ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

DAVID F. DAWSON

Matrix Substitutions in Summability

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.3, p. 332-337.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_3_332_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1973_8_54_3_332_0
http://www.bdim.eu/

332 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIV — marzo 1973 [194]

Analisi matematica. — Matrix Substitutions in Summability.
Nota di Davip F. Dawson, presentata ® dal Socio G. SANSONE.

RIASSUNTO. — E stata dimostrata da A. Brudno che se A ¢ una matrice regolare esiste
allora una matrice A* regolare normale tale che A e A* sono mutualmente consistenti per le
successioni limitate. L’A. estende questi risultati ad altri spazi di successioni.

A. Brudno [2] showed that if A is a regular matrix, then there exists
a normal regular matrix A* such that A and A* are mutually consistent for
bounded sequences. A. M. Tropper [5] gave a simple proof of Brudno’s
result. A matrix which is lower-semi with no zero in the main diagonal is
said to be a normal matrix. The advantage in working with a normal matrix
in summability stems from the fact that a normal matrix has a unique two-
sided inverse [3].

The purpose of the present paper is to determine some other situations
in which the substitution of one matrix for another can be effected without
disturbing certain mapping (or summability) properties. Our results deal
with Cesaro summability and sequences of bounded variation, and include
an extension of a theorem of R. P. Agnew [1].

Let (C, 4) denote the Cesaro summability matrix of nonnegative integral
order £, where (C, O) = I, the identity matrix. Let C denote the set of all
convergent complex sequences and let B denote the set of all bounded complex
sequences. We will be concerned with the following sequence spaces:

CY»={z:(C,hzeC},
BY = {z:(C,kzeB},
BV ={z:2|z,— 21| <o},
|C?®| ={z:(C,k2z€eBV}.
Sequences in BV are said to be of bounded variation or absolutely conver-

gent, while sequences in |C®] are said to be absolutely Cesaro summable
of order 4.

DEFINITION. T7%e statement that matrices A and A" are mutually consistent
over a set S with respect to BN means that if x €S, then Ax and A'x are both
defined and are absolutely convergent to the same limit or else neither converges
absolutely. ’

DEFINITION. 7he statement that A and A' are mutually consistent over
S with respect to C” (or | cV |) means that if x €S, then Ax and A'x are both

(*) Nella seduta del 10 febbraio 1973.
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defined and (C,j)(Ax) and (C,;)(A'x) converge (comverge absolutely) to the
same limit or else meither comverges (converges absolutely).

Tropper’s proof [5, p. 672] of Brudno’s theorem is actually a proof of
the following theorem.

THEOREM 1 (Brudno-Tropper). If A is a matrix such that £, 1 | a,, | < oo,
p=1,2,3, -, then there exists a normal matrix A" such that A and A*
are mutually consistent over B with respect to C.

COROLLARY. [f Ax is defined for every x € B, then theve exists a normal
matrix A such that A and A* are mutually consistent over B with respect to C.

Proof. The hypothesis of the corollary implies the hypothesis of Theorem 1.
We will need a corollary to the following theorem of R. G. Cooke [3].

THEOREM 2. (Cooke). Matrix A has the property that A (C(k)) CC #f and
only if the following conditions hold:

(1) {ay}, €C, g=1,2,3, ",
(2) {,:21 Ay Hec,

(3) SuPp:.gl?k lAé%ql < oo,

4) {¢*ay}.  €B, p=1,2,3,""",

where Do ayy = a0 — ap 441 -

COROLLARY. Matrix A has the property that A(C(é))CC(j ) if and only
if the following conditions hold:

I) {aﬁq};ﬁo-——lec(j), g=1,2,3," ",

ST
2 (G, e

1

0 NS 7 sy 51
3 sup, 2ot A5(7 T e 2 Ry, < oo,
=1 J si =1 si=1 7=1
f(pti—1 1 & o\ |
4) g( _7 ) Z .'.2 atp EB? P=I,2y3y""
sj__1=1 s;=1 #=1 g=1

