Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Raymond Hill

On the largest size of cap in $S_{5,3}$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.3, p. 378-384.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1973_8_54_3_378_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - On the largest size of cap in $\mathrm{S}_{5,3}$. Nota di Raymond Hill, presentata (*) dal Socio B. Segre.

Abstract

Riassunto. - Si dimostra che, in uno spazio di Galois di dimensione 5 ed ordine 3, l'ordine massimo delle calotte (ovoidi) è 56 . Nella dimostrazione intervengono varie riposte considerazioni gruppali, nonchè la realizzazzione di un disegno simmetrico recentemente considerato.

Introduction

Let $\mathrm{S}_{r, q}$ denote a projective space of r dimensions over $\mathrm{GF}(q)$, the Galois field of q elements. The points of $\mathrm{S}_{r, q}$ are homogeneous $(r+\mathrm{I})-$ tuples ($x_{1}, x_{2}, \cdots, x_{r+1}$), where $x_{i} \in \mathrm{GF}(q)$ and not all the x_{i} 's are zero; $\left(x_{1}, x_{2}, \cdots, x_{r+1}\right)=\left(y_{1}, y_{2}, \cdots, y_{r+1}\right)$ if and only if $x_{i}=\lambda y_{i}$ for all i, for some $\lambda \in \mathrm{GF}(q), \lambda \neq 0$. A $k-c a p$ in $\mathrm{S}_{r, q}$ is a set of k points, no three of which are collinear. The problem of finding the maximum size $m(r, q)$ of cap in $\mathrm{S}_{r, q}$ has proved difficult, and only the following results are known to date:

$$
\begin{array}{lll}
\text { Bose [I], 1947: } & m(r, 2)=2^{r}, & r \geq 2 . \\
& m(2, q)=q+\mathrm{I}, \quad q \text { odd. } \\
& m(2, q)=q+2, \quad q \text { even. } \\
& m(3, q)=q^{2}+\mathrm{I}, \quad q \text { odd. } \\
\text { Qvist [7], 1952: } & m(3, q)=q^{2}+\mathrm{I}, \quad q \text { even. } \\
\text { Pellegrino [6], 1970: } & m(4,3)=20 .
\end{array}
$$

For $r \geq 4$, a comprehensive list of upper bounds on $m(r, q)$ is given by Segre [9], and lower bounds are found in [8]. Putting the best of these results together for the particular case of caps in $\mathrm{S}_{5,3}$ gives

$$
37 \leq m(5,3) \leq 75
$$

In this work we show that

$$
m(5,3)=56
$$

Section I is devoted to showing that $m(5,3)$ is at most 56 . In Section 2 we construct a 56 -cap in $S_{5,3}$, which at the same time gives a new presentation of the recently-discovered symmetric block design with parameters (56, 56, II, II 2). The result of Section 2 arises out of an investigation into a certain class of rank 3 permutation groups, as presented in [4].
(*) Nella seduta del 10 marzo 1973.

$$
\text { 1. } m(5,3) \leq 56 \text {. }
$$

In this section we will show that no cap in $S_{5,3}$ can have size greater than 56. We first list the known $m(r, 3)$'s for $r \leq 4$, all of which are required later:

$$
\text { Lemma i. } \quad m(2,3)=4, \quad m(3,3)=\text { 1о }, \quad m(4,3)=20
$$

Let K be a k-cap in $\mathrm{S}_{r, q}$. Denote the points of K by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{k}$ and those of $\mathrm{S}_{r, q}$ not in K by $\mathrm{B}_{1}, \mathrm{~B}_{2}, \cdots$. No line in $\mathrm{S}_{r, q}$ can intersect K in more than two points. A line is called a secant of K if it intersects K in two distinct points, $\mathrm{A}_{i}, \mathrm{~A}_{j}$ say, and is denoted $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right)$. For each point B_{i} in $\mathrm{S}_{r, q}-\mathrm{K}$, let u_{i} be the number of secants of K through $\mathrm{B}_{i} ; u_{i}$ is called the weight of B_{i}. For a secant $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right)$ we define the weight of ($\left.\mathrm{A}_{i} \mathrm{~A}_{j}\right)$, denoted $w\left(\mathrm{~A}_{i} \mathrm{~A}_{j}\right)$, to be the sum of the weights of the ($q-\mathrm{I}$) B_{\imath} 's lying on the secant.

