a half line.

Proof. T he fact th a t Cx —  { x }  has exactly as m any com ponents as K~ 
follows from lem m a 1 and lem m a 8 of [1 ].

Let S be a com ponent of Cx —  { x  }. The conditions (A) and (C) imposed 
on L (x  ,y )  im ply th a t S is a differentiable hypersurface in T  (x). Lem m a 1 
of [1] implies th a t the closure of S is the boundary of a convex set.

Let y 0 6 S. The form ula for the norm al curvature kn of S in a direction y  
in the tangent hyperplane to S at y 0 is given in [1, p. 1036]. Consideration of 
this form ula yields th a t at y 0 the surface S has n — 2 positive principal 
curvatures and one principal curvature of value zero. It now follows th a t 
the tangent hyperplane at y Q intersects S only in a half line.

T h e o r e m  3. I f  n~> 3, then has exactly one component.

Proof. Let (y 1 , • • • , y n) be coordinates in T  (x) and define S* =  
— {(y1, • • •, y n) I £  (y*)2 =  1}. Set Nx =  Cxn S x . Lem m a 2 implies th a t N* has 
a finite num ber of com ponents and each com ponent is topologically an 
(n —  2) sphere which is the boundary in Sx of a topological (n —  1) ball. 
Furtherm ore, each com ponent of N* is strictly convex with respect to the 
great circles of S*.

Consider the m ap of K x into Sx defined by y  Xy where X — ( Z ( y ) 2)~ll2‘. 
This is a di fifeomorphism of K x onto an open subset of the manifold . The 
im age of the m ap is less the closure of the ( n —  1) balls which the com­
ponents of Nx bound. It follows th a t K.x m ust be connected. This establishes 
the theorem .

C o r o l l a r y  4. I f  n \>  3, then the indicatrix K has an odd number of com­
ponents.

Proof. W e need only show th a t K~ has an even num ber of components. 
This follows from condition (D) and Lem m a 1 of [1] when n >  3.

— y 1-y2 +  - 4 ( y 1)2 — -4 0 '2)2 +  a
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It should be noted th a t for n >  3 (and Lorentz signature) condition 
(D) reduces to L (x  , — y) =  L (x  , y). A n exam ple given in [1, p. 1039] 
shows th a t condition (D) does not reduce to the above form for n —  2. 
Exam ple 1 of the present paper shows th a t Theorem  3 and corollary 4 are 
not valid for n =  2.

Lemma 5. Let x 1 and x 2 be two points of the {connected) manifold  M. 
The indicatrix at x ± and the indicatrix at x 2 have the same number of components.

Proof. Let x(t)  for o <  t <  1 be a curve on M with x(o) — x ± and 
x ( i )  — x 2. Let n(t)  be the num ber of com ponents of . It is sufficient
to show th a t for each t0 there is a relatively open interval about tQ in which 
n (/) is constant. This follows from the continuity of L. (pc , y)  and the fact 
th a t each com ponent of Cx —  { x j  bounds a convex set w ith interior points.

5. C o n v e x  S u r f a c e s

A (strictly) convex hypersurface S will be a connected set which is the 
boundary in R n of its convex hull which is required to be a closed (strictly) 
convex set with interior points. Let O denote the origin of RC If  O is not in 
the convex hull of S, then the light cone C(S) of S is defined to be the boundary  
of the set { y  e | y  =  Aj7 for y  £ S and A e R 1}. The light cone of the convex 
hypersurface S consists of a union of lines each containing O. The light cone 
C(S) is elliptic if there is a hyperplane H of R n which intersects each gene­
ra to r of C(S) and is such th a t H n C ( S )  an (n — 2)-dim ensional ellipsoid.

Consider now the quadratic form Q (y) =  — (jy1)2 +  (jy2)2 +  • • • +  (jj/2)2 
defined for all y  e R ”. The Lorentz group O1̂ )  is the set of linear transfo r­
m ations which leave Q (y) invariant. This group is the isotropy group of the 
^-dim ensional Lorentz space. In  the rest of this paper Q (y) will always 
denote the above form.

L e m m a  6. Let S be a convex hypersurface in  R w and assume that O does 
not belong to the convex hull of S. I f  the light cone C(S) is elliptic, then the group 
of linear transformations which map S onto itself has a fa ith fu l representation 
as a subgroup of the Lorentz group Ox{n).

Proof. By, if necessary, changing coordinates we m ay assum e th a t the 
light cone C (S) is given by Q (y) — o. Since S is m apped onto itself the light 
cone C (S) m ust always be m apped onto itself. The hyperboloid of two sheets 
Q ( t )  “  — a% niust be m apped onto the hyperboloid Q (y ) — —  b2.

Let T be a linear transform ation taking S onto S. Then T  has a m atrix  
representation A  relative to the standard  basis of RC The transform ation 
m ust be nom singular since the convex hull of S is required to have interior 
points. We represent T  by the m atrix  p(T) defined by

p(T) =  I d e t A f ^ A .
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Since det p(T) =  =b i, it follows tha t the transform ation p (T) represents 
m aps Q(y)  =  — a2 onto Q(y)  =  — a2 and in fact preserves Q (y). It is clear 
th a t the representation is faithful.

In  the above proof it is not hard  to show tha t if S is com pact the m atrix  
A has determ inant ±  i. The following example stated by Busem ann in 
[3, p. 40] shows th a t when S is not compact the above m atrix  A  m ay have 
det A = | = ±  I.

Example 3. Let S be the subset of R 2 given by (y1)1̂ ^ 2)^ =  1 and 
y 1 > o , y 2 > o with o <  p. <  1. If  [i=f= 1/2, then det A  =f= d= 1.

