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Global Results and Asymptotically Self-
tnvariant Sets. Nota di G.S. LappE e S. LEELA, presentata @ dal
Socio G. SANSONE.

RIASSUNTO. — Gli Autori, applicando il principio di confronto, dimostrano due teoremi
di carattere globale.

Questi teoremi sono usati per ottenere condizioni sufficienti per la stabilita e la parziale
stabilita e criteri di limitatezza per insiemi antiinvarianti asintoticamente.

1. INTRODUCTION

There has been much work done regarding the classification of different
kinds of invariant sets, namely, invariant sets, conditionally invariant sets,
asymptotically invariant sets and conditionally asymptotically invariant
sets etc. and the study of Lyapunov stability relative to these various types
of invariant sets has provided a natural framework to discuss many weaker
concepts of stability, that are useful in applications [3, 4, 3, 6, 7]. Most theo-
rems on stability or asymptotic stability of any kind of invariant set (or
other convenient set) are proved by dividing a neighborhood of the set into
a number of suitable subsets and showing that the solutions have certain desired
behavior with respect to these subsets. Thus, an efficient way of generalizing
stability theorems is to prove some global results in terms of arbitrary sets
and apply them to study the various problems of stability and boundedness
[8, 9]. This approach enlarges the class of useful Lyapunov functions and
offers a great deal of flexibility.

(*) Nella seduta del 10 marzo 1973.
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Although the partial stability criteria of the invariant set has been
discussed by many authors [1, 2, 3, 10, 11, 12], partial stability of other kinds
of invariant sets has not been studied so far. In this paper, we obtain two
general results of global character using a single Lyapunov function and the
comparison principle. This naturally generalizes some results in [8, 9].
As applications of our global results, we obtain sufficient conditions for the
stability and partial stability criteria of an asymptotically self-invariant set,
which generalizes the work of Rouche and Peiffer [10].

We also note that it is possible to apply our results to several other cases
such as the stability criteria of conditionally asymptotically invariant sets,
partial restrictive stability of an invariant set, boundedness of asymptotically
invariant sets etc.

2. MAIN RESULTS

We shall consider the differential system

(2.1) =S, @) =,

and the scalar differential equation

(2.2) So—gtw) , u(ly) = u,

where f€ C[R"XE, R"], E being an open set in R* and g€ C [R*XR, R].
Let x (2,24, %0), u (¢, %y , %y) denote any solution of (2.1), (2.2) through (¢, , x,)
and (¢4, , #y) respectively.

Let Y be a subspace of R” and let P be the projection operator from R”
onto Y, i.e. P: R"—Y. As usual, we denote by H,3H , PH, the closure, the
boundary and the projection of H onto Y, respectively, for any set H C R”.

The following main result offers a general set of sufficient conditions for
preventing the solutions of (2.1) that start in a given set H C R” from passing
through any given part of the boundary oPH.

THEOREM 2.1. Assume that
(i) VEC[R*XE, R] and V (¢,x) is locally Lipschitzian in x;

(i) there exist sets 1,,1, CRY, HCR" and GCY such that 1,N 1=+ &,
HCE, and G CoPH;

(iii) 2€ C[R", R] and V (¢,2)=>a() for (t,x)€R" XA, where
A=[rxeE:PreG]J

(iv) xo€ H 25 € I} and V (¢y, %) < a (¢y);

(v) g€ C[R*X R, R] and for (¢,x) € R* X B where B = [x€ E: Pxe PH],
D+V(z‘,x)=limsgp%[V(z‘—}—/z,x—l—kf(z‘,x))—V(z,x)]g

2—0
<g @,V ()



[185] G.S. LADDE e S. LEELA, Global Results and Asympiotically, ecc. 323

(Vi) Any solution wu(t,ty,uy) of the scalar differential equation (2.2)
satisfies the inequality u (¢, ty, uy) < a(t) ,t > ty, provided uy < a (t,)
and ty€ly.  Then, there exists no £ > ty,t,€1 =1, 1, such that

(2.3) X <Z‘ , l‘o , xO> €B , f, € [to y f*) and X (l*, to y xO> € A

Proof. Suppose that the assertion of Theorem 2.1 is false. Then there
exists a £* >1¢y,t0€1 =1,N1I, such that (2.3) holds. This implies that
x (£',2y, %) €A. Consequently, by the assumption (iii), we get

(2.4) V(& x (1, ) = a ().

