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Geometria. — On the Indicatrix and Isotropy Group in Finsler
Spaces with Lorentz Signature. Nota di Joux K. BEEM, presentata ©
dal Socio B. SEGRE.

RIASSUNTO. — Si studia I'indicatrice di uno spazio di Finsler indefinito con segnatura
di Lorentz e si mostra che, per spazi di dimensione > 3, la parte positiva dell’indicatrice
possiede una sola componente. Si prova poi che i moti di un tale spazio costituiscono un gruppo
di Lie e si assegnano condizioni sufficienti affinche il gruppo di isotropia ammetta una rappre-
sentazione fedele quale sottogruppo del gruppo di Lorentz.

Per eventuali applicazioni alla fisica dei risultati qui ottenuti cfr. [4].

1. INTRODUCTION

The 7n-dimensional Finsler Manifolds which have a metric tensor with
Lorentz signature have been investigated in [1]. In [2] the motions of two
dimensional indefinite Finsler Spaces have been studied. The present article
is concerned with the indicatrix and isotropy group in higher dimensions.
This article may be of some interest to physicists in connection with the study
of space-times using Finsler spaces rather than Riemannian spaces. Kordo [4]
has investigated a Finslerian approach to space-times.

Let M be an n-dimensional indefinite Finsler manifold and let T'(M)
denote the reduced tangent bundle of M which consists of the tangent bundle
T(M) less the zero vectors. If M has signature z— 2 s then T'(M) has
signature 27— 4s. Consideration of the metric on T'(M) shows that the
group of motions of M is a Lie Group.

When M has the Lorentz signature and dimension # at least three we
show that the‘positive part of the indicatrix at each point has exactly one
component. This implies the whole indicatrix must have an odd number
of components for # > 3. - Examples are given which show that there are
spaces with Lorentz signature such that for # = 2 the indicatrix has more
than four components and for 7z = 3 there are spaces in which the indicatrix
has more than the expected three components.

Wang [10] has shown that for definite Finsler spaces the isotropy sub-
group [,(M) of the motions of M always has a faithful representation as a
subgroup of the orthogonal group. One would therefore expect that for
Finsler manifolds of Lorentz signature the isotropy group would always have
a faithful representation as a subgroup of the Lorentz group. We give a counter
example which shows this is not true in general.

(*) Nella seduta del 10 marzo 1973.

28. — RENDICONTT 1973, Vol. LIV, fasc. 3.
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However, we are able to show that when M has the Lorentz signature,
the light cone is elliptic and the indicatrix has exactly three components
then the isotropy group I,(M) always admits a representation as a subgroup
of the Lorentz group.

2. INDEFINITE FINSLER MANIFOLDS

Let M be an z-dimensional connected and paracompact differentiable
manifold of class C®. Denote the local coordinates of a point x by
xl, x%,- -, x” and let T (x) denote the tangent space at x. In T (x) we use the
natural frame 2/3x%,- - -, 3/ox” and for a vector y in T (x) let 3, - -, 9" be the
components of ¥ in the natural basis. Let L(x, y) be a continuous function
defined on the tangent bundle T (M) of M which has the following properties:

(A) The function L(x,y) is of class C* if y==o.

(B) L(x, &y) = £ L(x, ) for all 2> o.

(C) The metric tensor g;(x,¥) 2%92L/9y"ayf has s negative and
n— s positive eigenvalues for all (x,y) with ¥ ==o.

D) L, —») | =L, »|

The function L(x, y) will be called the basic metric function. It corre-
sponds to the square of the fundamental function which is usually studied
in definite Finsler spaces. The manifold M with the function L(x,y) is
called. an indefinite Finsler space of signature 7z -—2s. If the basic metric
function L(x,y) is replaced with — L (x, ), then M becomes a space of
signature 2 s — 7.

When s = o the space M is a definite Finsler space, compare [7]. If
s =1, (or s =#n-—1), then M has the Lorentz signature. In this paper
we consider 1 <<s << # —1 in Sections 1, 2 and 3. In the rest of the paper
we only consider s = 1.