6 . T h e  I s o t r o p y  G r o u p

It is easy to check th a t the isotropy group of the indefinite Finsler space 
in Exam ple 1 has eight elements. Since the two dimensional Lorentz group 
has no subgroup of order eight, the isotropy group of Exam ple 1 cannot have 
a faithful representation as a subgroup of 0 1(2).

L e t/  be represented in local coordinates by f ( x )  —
Then the Jacobian m atrix  ](J)  of /  is the m atrix

It is not hard to show that if M is a (connected) indefinite Finsler mani­
fold and r e M , then the association of / e  I^M ) with the Jacobian matrix 
J( / )  is a faithful representation of IX(M) as a subgroup of the general linear 
group GL (n).

In the next theorem we let Ki and K2 be components of K~.  We say 
Ki and K2 are opposed if y  e Ki implies — y e  K2 . The light cone C(K i) 
is a subset of the light cone Cx in T (x). ■

Theorem 7. Let M have the Lorentz signature. Let Ki and  K2 be opposed 
components of the negative indicatrix K~. I f  the light cone C (K i) is elliptic 
then the group of f  e I*(M) such that / ^ K ,  u  K 2) =  K x u  K 2 has a fa ith fu l  
(matrix) representation as a subgroup of the Lorentz group Ol(n). The repre- 
sentati on is given in correct local coordinates by p ( / )  =  J {j').

Proof '. Let denote the differential m ap of /  restricted to T(x).  Then 
Lem m a 6 and the fact th a t Ki and K 2 are opposed implies th a t there are local 
coordinates (x1 , • • •, x n) such tha t

P( / )  =  | d e t J ( / ) | - 1/’! J ( / )

is a faithful representation of the group as a subgroup of OX(n).
We wish to show that det J ( / )  =  ±  i. Consider S* =  { y  € T(;r) | 

2  (y  )2 == I } and define D =  St n  C (Ki). The set D is compact. For ^ e D  
expand in a power series using h =  (fi , • • •, hn), | h | =  (2  (7z')2)1/2 and 
L ( ^ , / )  =  o.

L (x  , p  +  h) =  ZL„.(*, p) A* +  0 ( |  h I2).
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Restrict h to be in the direction of the inward norm al up to C (K i). T hen 
h —  I h I Up where up =  — Lyi(x , p) [ HL ^ f x , />)]~~1/2. Lem m a 8 of [1] and 
the compactness of D im ply there are positive num bers §, m 1, and m 2 
such tha t

—  m 1 \h \ <  L  (J> +  h) <  — m2 \h \

for all h =  I h | up , all p  e D and § >  | h | >  o. This implies th a t there is 
some num ber b o such th a t the hyperboloid of two sheets given by 
Q (y) =  — o lies in the interior of the union of the convex hulls of K i and K 2.

Assum e now th a t det J ( / )  =j= A 1 then by, if necessary, replacing f  
by f - 1 we m ay assume | det J ( / )  | >  1. The m ap then takes a hyperboloid 
Q (y) =  ■— oq onto another Q (y) — — at where a( >  a$. Choose a0 such 
th a t the hyperboloid Q (y) =  — has at least one point in common with 
Ki u  K 2. T hen there is an m  such th a t /  composed with itself m  times takes 
Q(y)  ~  — ao onto Q(y)  =  am where am >  b%. This contradicts the fact th a t 
Q (y) =  — am m ust have a point in common with K i u  K 2.

It is possible th a t the above result rem ains valid without the assum ption 
th a t C (Ki) be elliptic. W hen n — 2 the set C (Ki) consists of two lines and 
is triv ially  elliptic.

COROLLARY 8 . Let M be an n—dimensional manifold with the Lorentz 
signature. I f  n =  2 let the indicatrix K* have exactly fo u r  components, f I f  
n >  3 let the indicatrix have exactly three components. Assume that the light 
cone Cx is elliptic. Then 1̂  (M) has a fa ith fu l representation as a subgroup 
of 0 \n ) .

Proof. The indicatrix  has exactly  two negative components Ki and K 2. 
Hence /^ (K ^  u  K 2) =  K u  K 2 and Theorem  6 implies the result.

C o r o l l a r y  9. Let M and satisfy the hypothesis of Corollary 8. 
Furthermore, assume that I (M ) is transitive on M. Then we can introduce a 
pseudo-Riema%nian metric (with Lorentz signature) on M such that I (M) is 
a group of motions with respect to this new metric.

Proof. From  Corollary 8 it follows th a t a pseudo-E uclidean m etric of 
signature n — 2 m ay be defined on T(x)  such tha t if f e  I^(M ) t h e n r e s t r i c t e d  
to T  (x) is a m otion of this pseudo-E uclidean space. A pseudo-R iem annian 
m etric on M m ay now be defined using the new metric on T  (x) and the tran ­
sitivity of I (M).

Corollary 8 is the indefinite analogue to a result given in [9, p. 59]. 
It implies th a t the problem  of determ ining the indefinite Finsler spaces which 
have the right num ber of com ponents in each indicatrix, have elliptic light 
cones and which adm it the transitive group of motions I (M) is reduced to 
determ ining the Lorentz m anifolds which adm it I (M) as a group of motions.

The final result gives a sufficient condition for the light cone to be elliptic.

T h e o r e m  10. Let IX(M) be transitive on the generators of the light cone 
C (K i). Then C (Ki) is elliptic.
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Proof. By Theorem  9 of [3, p. 43] it is only necessary to show th a t a 
cross section of C (K i) has an Euler point with non-vanishing Gauss C urva­
ture. But this follows from the norm al curvature k„ of C (K j) m entioned in 
the proof of Lem m a 2.
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