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Geometria. — On the largest size of cap in S; 5. Nota di RavmonD
Hirr, presentata @ dal Socio B. SEGRrE.

RIASSUNTO. — Si dimostra che, in uno spazio di Galois di dimensione 5 ed ordine 3,
Pordine massimo delle calotte (ovoidi) & 56. Nella dimostrazione intervengono varie riposte
considerazioni gruppali, nonche la realizzazione di un disegno simmetrico recentemente
considerato.

INTRODUCTION

Let S,, denote a projective space of » dimensions over GF(g), the
Galois field of ¢ elements. The points of S, , are homogeneous (» + 1)~
tuples (%, %, -+, %,41), where x; € GF(g) and not all the x,’s are zero;
(21, %0,y Xs1) = (Y1, %2, +, ¥,41) if and only if x, = ny, for all z, for
some A € GF(g), A==0. A k—cap in S, , is a set of £ points, no three of which
are collinear. The problem of finding the maximum size 7 (7, ) of cap
in S, , has proved difficult, and only the following results are known to date:

Bose [1], 1947: m(r,2) =2, r>2.
m(2,q9)=¢q + 1, ¢ odd.
m(2,q9) =q -+ 2, ¢ even.
m(3,q9) =q¢2+ 1, ¢ odd.
Qvist [7], 1952: m(3,9) =¢>+ 1, ¢ even.
Pellegrino [6], 1970: m (4, 3) = 20.
For » >4, a comprehensive list of upper bounds on  (r,¢) is given

by Segre [9], and lower bounds are found in [8]. Putting the best of these
results together for the particular case of caps in Sg 3 gives

37 <m(5,3) <75.
In this work we show that
7” (5 ) 3) = 56 .

Section 1 is devoted to showing that (5, 3) is at most §6. In Section 2
we construct a 56—cap in Sz 3, which at the same time gives a new presentation
of the recently-discovered symmetric block design with parameters (56,
56, 11, 11, 2). The result of Section 2 arises out of an investigation into a
certain class of rank 3 permutation groups, as presented in [4].

(*) Nella seduta del 10 marzo 1973.
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I. m(5,3) < 56.

In this section we will show that no cap in Sy 3 can have size greater than
56. We first list the known (7, 3)’s for » < 4, all of which are required
later:

LEMMA 1. m(2,3)=4 , m(3,3)=10 , m(4,3)=20.

Let K be a A-cap in S, ,. Denote the points of K by A;, Ag,---, A,
and those of S, , not in K by By, Bs,---. No line in S,, can intersect K
in more than two points. A line is called a secant of K if it intersects K in two
distinct points, A,, A; say, and is denoted (A;A;). For each point B, in
S, K, let #; be the number of secants of K through B,; #, is called the
weight of B,. For a secant (A;A;) we define the weight of (A;A)), denoted
w(A;A)), to be the sum of the weights of the (¢ —1) B,’s lying on the secant.

LEMMA 2. [f every secant of a k—cap K in Sy 3 has weight at most 20, then
£ < 56.

Proof. As above, let K = {A1, Az, -+, A}, andlet w, G =1,2, -, )
denote the weights of the 7 (m = 364—#) points of S5 3~K. Simple counting
arguments (see, e.g., Lemmas 1 and 2 of [2]) give

2 w; =k (—1)
7=1

and

Z%?:ZM(AZAJ>, z',]': 1’2,...’é_
7=1 2

1< 7
By hypothesis, w(A;A;) < 20 for all 7,;. Hence
m 2 m
1/m <Z u,~> < Z up < 20k (fk—1)/2.
=1 7=1
Hence Bk —1)° < (364 — k) 10k (b— 1),
which reduces to
(#—56) (£ +65) <o,
giving £ < 36.
Note. In Section 2, we shall exhibit a 56—cap in which every secant has
weight 20, showing that Lemma 2 is best possible.
LEMMA 3. If a k—cap in S5 3 intersects any Sy gin 8 or more points, then
% < 56.