The pseudo—-Riemannian manifolds are those in which the metric tensor
&i;(x,y) depends only on position x. When g, (x,y) depends only on
direction y we say that M is locally Minkowskian. If M is R” and is locally
Minkowskian we call M simply a Minkowskian space. .A Minkowskian space
which is also pseudo—Riemannian is called pseudo-Euclidean. The above
definition of Minkowskian space differs from the one generally used by phy-
sicists. In physics Minkowskian space refers to the four dimensional pseudo-
Euclidean space of signature two.

3. MOTIONS

For each fixed point x, of M there is an induced Minkowskian metric
on T(x,) with basic metric function L(x,,5). Let M and M be indefinite
Finsler manifolds with basic metric functions L(x, ) and L (s, y') respec-
tively. A diffeomorphism f:M — M is called an isometry of M onto M if
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each of the tangent maps (£,),: T () = T (f(x)) preserves the indefinite metric
on the tangent spaces.

When M = M we say f is a motion of M. The group of motions of M is
denoted I (M). The subgroup of I (M) which leaves the point x fixed is called
the isotropy group at x and is denoted I, (M).

Sasaki [8] has shown how to define an associated Riemannian metric
on the tangent bundle of a Riemannian manifold. The Sasaki method may
be used to define a Riemannian metric on T'(M) given a definite Finsler metric
on M. This has been studied in [5], [6] and [11]. The same method applied
equally well to indefinite Finsler spaces and we will not detail the method
in this paper. It is clear (compare [6, p. 184]) that if M is a Finsler space
of signature z-—2s then T'(M) becomes a pseudo-Riemannian space of
signature 2z —4s. Furthermore, any motion /:M —M has a naturally
associated map f, ‘ T'(M) : T'(M) — T'(M) which is a motion of T'(M). We
will use £, to denote f, l T'(M) in the next lemma.

LEMMA 1. The group 1(M) of motions of M s a Lie Group.

Proof. The space T'(M) is pseudo-Riemannian and consequently its
group of motions I(T'(M)) is a Lie Group. The correspondence f — £, is an
isomorphism of I(M) onto a closed subgroup of I(T'(M)). Since a closed
subgroup of a Lie Group is a Lie Group the lemma is established.

4. THE INDICATRIX

In the rest of this paper we assume M has signature » —2. If x is a
fixed point of the manifold M we define the indicatrix K, and light cone C,
as the following subsets of the tangent space at x

K, ={yeT() L(x,y =1}
K, ={yeT@®) L(x,y)=—1}
K, =K UK,

C. = {yeT®|L(x, —o}.

Properties (B) and (D) imply the set C, consists of a union of lines through
the origin of T (x). The sets KI and K; are called respectively the positive
indicatrix and negative indicatrix. If M is a pseudo—Riemannian manifold
of Lorentz signature, then at each point x the set K, has exactly four
components if #z = 2 and exactly three components if » > 3. On the other
hand if M is a Finsler space of Lorentz signature the set K, may have more
than four components. Below we give two examples. In the first example
K, has eight components at each point and in the second K, has five compo-
nents. The first example is a two dimensional Minkowskian space and the
second is an #z-dimensional Minkowskian space for 7 > 3.
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Example 1. Let M = R® and define
Y= O
Lx,y) = .
) CORE N

Example 2. Let M = R” and define (for sufficiently large « and 7 > 3)

1)3 2

Lix,y) = 2000yl (oM — 4 (0B + «(;3 (y’)2>~

Sy

It has been shown [1, p. 1036] that the negative components of K, are
strictly convex hypersurfaces in T(x). In the next lemma we consider
C,—{«x} where x is used to denote both a fixed point of M and the zero
vector in T (x). We recall that M has signature » — 2.