Proof. We note that (C,;)A takes C® to C iff A takes C® to CV.
By the theorem, (C , ;) A takes C® to C iff (C, /) A has properties correspond-
ing to (1)~(4), but these corresponding properties are 1)—4), since the p, g-
entry in the matrix (C,j)A is

pr+j—1\1 =2 S 1
( ; ) Z T Z Z Qg -
o :j_1=1 si=1 #=1

The matrix manipulation (C, j) (Ax) = [(C,7) A] x used here is easily verified
when Ax is defined.
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THEOREM 3. If Ax is defined for every x € B, then there exists a matrix
A" such that Ax = A'[(C, &) x] for every x € B,

Proof. We first note that ¢*a,,—~o0 as ¢ o0, p=1,2,3,---. To
see this, we suppose that for some p, {g*a,, o1 does not converge to o.
Letz, ,=@Cn—1}4s, =—0Cn—1f,n=1,2,3, --. Clearly z € B®

but X2, a,, 2, diverges, since { @y 24 }o1 is not a null sequence. This con-
tradicts the hypothesis that Ax is defined for every xe B®,
Suppose x € B®. Using summation by parts, we note that

n n—1
*) E Ay 2= L (A2 2,) SP () + a,, SY (),

where Sa) (x) = Zj_1x,. By a proof similar to the proof of Theorem 3 on
Pp- 484—485 of [4], it can be shown that if y € B®, then SP(3)=0 (4,
r=o, , &, where SP(y) = 2,1 SV (y). Hence from (*) we see that

(o)

. 1
Z Apg Xg = Z (A% a,) S..SI) (=),
g=1 g=1
since  a;, S (x) = a,, O (n*) = n*a,, O (1) = 0(1) as n-—>oo. This process
can be continued to show that
Z%qxq 2<A2aﬁQ>S( <x> 7’:I,2,~~-,é.
Thus

0o oo (%)
~ O NV[({g+A—T1\ \2 Sy () .
q_}__iaqu— qzi[( k )A“’“f’f’] (q+ /é~1)
%

Hence if A' is the matrix whose p,g-entry is (9—}—;‘1) A} a,, then
Ax = A'[(C, &) x]. '

COROLLARY 1. JfA(C*)CCY) and gta,, >0 as g —~oco, p=1,2,3, -,
then there exists a matrix A' such thar Ax and A'[(C, k) x] are a’eﬁnea’ and
equal for every x € B®.

Progf. Suppose x € B, Since ACH CCY, then 1)—4) of the corollary
to Theorem 2 hold, and from 3) it is easy to show that

o0

+ A—1 4
O L I AR FETE DL
7=

Thus the series

R[4 ]

U
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. Lh—\Th*®
converges, p=1,2,3, -, since : “)( )( # I) } L€ B. Conse-
o=

quently, if A’ is the matrix with p, g—entry (y +§ ) A} a,,, then A'[(C, A)x]
is defined for every xe€ B®, and from the proof of Theorem 3, Ax =
= A'[(C, &) x] for every x € B® since 9*a,,—~0asg-—>o00, p=1,2,3, --.
This completes the proof. '

R. P. Agnew [1] showed that a simple sufficient condition for a regular
matrix A to sum a divergent sequence of o's and 1's is that a,, —o0 as 2,
g —~oo. As an application of Theorem 3, we have the following extension

of this result of Agnew.

COROLLARY 2. If a regular matrix A sums every sequence in C?, g* @y, — O

as g—>o0o0, p=1,2,3, - ,dﬂa]qudpq%O as p,q — oo, then A sums a
: (%) (k)
sequence in B — C”.