Lemma 2. If every secant of a $k-c a p \mathrm{~K}$ in $\mathrm{S}_{5,3}$ has weight at most 20 , then $k \leq 56$.

Proof. As above, let $\mathrm{K}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{k}\right\}$, and let $u_{i}(i=\mathrm{I}, 2, \cdots, m)$ denote the weights of the m ($m=364-k$) points of $S_{5,3}-K$. Simple counting arguments (see, e.g., Lemmas 1 and 2 of [2]) give

$$
\sum_{i=1}^{m} u_{i}=k(k-\mathrm{I})
$$

and

$$
\sum_{i=1}^{m} u_{i}^{2}=\sum_{i<j} w\left(\mathrm{~A}_{i} \mathrm{~A}_{j}\right), \quad \quad i, j=\mathrm{I}, 2, \cdots, k
$$

By hypothesis, $w\left(\mathrm{~A}_{i} \mathrm{~A}_{j}\right) \leq 20$ for all i, j. Hence

Hence

$$
\begin{aligned}
\mathrm{I} / m\left(\sum_{i=1}^{m} u_{i}\right)^{2} & \leq \sum_{i=1}^{m} u_{i}^{2} \leq 20 k(k-\mathrm{I}) / 2 \\
k^{2}(k-\mathrm{I})^{2} & \leq(364-k) \operatorname{Io} k(k-\mathrm{I})
\end{aligned}
$$

which reduces to

$$
(k-56)(k+65) \leq 0,
$$

giving $k \leq 56$.
Note. In Section 2, we shall exhibit a 56-cap in which every secant has weight 20, showing that Lemma 2 is best possible.

Lemma 3. If a k-cap in $\mathrm{S}_{5,3}$ intersects any $\mathrm{S}_{3,3}$ in 8 or more points, then $k \leq 56$.

Proof. Let W be a 3 -space in $\mathrm{S}=\mathrm{S}_{5,3}$ which intersects the k-cap K in

Since $m(4,3)=20$,

$$
\left|\mathrm{U}_{i \cap} \mathrm{~K}\right| \leq 20, \quad i=\mathrm{I}, 2,3,4
$$

Hence

$$
\left|\left(\mathrm{U}_{i}-\mathrm{W}\right)_{\cap} \mathrm{K}\right| \leq 20-h, \quad i=\mathrm{I}, 2,3,4
$$

Since S is the disjoint union of W and the sets $U_{i}-W$, we have

$$
\begin{aligned}
k=|\mathrm{K}| & \leq h+4(20-h) \\
& =80-3 h \\
& \leq 56, \quad \text { if } \quad h \geq 8 .
\end{aligned}
$$

Lemma 4. Suppose K is a k-cap in $\mathrm{S}_{5,3}$ containing points $\mathrm{A}_{1}=$ $=(\mathrm{I}, \mathrm{O}, \mathrm{O}, \mathrm{o}, \mathrm{O}, \mathrm{O})$ and $\mathrm{A}_{2}=(\mathrm{O}, \mathrm{I}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o})$, so that $\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}\right\}$ is a secant of K , where $\mathrm{B}_{1}=(\mathrm{I}, \mathrm{I}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o})$ and $\mathrm{B}_{2}=(\mathrm{I}, 2, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o})$. Let the set of secants through $\mathrm{B}_{i}(i=1,2)$ be

$$
\left\{\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right),\left(\mathrm{A}_{i j 1} \mathrm{~A}_{i j 2}\right) ; j=\mathrm{I}, 2, \cdots, u_{i} \cdots \mathrm{I}\right\},
$$

where

$$
\mathrm{A}_{i j 1}=\left(x_{i j}, y_{i j}, a_{i j}, b_{i j}, c_{i j}, d_{i j}\right) \text { say, and } \mathrm{A}_{i j 2}=\mathrm{A}_{\imath j 1}+\mathrm{B}_{i}
$$

Let

$$
\mathrm{C}_{i j}=\left(a_{i j}, b_{i j}, c_{i j}, d_{i j}\right), \quad i=\mathrm{I}, 2, \quad j=\mathrm{I}, 2, \cdots, u_{i}-\mathrm{I}
$$

Then the $\mathrm{C}_{\imath j}$ are distinct points of $\mathrm{S}_{3,3}$.