LEMMA 2. Let n > 3. The set C,— { x} has exactly as many components
as Ki. The closure of each component of C,— {x} is a convex hypersurface
in T(x) and is differentiable at eack point except x. If v, is a point of some
component S, then the tangent hyperplane to S at y, intersects S in a half line.

Proof. The fact that C, — {x} has exactly as many components as K.
follows from lemma 1 and lemma 8 of [1].

Let S be a component of C, — { #}. The conditions (A) and (C) imposed
on L(x,y) imply that S is a differentiable hypersurface in T (x). Lemma 1
of [1] implies that the closure of S is the boundary of a convex set.

Let y,€S. The formula for the normal curvature £, of S in a direction y
in the tangent hyperplane to S at y, is given in [1, p. 1036]. Consideration of
this formula yields that at y, the surface S has »-— 2 positive principal
curvatures and one principal curvature of value zero. It now follows that
the tangent hyperplane at y, intersects S only in a half line.

THEOREM 3. If n>>3, then K has exactly one component.

Proof. Let (y1,.--,y") be coordinates in T(x) and define S, =
= {(yt, -, ") Z(yi)z =1}. Set N, =C,NS,. Lemma 2 implies that N, has
a finite number of components and each component is topologically an
(n — 2) sphere which is the boundary in S, of a topological (7 — 1) ball.
Furthermore, each component of N, is strictly convex with respect to the
great circles of S,.

Consider the map of K into S, defined by y — Ay where % = (X (y)%)™".
This is a diffeomorphism of K, onto an open subset of the manifold S,. The
image of the map is S, less the closure of the (# — 1) balls which the com-
ponents of N, bound. It follows that K; must be connected. This establishes
the theorem.

COROLLARY 4. If n = 3, then the indicatrix K has an odd number of com-
ponents.

Proof. We need only show that K. has an even number of components.
This follows from condition (D) and Lemma 1 of [1] when 7 > 3.
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It should be noted that for 7 >3 (and Lorentz signature) condition
(D) reduces to L(x,—y) = L(x,»). An example given in [1, p. 1039]
shows that condition (D) does not reduce to the above form for 7 -— 2.
Example 1 of the present paper shows that Theorem 3 and corollary 4 are
not valid for 7 = 2.

LEMMA 5. Let xy and x4 be two points of the (connected) manifold M.
The indicatrix at x; and the indicatrix at xy have the same number of components.

Proof.” Let x(#) for o <¢ <1 be a curve on M with x(0) = x; and
x(1) = x5. Let 2(¢) be the number of components of K, . It is sufficient
to show that for each #, there is a relatively open interval about #; in which
n(#) is constant. This follows from the continuity of L(x,y) and the fact
that each component of C,— {x } bounds a convex set with interior points.

5. CONVEX SURFACES

A (strictly) convex hypersurface S will be a connected set which is the
boundary in R” of its convex hull which is required to be a closed (strictly)
convex set with interior points. Let O denote the origin of R”. If 0 is not in
the convex hull of S, then the light cone C(S) of S is defined to be the boundary
of the set {y € R”|y = a7 for 7€ S and 2 € R"}. The light cone of the convex
hypersurface S consists of a union of lines each containing 0. The light cone
C(S) is elliptic if there is a hyperplane H of R” which intersects each gene-
rator of C(S) and is such that H n C(S) an (% — 2)-dimensional ellipsoid.

Consider now the quadratic form Q(y) = — GV D+ ()P
defined for all y € R*. The Lorentz group O%(#) is the set of linear transfor-
mations which leave Q(y) invariant. This group is the isotropy group of the
n—dimensional Lorentz space. In the rest of this paper Q(y) will always
denote the above form.

LEMMA 6. Let S be a convex hypersurface in R” and assume that O does
not belong to the convex hull of S. If the light cone C(S) is elliptic, then the group
of linear transformations which map S onto itself has a faithful representation
as a subgroup of the Lovents group OY(n).