We set ug =V (¢, %), where #,€I. Then, because of (2.3), we have
x (2,2, %) € B for £€[t),£"). As a result, the hypotheses (i) and (v) yield,
using a known comparison result [3], the inequality

(2.5) V@, x(t by, x) <7t tg, u) , LE€[to,7),

where 7 (¢, , ug) is the maximal solution of (2.2). We now let x,€ H.
Then, by (iv) and the choice #, €I, we have

V (%, x0) < a(t)-

Since #g = V (¢y, %) and 4 € I, we have uy < a(4). This implies, by (vi)
that

(2.6) r (£, ty, up) < a (£).
It therefore readily follows from (2.4), (2.5) and (2.6) that
a(@) <V x( ty,x0) <r (" 1y, up) < a ().

This contradiction proves the theorem.

Suppose‘ that the solutions that start in a given set are required to
reach another given set in finite time and remain there for all future time.
The next global result yields sufficient conditions for such a behavior of
solutions of (2.1).

THEOREM 2.2. Assume that
(i) VeC|R*X E, R]) and V (¢, x) is locally Lipschitzian in x;

(ii) there exist sets FCE,E,CE, I; C R* such that xg € F |1, € 1, im-
plies that x (¢, 1y, xo) € Cy for t > ty, where Co= [x € E : Px € PE,];

(iil) g€ C[R*X R, R] and for (¢,2) e R"XCy, D"V (z,2) <
<g@ V@, x) l

(iv) there exists a set D CEqy such that DCEo and V (¢,x) > a(d)
Sfor (¢,x) € R* X Do, where a€ C[R*,R] and Dy =[x € E:Pxe
€ P(Eo\.D)J;
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(V) there exists a set 13CR" such that 1,Nly=F o and a number
To=Ty(ty,2p) >0,2€1y,uy>0 such that for amy solution
w(t,ty,uy) of (2.2), the relation

u(t, to,ug) <a() , t=t+Ty , #Hel,,
holds.

Then, there exists a T =T (¢, x,) such that xg€F, el =1,N1,
implies that

Px (2,2, x) € PD, for ¢t>¢ +T.
Proof. Let xy€F and £, €1, so that by (ii),
x(t,to,xO>€C0, fOr tzfo.

Set ug =V (4, %0),% €1 and T =T (4, x0) = Ty (2, V (%o, 0))-
Then, because of (i) and (iii), we obtain

(2.7) V@t x(, ty,20) <7, tg,u) , ¢>¢.

Let {#,} be a sequence such that #,>#, + T ,#,€1 and #,— co as £ — oco.
Suppose that, if possible,

x (2,2t ,x9) € Dy, for #>¢ +T.
Consequently, the assumption (iv) yields the inequality
(2.8) VG, 2@, b, x0) = a(t).
This, however leads to a contradiction
a() <V @G, x (G, by, %0) <7 (8, 20, 1) < a(ty),

because of the relation (2.7) and hypothesis (v) and thus, the proof is
complete.

Remark 2.1. The two theorems that have been proved above include
as special cases the main global results in [8, 9]. All that is required to
verify this is to take Iy = Is = R" and Y = R”, so that projection operator
P becomes the identity operator. Notice also that we have preferred to
employ a single Lyapunov function instead of a vector Lyapunov function,
as was done in [8]. For our purposes, a single Lyapunov function is quite
sufficient. As will be seen below, it is possible to apply our results to cover
several situations of stability and boundedness criteria including those which
have not yet found their way into the literature such as the partial stability
of an asymptotically self-variant set. '
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3. APPLICATIONS

Let us begin by giving applications of Theorem 2.1. Let M be a compact
set in R” and suppose that it is asymptotically self-invariant with respect
to (2.1). For the definitions of an asymptotically self-invariant (ASI) set
and its stability criteria, see [3, 4, 6]. For any set M, let

S(M,p)=[reR":d(x, M) < ¢],

where d (x, M) is the usual distance of a point x € R” from the set M. The
following result gives sufficient conditions for the stability of the ASI set M.

THEOREM 3.1. Suppose that

(i) VEC[R"XS (M, o) \ M, R],V (¢, %) is locally Lipschitzian in x
and NV (¢ ,x) —-—o0 as d (x, M) -0 and t— oo;

(i) 6€C[(0, p), R] and for (z,x)e R* xS (M, o) \' M, Vi,x) >
=6(d(x, M));

(iii) g€ C[R*XR, R] and for (¢,) e R*XS(M, ) \ M, D"V (z,2) <
<g@,V(,x);

(iv) For every r € (0, p), there exists a © (r) > 0 such that any solution
u(t,ty,my) of (2.2) satisfies u(t,ty,uy) <o), t=>1ty=>7(r),
provided uy < b (r). Then the ASI set M with respect to (2.1) is
uniformly stable.