Proof. If $\mathrm{C}_{i j}=\mathrm{C}_{i l}$, with $j \neq l$, then the set

$$
\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{i j 1}, \mathrm{~A}_{i j 2}, \mathrm{~A}_{i l 1}, \mathrm{~A}_{i l 2}\right\}
$$

is a 6-cap in an $\mathrm{S}_{2,3}$, contradicting $m(2,3)=4$. If $\mathrm{C}_{1 j}=\mathrm{C}_{2 l}$, then at least five of the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{1 j 1}, \mathrm{~A}_{1 j 2}, \mathrm{~A}_{2 l 1}, \mathrm{~A}_{2 / 2}$ are distinct, giving a 5-cap in $\mathrm{S}_{2,3}$, again contradicting $m(2,3)=4$.

Theorem i. $m(5,3) \leq 56$.
Proof. Suppose K is a k-cap in $\mathrm{S}_{5,3}$ with $k \geq 57$. By Lemma 2, there is a secant of K of weight at least 2I. We may assume (by a suitable change of basis, if necessary) that this secant is $\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)$ with the notation of Lemma 4. Let L be the subset

$$
\left\{\mathrm{C}_{i j}: i=\mathrm{I}, 2 ; j=\mathrm{I}, 2, \cdots, u_{i}-\mathrm{r}\right\}
$$

of $\mathrm{S}_{3,3}$. If three points $\mathrm{C}_{i_{1} j_{1}}, \mathrm{C}_{i_{2} j_{2}}, \mathrm{C}_{i_{3} j_{3}}$ of L are collinear, then the set

$$
\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{i_{l} j_{l} m}: l=\mathrm{I}, 2,3 ; m=\mathrm{I}, 2\right\}
$$

is a set of 8 points of K lying in an $\mathrm{S}_{3,3}$, which implies that $k \leq 56$ by Lemma 3. Thus, if $k \geq 57, \mathrm{~L}$ is a cap in $\mathrm{S}_{3,3}$ of size

$$
u_{1}+u_{2}-2=w\left(\mathrm{~A}_{1} \mathrm{~A}_{2}\right)-2 \geq 19,
$$

contradicting $m(3,3)=10$. This contradiction shows that

$$
m(5,3) \leq 56
$$

2. $m(5,3) \geq 56$.

To complete the proof that $m(5,3)$ is 56 , it is sufficient to exhibit a ${ }_{56 \text {-cap }}$ in $\mathrm{S}_{5,3}$.

If K is a k-cap in $\mathrm{S}_{r, g}$, let Aut K be the group

$$
\{t \in \mathrm{PGL}(r+\mathrm{I}, q):(\mathrm{P}) t \in \mathrm{~K}, \quad \text { for all } \mathrm{P} \in \mathrm{~K}\}
$$

For each of the known values of $m(r, q)$, there is a cap K of that size on which Aut K acts as a transitive permutation group. For example (see Theorem io of [9]), the only caps of size $q^{2}+\mathrm{I}$ in $\mathrm{S}_{3, q}$ are the elliptic quadrics, for which Aut K is $\left[\mathrm{PO}^{-}(4, q)\right] \mathrm{C}_{2}$, an extension of the projective orthogonal group $\mathrm{PO}^{-}(4, q)$ by a cyclic group of order 2. In this case Aut K is even doubly-transitive on K .