Proof. Let W be a 3-space in S =S5 3 which intersects the A-cap K in
/% points, where 2 > 8. Let Uy, Usz,Us, Uy be the 4-spaces of S containing W.
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Since # (4, 3) = 20,
[UimKiézoy Z.:Iy2)3’4-
Hence
|(U;— W), K| <20—17, i=1,2,3,4.
Since S is the disjoint union of W and the sets U, —W, we have
b= |K| <k +4(0—A)

=80—34%
<356, if A>8.

LEMMA 4. Suppose K is a k-cap in Sy 3 containing points A; =
=(1,0,0,0,0,0) and As=(0,1,0,0,0,0), so that (A1As) = {A1,As, B, Bo}
is a secant of K, where B = (1,1,0,0,0,0) and Bo=(1,2,0,0,0,0).
Let the set of secants through B; (i = 1,2) be

{(AlAz\) , (Az'jlf'Alijz) 7 =1,2 0 u I} ,
where A= (X5, Y @, by, ¢y, dyy) say, and A=A, + B;.
Let Clj:(aly’bzy’[’f"?"if>’ Z.:I’Z! .7=Iy2)"'y%;'_1.

Then the C,; are distinct points of Sg 3.

Proof. If C; =C,;;, with j==/, then the set
{Al ) Az ) A,'jl ) A;’j2 ’ Az‘ll ’ Ailz}

is a 6-cap in an Sy 3, contradicting 7 (2,3) = 4. If C;; = Cy,, then at least
five of the points A;, As, Ay;1, Arje, Assr, Agse are distinct, giving a 5—cap
in Sy 3, again contradicting 7 (2, 3) = 4.
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THEOREM 1. 7 (5,3) < 56.

Proof. Suppose K is a k—cap in S5 3 with 2 = 57. By Lemma 2, there
is a secant of K of weight at least 21. We may assume (by a suitable change
of basis, if necessary) that this secant is (A1Az2) with the notation of Lemma 4.
Let L be the subset

{Ciri=1,2;/j=1,2,,u;—1}
of Sg3. If three points C;;,,C,,;,,Csj, of L are collinear, then the set
{A1,A A

iigm /=1,2,3; m=1,2}

is a set of 8 points of K lying in an Sz 3, which implies that £2< 56 by
Lemma 3. Thus, if £ > 157, L is a cap in Sz 3 of size

wy g — 2 = w(A1Ag) — 2 > 19,
contradicting =2 (3, 3) = 10. This contradiction shows that

m(5,3) < 56.

2. m(5,3) =56

To complete the proof that 7 (5, 3) is 56, it is sufficient to exhibit a
56—cap in Sz 3.
If Kis a A-—cap in S, ,,

{tePGL(»r +1,9): (P)zeK, for all PeK}.

let Aut K be the group

For each of the known values of » (r, ¢), there is a cap K of that size on
which Aut K acts as a transitive permutation group. For example (see
Theorem 10 of [9]), the only caps of size ¢2+1in Sy , are the elliptic quadrics,
for which Aut, K is [PO7(4,¢)] Ce, an extension of the projective orthogonal
group PO~ (4,9) by a cyclic group of order 2. In this case Aut K is even
doubly-transitive on K.

On the other hand, it was shown in [4] that if G is a subgroup of
PGL (r + 1,¢) acting on S, , with two orbits, K and L say, then certain
conditions of high transitivity of G on K imply that K is a cap in which every
secant has the same weight, 7 say. For such a subgroup to exist, certain
numerical relations must be satisfied. It was found that

9=3 ,r=35, |[K|=35, m=20

satisfy these relations, and this was our justification for proceeding in the
following way, guessing that there is a s6—cap K in S5 3 on which Aut K
is transitive.

There are 112 points in an elliptic quadric in S5 3. Perhaps there is some
subgroup G of PO~ (6, 3) under whose action these 112 points split into two
orbits, each of size 56, with one (or each) of them a 56-cap. This turns out
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to be the case. Moreover the group G and an associated block design are of
independent interest. We outline the construction:

(1). If K is a subset of order 56 of an elliptic quadric and if a sub-
group G of PO™(6, 3) acts transitively on K, then G contains a Sylow
7-subgroup of PO™(6,3) of order 7.