Proof. By, if necessary, changing coordinates we may assume that the
light cone C(S) is given by Q(y) = o. Since S is mapped onto itself the light
cone C(S) must always be mapped onto itself. The hyperboloid of two sheets
Q(y) = — a® must be mapped onto the hyperboloid Q(y) = — &°.

Let T be a linear transformation taking S onto S. Then T has a matrix
representation A relative to the standard basis of R”. The transformation
must be non-singular since the convex hull of S is required to have interior
points. We represent T by the matrix p(T) defined by

o(T) = |det A|7"A.
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Since det p(T) = + 1, it follows that the transformation p(T) represents
maps Q(y) = — @? onto Q(y) = — a2 and in fact preserves Q (y). It is clear
that the representation is faithful.

In the above proof it is not hard to show that if S is compact the matrix
A has determinant + 1. The following example stated by Busemann in
[3, p. 40] shows that when S is not compact the above matrix A may have

det A== 4 1.

Example 3. Let S be the subset of R* given by H' (A =1 and
y1>o0,y2>0 with o<u<1. If p==1/2, then detA ==+ 1.

6. THE IsoTROPY GROUP

It is easy to check that the isotropy group of the indefinite Finsler space
in Example 1 has eight elements. Since the two dimensional Lorentz group
has no subgroup of order eight, the isotropy group of Example 1 cannot have
a faithful representation as a subgroup of OY(2).

Let f be represented in local coordinates by f(x) = (f'(x), /%), - -, /" (x)).
Then the Jacobian matrix J(f) of f is the matrix

oFé
It is not hard to show that if M is a (connected) indefinite Finsler mani-
fold and x €M, then the association of /€ I,(M) with the Jacobian matrix
J(f) is a faithful representation of I, (M) as a subgroup of the general linear

group GL (%).
" In the next theorem we let K; and Kz be components of K;. We say

Kj and K; are opposed if y € K1 implies — y € Ka. The light cone C(Kj)
is a subset of the light cone C, in T (x).

THEOREM 7. Let M have the Lorentz signature. Let Ki and Ks be opposed
components of the negative indicatrix K. If the light cone C(Ky) os elliptic
then the group of f€ 1. (M) such that f,(K; U Kg) =K, UK, has a faithful
(matrix) representation as a subgroup of the Lorentz group O'(n). The repre-
sentation is given in corvect local coordinates by o(f) =]J(f).

Proof. Let f, denote the differential map of f restricted to T(x). Then
Lemma 6 and the fact that K; and Kz are opposed implies that there are local
coordinates (#1,---, ") such that

o(f) =det J(AHI™ J(H

is a faithful representation of the group as a subgroup of Ol(n)

We wish to show that det J(f)= 4 1. Consider S,={yeT(x)]
E(5)? =1} and define D = S, N C(K1). The set D is compact. For p€D
expand in a power series using &= (A',---, A"), |2] = E DY and
L(x,p)=o.

L(x,p+h) =EL,(x, ) # + O 4]
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Restrict /4 to be in the direction of the inward normal #, to C(Kj). Then
h=|h|u, where u,=—L,(x, ) [ELi(x, )] Lemma 8 of [1] and
the compactness of D imply there are positive numbers 8, »z;, and mz,
such that

— |k SL(p+B) < —my | ]

for all 2= |%|u,, all p€D and § > |%|>o. This implies that there is
some number &==0 such that the hyperboloid of two sheets given by
Q(y) = — & lies in the interior of the union of the convex hulls of K; and K.

Assume now that det J(f)==+4 1 then by, if necessary, replacing f
by /7' we may assume | det J(f)| > 1. The map £, then takes a hyperboloid

Q(y) = —ag onto another Q(y) = — 4} where 4f > ag. Choose ¢, such
that the hyperboloid Q(y) = —ag has at least one point in common with
KiUKgz. Then there is an 7 such that f, composed with itself # times takes
Q(¥) = —ap onto Q(y) = a7, where ab, > 4°. This contradicts the fact that
Q(y) = — ., must have a point in common with K; U Ka.