Proof. From Corollary 1, there exists a matrix A’ such that Ax and
A'[(C, &) x] are defined and equal for all x€ B®, and A’ has p,g—entry
(9 +£—1

%
tion mentioned above. Thus there exists a divergent sequence v of o's and

1's such that A'v converges. Let = (C,% 's. Then u€B®?—C%®, and
Au=A'[C,AH{C,H v} =AveC.

) Aj a,,. Clearly A’ is regular and satisfies Agnew’s sufficient condi-

THEOREM 4. [f Ax is a’eﬁnea’ Sor every x € B®, then there exists a normal

matrix A* such that A and A* are mutually wnszstem‘ over B® with respect
to C(])

Proof. By Theorem 3, there exists a matrix A’ such that for every x € B®,
Ax = A'[(C, £ x]. Hence if x€ B”®, then

€. AR = C H{AC, Hxl} =[C,HATIC, & ],

and consequently [(C,;)A']y is defined for every y € B. Thus by the co-
rollary to Theorem 1, there exists a normal matrix A" such that (C, /) A’
and A" are mutually consistent over B with respect to C. Let

= C.)A"(C, )]
and note that A* is a normal matrix. If x€ B(k), then
C,NA D =(C,)HHC,H[A(C,Hx] =A"[C, & ].

Hence A and A* are mutually consistent over B® with respect to CY). Again,
as in the proof of the corollary to Theorem 2, the matrix manipulations used
above are easily verified.

COROLLARY. If A (C*®)CCY and g*a,,—~0 as g —~o00, p=1,2,3,--,
then there exists a normal matrix A* such that A and A* are mutually consistent
over B® with respect to CY.
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Proof. The hypothesis implies, as in the proof of Corollary 1 to Theorem 3,
that Ax is defined for every x € B®. Thus the conclusion follows from
Theorem 4.

THEOREM 5. [If Ax is defined for every x € B, then therve exists a normal
matrix A* such that A and A* are mutually consistent over B withrespect to
both C and BV.

. Proof. The proof is along the lines of Tropper’s proof of Brudno’s Theorem
[5, p. 672]. Since Ax is defined for every x€ B, then X;2;|a, | < oo,

p=1,2,3,--. Let{g,} be a positive term of a decreasing sequence such
that 2521 ¢, < co. Let {1, 1521 be an increasing sequence of positive integers
such that 7z, = 1 and Z;inpl Q| <, p=12,3,4, --. Define a normal

matrix A* as follows:

¥ —2

a = n=1,2,3, -,

*

a,=o k>n,

*

@, =a,, np<n§np+1, p=1, 1Zhk<m.

Let x€ B and M be such that |x,| <M, p=1. Let 6,= ;2 4a,%, and
) = Yoot @pyx,. If my<m <1, then

| Gy — Gpi1 | = |, w2 —xup1 (2 + I)_Z———a::rl,nxn[ <2Mn?4+M | @ |-
If » > 1, then
* * < 2
I Op—1— Gﬁl — I an—- G”p‘f'l | = Z (dI’*l:q - dM) g + xnp nP_
g=n,

-2 —2
— Xyt (n, 4+ 1) — Ay, %y, < 2Me,_1 + 2Mn, " +Me,.

Hence

)

Z IG:__G:HI < Z lcp—6ﬁ+1]—§—2MZ§1p_2—}—4Mﬁ§18;,

p=n, =1

and

o0 o0 oo (o)

2 lo—o,] < 2 [":ﬁ_ :ﬁl‘ +2M X %"+ 3M 5

=2 =2 =2 »=2
Therefore if Ax € BV, then A*x € BV, and vice versa. It is easily seen (as
in Tropper’s proof) that lim, s, = lim, 6, if either limit exists.

COROLLARY. [f Ax is defined for every x € B®, then there exists a normal
matrix A* such that A and A* are mutually consistent over B® with respect
to both CV and |C?|.

Proof. Repeat the proof of Theorem 4, except that in the appropriate
step, apply Theorem 3 instead of the corollary to Theorem 1.
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