On the other hand, it was shown in [4] that if G is a subgroup of PGL $(r+\mathrm{I}, q)$ acting on $\mathrm{S}_{r, q}$ with two orbits, K and L say, then certain conditions of high transitivity of G on K imply that K is a cap in which every secant has the same weight, m say. For such a subgroup to exist, certain numerical relations must be satisfied. It was found that

$$
q=3, r=5,|\mathrm{~K}|=56, m=20
$$

satisfy these relations, and this was our justification for proceeding in the following way, guessing that there is a 56 -cap K in $\mathrm{S}_{5,3}$ on which Aut K is transitive.

There are 112 points in an elliptic quadric in $S_{5,3}$. Perhaps there is some subgroup G of $\mathrm{PO}^{-}(6,3)$ under whose action these 112 points split into two orbits, each of size 56 , with one (or each) of them a 56 -cap. This turns out
to be the case. Moreover the group G and an associated block design are of independent interest. We outline the construction:
(\mathbf{I}). If K is a subset of order 56 of an elliptic quadric and if a subgroup G of $\mathrm{PO}^{-}(6,3)$ acts transitively on K , then G contains a Sylow 7 -subgroup of $\mathrm{PO}^{-}(6,3)$ of order 7 .

Let f be the quadratic form given by

$$
(\mathrm{P}, \mathrm{Q}) f=\sum_{i=1}^{6} x_{i} y_{i}+\sum_{i=1}^{5}\left(x_{i} y_{i+1}+x_{i+1} y_{i}\right)
$$

for $\mathrm{P}=\left(x_{1}, x_{2}, \cdots, x_{6}\right)$ and $\mathrm{Q}=\left(y_{1}, y_{2}, \cdots, y_{6}\right)$ in $\mathrm{S}_{5,3}$. Then

$$
t=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
2 & 2 & 2 & 2 & 2 & 2
\end{array}\right]
$$

has order 7 , and since

$$
(\mathrm{P} t, \mathrm{Q} t) f=(\mathrm{P}, \mathrm{Q}) f
$$

for all P and Q in $\mathrm{S}_{5,3}, t$ is in the orthogonal group $\mathrm{PO}^{-}(6,3)$ consisting of isometries of f.
(2). Let X be the set of points in the elliptic quadric associated with f; i.e.

$$
\mathrm{X}=\left\{\mathrm{P} \in \mathrm{~S}_{5,3}:(\mathrm{P}, \mathrm{P}) f=\mathrm{o}\right\}
$$

Under the natural action of t, X splits into 16 orbits, each containing 7 points:

$$
X=\bigcup_{i=1}^{16} X_{i}
$$

Having listed the X_{i} it is a simple task to choose eight of them $\left(X_{1}, X_{2}, \cdots, X_{8}\right.$, say) whose union K is a 56 -cap. With f and t as above $\mathrm{K}=\cup_{i=1}^{8} \mathrm{X}_{i}$ is a 56-cap, where
$\mathrm{X}_{1}=\{(2 \mathrm{I} 0000),(02 \mathrm{I} 000),(002 \mathrm{IOO}),(0002 \mathrm{IO}),(00002 \mathrm{I}),(22222 \mathrm{I}),(21 \mathrm{IIII})\}$,
$\mathrm{X}_{2}=\{(201010),($ (O20101) $,(221202),(100201),(202212),(101002),(121211)\}$,

$\mathrm{X}_{8}=\{(2 \mathrm{IIO1} 2),(\mathrm{IO} 22 \mathrm{I} 2),(121002),(\mathrm{I} 2 \mathrm{O} 2 \mathrm{II}),(201210),(02012 \mathrm{I}),(22 \mathrm{I} 2 \mathrm{O})\}$.