It is possible that the above result remains valid without the assumption
that C(Ki) be elliptic. When 7 = 2 the set C(Kj) consists of two lines and
is trivially elliptic.

COROLLARY 8. Let M be an n—dimensional manifold with the Lorentz
signature. If n = 2 let the indicatrix K, have exactly four components. . If
n >3 let the indicatrix have exactly three components. Assume that the light
cone C, s elliptic. Then 1,(M) has a faithful representation as a subgroup
of O(#).

Proof. The indicatrix K, has exactly two negative components K; and Ks.
Hence f, (K; U Ky) = K U Ky and Theorem 6 implies the result.

COROLLARY 9. Let M and K, satisfy the hypothesis of Corollary 8.
Furthermore, assume that 1 (M) is transitive on M. Then we can introduce a
pseudo-Riemannian metric (with Lorentz signature) on M such that 1(M) is
a group of motions with vespect to this new metric.

Progf. From Corollary 8 it follows that a pseudo—Euclidean metric of
signature 7 — 2 may be defined on T(x) such that if /€ I, (M) then f, restricted
to T (x) is a motion of this pseudo-Euclidean space. A pseudo—Riemannian
metric on M may now be defined using the new metric on T (x) and the tran-
sitivity of I (M). , ' :

Corollary 8 is the indefinite analogue to a result given in [9, p. 59].
It implies that the problem of determining the indefinite Finsler spaces which
have the right number of components in each indicatrix, have elliptic light
cones and which admit the transitive group of motions I (M) is reduced to
determining the Lorentz manifolds which admit I (M) as a group of motions.

The final result gives a sufficient condition for the light cone to be elliptic.

THEOREM 10. Let 1,(M) be transitive on the generators of the light cone
C(Ky). Then C(Ky) s elliptic.



392 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIV — marzo 1973 [254]

Progf. By Theorem 9 of [3, p. 43] it is only necessary to show that a
cross section of C(Ky) has an Euler point with non-vanishing Gauss Curva-
ture. But this follows from the normal curvature £, of C(K;) mentioned in
the proof of Lemma 2.

REFERENCES

(1] J. K. BEEM, Zndefinile Finsler spaces and timelike spaces, « Cand. J. Math. », 22, 1035~
1039 (1970).

[2] J. K. BEEM, Motions in two dimensional indefinite Finsler spaces, « Indiana Univ. Math.
J.», 21, 551-555 (1971).

[3] H. BUSEMANN, Zimelike spaces, «Dissertationes Math. Rozprawy Mat.», 53, 52 pp.
(1967).

[4] K. KONDO, A Finslerian approach to space-time and some microscopic as well as macro-
scopic criteria with references to quantization, mass spectrum and plasticity, « RAAG
Memoirs », 3, 199-210 (1962).

[5]1 M. MATSUMOTO, Connections, mztrics and almost complex structures of tangent bundles,
«J. Math. Kyoto Univ.», 5, 251-278 (1966).

[6] M. MATSUMOTO, Theory of Finsler spaces and differential geometry of tangent bundies,
« J. Math. Kyoto Univ.», 7, 169-204 (1967).

[71 H. RUND, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.

[8] S. SASAKI, On the differential geometry of tangent bundles of Riemannian mamfold:,
« Tohoku Math. J.», (2) 10, 338-354 (1958).

[9] Y. TASHIRO, A theory of transformation groups on generalized spaces and its application
2o Finsler and Cartan spaces, « J. Math. Soc. Japany», 11, 42-71 (1959).

[10] H. C. WANG, On Finsler spaces with completely integrable equations of Killing, «]J.
London Math. Soc.», 22, 5-9 (1947).

[11] K. YANO and T. OKUBO, O the tangent bundles with Sasakian metrics of Finslerian and
Riemannian manifolds, « Ann. Mat. Pura Appl.», (4) 87, 137-162 (1970).