Let / be the quadratic form given by

6 5
(P» Qf = ;xiyi + %41 (#* Yis1 + X19)

for P = (x;,%,-+,%) and Q= (y;,%, -+,%) in S;3. Then
[0 1 00 0 0]
0O0OIO0O0O0
000100
’=looo0010
0000O0TI
(22222 2]

has order 7, and since
(Pz, QO f = (P, Q) f,

for all P and Q in S5 3, ¢ is in the orthogonal group PO~(6, 3) consisting of
isometries of f.

(2). Let X be the set of points in the elliptic quadric associated with
/; ie.
X ={PeS;5: (P,P)f=0}.

Under the natural action of 7 X splits into 16 orbits, each containing
7 points:

16
X = U X,‘ .
7=1
Having listed the X; it is a simple task to choose eight of them (X;, Xa,- - -, X,
8

say) whose union K is a 56-cap. With / and # as above K = U X, is a
56—cap, where =t

X1 = {(210000) , (021000) , (002100) , (000210) , (000021) , (222221) , (211111)},
Xo = \{(201010) , (020101) , (221202) , (100201) , (202212) , (101002) , (121211)},
Xg = {(112000) , (011200) , (00T120) , (0OO112), (111122), (122220), (o12222)},
X4 = {(110201), (200212) , (101102), (121221), (201011) , (212020) , (021202)},
X5 = {(1 10202) , (122101, , (201102) , (101221) , (202011) , (212120) , (021212)},
Xe = {(111200), (011120), (0OT112), (111222), (122200) , (012220) , (0o1222)},
X7 = {(112200) , (011220) , (001122), (111220), (011122), (112220) , (O11222)},

Xg = {(211012) , (102212) , (121002) , (120211) , (201210) , (020121) , (221201)}.
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Since we will now show that Aut K is transitive, the fact that K is indeed
a cap follows if we show that just one point of K is not collinear with any
other two, and this is readily checked. We have thus completed the proof
of our main result, that = (5, 3) is 56.

(3)- A generating set for G=Aut K is {¢,x,5,2,w}, where

‘100000 0TI 0000 020120 I10020
010000 100000 200120 200020
|lz211102| |222200 l2z211020 Jor1210
= 1000200[7 T looo100]{? |i20110/ % Jo20100
l120111J |ooozzo\ IZOOIOJ 020220
120001 00000 2 200221 0T O0O0TITI

(4)- We now identify the group G. Let P be the point (2,1,0,0,0,0)
of K. Then Gp, the stabilizer of P in G, is generated by {x,y,z,w}. G is
transitive on K and has rank 3 with subdegrees 1,10 and 45, for the orbits
of Gp on K are {P}, Ki(P) and K:(P), where

Ki(P) = {(000210) , (100201) , (000O221) , (200212) , (210122),
(o10202) , (000012) , (110202) , (220102), (020121)}.

We note that

KiP)={QeK: (P,Qf=0, Q=P}

and
Ke(P)={QeK: (P,Q)f==0}.

We see also that K;(P) is a 10—cap in an Sy 3, and so by Theorem 10 of [9]
is an elliptic quadric. It follows that Gp is isomorphic to PO~ (4, 3). But
PO™(4, 3) is isomorphic to the group PGL (2, 9) (see, for example, page 25
of [10]), and it has been shown by Montague [5] that a rank 3 extension of
this group with subdegrees 1, 10 and 45 is unique and is isomorphic to
[PSL(3,4)]Ce. This rank 3 representation of PSL (3,4) was found inde-
pendently by Wales [11] and Montague [5], though not as a subgroup of
PGL (6, 3).

(5). The symmetric block design with parameters (56, 56, 11, 11, 2)
(with the notation of [3]) is now presented in S5 3, with points the points of
K, and blocks the sets {Q € K: (P,Q)f =0}, one for each point P of K.
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