Since we will now show that Aut K is transitive, the fact that K is indeed a cap follows if we show that just one point of K is not collinear with any other two, and this is readily checked. We have thus completed the proof of our main result, that $m(5,3)$ is 56 .
(3). A generating set for $\mathrm{G}=$ Aut K is $\{t, x, y, z, w\}$, where $x=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 1 & 2 & 0 & 1 & I & I \\ 1 & 2 & 0 & 0 & 0 & 1\end{array}\right] \quad y=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\end{array}\right] z=\left[\begin{array}{llllll}0 & 2 & 0 & 1 & 2 & 0 \\ 2 & 0 & 0 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 & 2 & 1\end{array}\right] \quad w=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1\end{array}\right]$
(4). We now identify the group G. Let P be the point ($2, \mathrm{I}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}$) of K . Then G_{P}, the stabilizer of P in G , is generated by $\{x, y, z, w\}$. G is transitive on K and has rank 3 with subdegrees I , 10 and 45 , for the orbits of G_{P} on K are $\{P\}, K_{1}(P)$ and $K_{2}(P)$, where

$$
\begin{aligned}
& \mathrm{K}_{1}(\mathrm{P})=\{(000210),(100201),(00022 \mathrm{I}),(200212),(210122), \\
& \text { (OIO2O2), (OOOO12), (IIO2O2), (22OIO2), (O2O12I) \}. }
\end{aligned}
$$

We note that

$$
\mathrm{K}_{1}(\mathrm{P})=\{\mathrm{Q} \in \mathrm{~K}:(\mathrm{P}, \mathrm{Q}) f=\mathrm{o}, \mathrm{Q} \neq \mathrm{P}\}
$$

and

$$
\mathrm{K}_{2}(\mathrm{P})=\{\mathrm{Q} \in \mathrm{~K}:(\mathrm{P}, \mathrm{Q}) f \neq \mathrm{o}\}
$$

We see also that $\mathrm{K}_{1}(\mathrm{P})$ is a ro-cap in an $\mathrm{S}_{3,3}$, and so by Theorem ro of [9] is an elliptic quadric. It follows that G_{P} is isomorphic to $\mathrm{PO}^{-}(4,3)$. But $\mathrm{PO}^{-}(4,3)$ is isomorphic to the group $\operatorname{PGL}(2,9)$ (see, for example, page 25 of [10]), and it has been shown by Montague [5] that a rank 3 extension of this group with subdegrees I , 10 and 45 is unique and is isomorphic to $[\operatorname{PSL}(3,4)] \mathrm{C}_{2}$. This rank 3 representation of $\operatorname{PSL}(3,4)$ was found independently by Wales [II] and Montague [5], though not as a subgroup of $\operatorname{PGL}(6,3)$.
(5). The symmetric block design with parameters (56, 56, II, II, 2) (with the notation of [3]) is now presented in $S_{5,3}$, with points the points of K , and blocks the sets $\{Q \in \mathrm{~K}:(\mathrm{P}, \mathrm{Q}) f=\mathrm{o}\}$, one for each point P of K .

References

[I] R. C. Bose, Mathematical Theory of the Symmetrical Factorial Design, "Sankhyā», 8, 107-166 (1947).
[2] R. C. Bose and J. N. Srivastava, On a bound useful in the theory of factorial designs and error correcting codes, "Ann. Math. Statist.», 35, 408-414 (i964).
[3] M. Hall, Combinatorial Theory, Blaisdell, Waltham, Mass. (i967).
[4] R. Hill, Rank 3 permutation groups with a regular normal subgroup, Ph. D. Thesis, University of Warwick, September 197I.
[5] S. Montague, On rank 3 groups with a multiply transitive constituent, "J. Alg.», I4, 506-522 (1970).
[6] G. Pellegrino, Sul massimo ordine delle calotte in $\mathrm{S}_{4,3}$, "Matematiche», 25 (1970), 149-r 57 (197I).
[7] B. Qvist, Some remarks concerning curves of the second degree in a finite plane, «Ann. Acad. Sci. Fenn. Ser. AI», 134 (1952).
[8] B. Segre, Le geometrie di Galois, "Ann. Mat. Pura Appl.», 48, i-97 (1959).
[9] B. Segre, Introduction to Galois geometries, «Atti. Accad. Naz. Lincei », Mem., ser. VIII, 7 (1967).
[io] B. van der Waerden, Grupppen von Linearen Transformationen, Chelsea, New York 1948.
[II] D. Wales, Uniqueness of the graph of a rank 3 group, «Pac. J. Math.», 30 (I), 271-277 (1969).