Progf. Given g€ (0, p), there exist numbers & (g5) > 0 and 7 (g9) > 0
such that xy€S (M, 8) \ M, ¢, = 7 () implies V (%, xy) < b (g,), because
of the assumption (i). We set E=S(M, )\ M, H=S (M, ¢) \' M,
G=3M,¢), Y=R"a()=106(,) and I; = I, = [1 (g, 0), so that all
the hypotheses of Theorem 2.1 are verified. Hence the conclusion follows.

Remark 3.1. Suppose that the set M is self-invariant with respect to (2.1).
If we assume, in Theorem 3.1, that V (#,x) >— o0 as d(x, M) o for
each 7€ R* and that 7 () = o for every »€ (0, p), then, we can conclude
that the invariant set M is equi-stable.

We recall that the stability of the ASI set M is also called the eventual
stability of the set M [3].

Let us represent the system (2.1) in an equivalent form by splitting it,
namely

y=5A v, , y() =2,
2/:f2<l‘»y’z> ’ 3<t0>=30)

where x = (y,2), f = (f1, f2) and the vectors ¥,z belong to R* and R"™*
respectively. Assume that the set {0} is ASI relative to the system (2.1).
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Denote by S, (o) = [y € R*: vl <e]- Then we have
¥

THEOREM 3.2. Assume that
(i) VEC[R"XS,(p)\ {0} X R4 R],V (#,y,8) is locally Lipschitzian
inyandzand V(¢t,y,8) >—ocas ||y + ||z|| = 0 and t— oo;

(i) 6€Clo,0),R] and V(¢,y,2)=06(|y|), for (¢,y,2)¢€
€R" X S, (p) \{o}x R"7%

(i) g€ C[R" X R, R] and for (¢,7,2) € RT xS, (p) \{o}xR"*
D*V(,y, z)—llm sup % [V(t—l—ﬁ yA+hf(t Y, 2), e +hf(t, v, 2) —

—V{#,y,2)] <g<z‘ Vi, y, )

(iv) for every » € (0, p), there exists a «© (r) > O such that any solution
w(t, 2y, uy) of (2.2) satisfies u(t, by, ug) <b(r) for t >ty=> < (r),
provided ug < b (r). Then the ASI set X = o with respect to (2.1)
is partially stable.

Proof. Let g, €(0,p) be given. Then, by (i), there exist numbers
3(ep) >0, t(e)) >0 such that ||yl + |zl <8 (), % =7 (ey) implies
V(t, %0, 20)< b (e1). Thus, setting E=S5,(¢) \{o}x R" % H=[(,2) : 7] +
Hisll< el \{o}, G=PoH = [y e R*: |y = 5], Y = R, a($) = 4 () and
I; = Iy = [t (), 00), we see that all the hypotheses of Theorem 2.1 are
satisfied. Hence the partial stability of the ASI set x = o follows.

Remark 3.2. Although much work is done regarding the partial stability
of the invariant set x = o, [1, 2, 3, 10, 11, 12], the concept of partial stability
of an asymptotically self-invariant set has not been considered so far.

Next, as an application of Theorem 2.2, let us consider the following

THEOREM 3.3. Assume that the hypotheses of Theorem 3.2. hold. Suppose
Jurther that (i) 6 (s) is non-decreasing in s; and (i) for every r € (0, p), there
exists @ v =t (r) >0 and T =T (v) > 0 such that every solution wu (¢, 1ty , uy)
of (2.2) satisfies u(t, ty,u)) <b(),t>ty+ T, tg=>1. Then the ASI set
M with respect to (2.1) is uniformly asymptotically stable.

Proof. Since, by Theorem 3.1, the ASI set M is uniformly stable, we have,
for ¢g=p, a 8y =38 (p) > o such that %y € S (M, §,) implies that x (,2y, ) €
€ES(M,p),2>=2%. By setting F=S(M,8),E,=E=SM, o)\ M,
and D =S (M, ¢,) for any ¢ € (0, p) and by choosmg a(t) = 6 (g we see
that the conditions (i) and (iv) of Theorem 2.2 are verified. The other hypo-
theses of Theorem 2.2 may be verified as in Theorem 3.1. Hence, it follows,
by Theorem 2.2, that if xy€S (M, ), then x(#,4 ,%) €S (M,¢;), for
¢t =129 + T, thus proving the asymptotic stability of the ASI set M.

It is clear from the foregoing discussion that it is possible to apply our
global results (Theorems 2.1 and 2.2) to prove results concerning the bound-
edness of ASI sets, stability and partial stability criteria of conditionally
asymiptotically invariant sets [5], etc., by choosing the sets E, H,G,Y, F, D
and the function « (¢) in a suitable way.
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