ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Takashi Noiri

On semi-continuous mappings

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.2, p. 210–214.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_2_210_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

[132]

Topologia. — On semi-continuous mappings. Nota di TAKASHI NOIRI, presentata ^(*) dal Socio B. SEGRE.

RIASSUNTO. — Il presente lavoro espone alcune proprietà degli insiemi semiaperti e delle applicazioni semicontinue relative a spazi topologici, fra cui la seguente. Dato un insieme di applicazioni $f_a: x_a \to y_a$, il loro prodotto $f, \prod X_a \to \prod Y_a$ [dove $f((x_a)) = (f_a(x_a))$] risulta semicontinuo se, e soltanto se, tale è ciascuna delle f_a .

1. INTRODUCTION

In 1963, N. Levine [3] defined a subset A of a topological space X to be *semi-open* if there exists an open set U in X such that UCACClU, where ClU denotes the closure of U in X. He also defined a mapping f of a topological space X into a topological space Y to be *semi-continuous* if for any open set V in Y, $f^{-1}(V)$ is a semi-open set in X. The purpose of the present note is to give a generalization of the following two theorems in [3] and to investigate some properties of semi-open sets and semi-continuous mappings.

THEOREM A. – Let X_1 and X_2 be topological spaces. If A_i is a semi-open set in X_i for i = 1, 2, then $A_1 \times A_2$ is a semi-open set in the product space $X_1 \times X_2$.

THEOREM B. – Let X_i and Y_i be topological spaces and $f_i : X_i \to Y_i$ be a semi-continuous mapping for i = 1, 2. Then a mapping $f : X_1 \times X_2 \to Y_1 \times Y_2$ defined by putting $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ is semi-continuous.

Throughout the present note X and Y will always denote topological spaces on which no separation axioms are assumed. No mapping $f: X \to Y$ is assumed to be continuous unless explicitly stated. When A is a subset of X, Cl A and Int A denote the closure of A and the interior of A respectively. Moreover, $Cl_A B$ (resp. $Int_A B$) denotes the closure (resp. interior) of a subset B of A with respect to the subspace A. We shall denote the family of all semi-open sets in X by SO(X).

2. Semi-open sets

The intersection of two semi-open sets is not always semi-open [3, Remark 5]. However, we have the following lemma.

LEMMA I. – If U is open and A is semi-open, then $U \cap A$ is semi-open. *Proof.* Since A is semi-open, there exists an open set G such that $G \subset A \subset CIG$. It follows from the openness of U that $U \cap CIG \subset CI(U \cap G)$.

(*) Nella seduta del 10 febbraio 1973.

Hence we have $G \cap U \subset A \cap U \subset Cl (G \cap U)$. This implies that $A \cap U$ is semi-open because $G \cap U$ is open.

Let A and X_0 be subsets of X such that $A \subset X_0$. Theorem 6 of [3] stated that if $A \in SO(X)$, then $A \in SO(X_0)$. The converse is false [3, Remark 2]. However, if $X_0 \in SO(X)$, then the converse is true, as shown by the following theorem.

THEOREM I. – Let A and X_0 be subsets of X such that $A \subset X_0$ and $X_0 \in SO(X)$. Then, $A \in SO(X)$ if and only if $A \in SO(X_0)$.

Proof. The necessity is Theorem 6 of [3] itself; hence we need only prove the sufficiency. Suppose A is semi-open in X_0 . Then there exists an open set U_0 in X_0 such that $U_0 \subset A \subset Cl_{X_0} \cup 0$. Since U_0 is open in X_0 , there exists an open set U in X such that $U_0 = U \cap X_0$. Therefore, we have $U \cap X_0 \subset A \subset Cl_{X_0} (U \cap X_0) \subset Cl (U \cap X_0)$. Since $X_0 \in SO(X)$ and U is open, by Lemma 1, $U \cap X_0$ is semi-open in X. Hence by Theorem 3 of [3], A is semi-open in X.

LEMMA 2. – A is semi-open if and only if CIA = CI Int A.

Proof. Necessity. Suppose A is semi-open. Then by Theorem 1 of [3], we have $A \subset Cl$ Int A and so $Cl A \subset Cl$ Int A. On the other hand, we have Int $A \subset A$ and hence Cl Int $A \subset ClA$. Consequently, we obtain ClA = Cl Int A.

Sufficiency. By the hypothesis, we have $Int A \subset A \subset ClA = Cl$ (Int A). Hence A is semi-open.

LEMMA 3 (Kawashima [2]). – Let $\{X_{\alpha} \mid \alpha \in \mathfrak{A}\}$ be any family of topological spaces and ΠA_{α} a subset of ΠX_{α} , where ΠX_{α} denotes the product space. Then,

(1) Int $\Pi A_{\alpha} = \Pi$ Int A_{α} if $A_{\alpha} = X_{\alpha}$ except for a finite number of $\alpha \in \mathfrak{A}$ and Π Int $A_{\alpha} \neq \emptyset$,

(2) $\operatorname{Cl} \Pi A_{\alpha} = \Pi \operatorname{Cl} A_{\alpha}$.

Proof. For the statement (1), see Lemma 2 of [2]. The statement (2) is well known.

LEMMA 4. – If A is a non-empty semi-open set, then $Int A \neq \emptyset$.

Proof. Since A is semi-open, by Lemma 2, we have ClA = Cl Int A. Suppose Int A is empty. Then we have $ClA = \emptyset$ and hence $A = \emptyset$. This is contrary to the hypothesis. Therefore, Int A is not empty.

The following theorem is a generalization of Theorem A.

THEOREM 2. – Let $\{X_{\alpha} \mid \alpha \in \mathfrak{A}\}$ be any family of topological spaces, $X = \prod X_{\alpha}$ the product space and $A = \prod_{j=1}^{n} A_{\alpha_{j}} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha}$ a non-empty subset of X, where n is a positive integer. Then, $A_{\alpha_{j}} \in SO(X_{\alpha_{j}})$ for each $j(1 \leq j \leq n)$ if and only if $A \in SO(X)$.

15. – RENDICONTI 1973, Vol. LIV, fasc. 2.

Proof. Necessity. Suppose $A_{\alpha_j} \in SO(X_{\alpha_j})$ for each $j (I \leq j \leq n)$. Since A is non-empty, $A_{\alpha_j} \neq \emptyset$ for each $j (I \leq j \leq n)$. Moreover, $A_{\alpha_j} \in SO(X_{\alpha_j})$ and hence by Lemma 4, Int A_{α_j} is non-empty. Thus $\prod_{j=1}^n Int A_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$ is non-empty. Hence by Lemma 2 and 3, we have $Cl Int A = \prod_{j=1}^n Cl Int A_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha} = \prod_{j=1}^n Cl A_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} X_{\alpha} = Cl A$ because A_{α_j} is semi-open for each $j (I \leq j \leq n)$. Again by Lemma 2, we have $A \in SO(X)$.

Sufficiency. Suppose $A \in SO(X)$. Then by Lemma 4, we have $\operatorname{Int} A \neq \emptyset$ because $A \neq \emptyset$. Hence it follows from $\operatorname{Int} A \subset \prod_{j=1}^{n} \operatorname{Int} A_{\alpha_{j}} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha}$ that $\prod_{j=1}^{n} \operatorname{Int} A_{\alpha_{j}} \times \prod_{\alpha \neq \alpha} X_{\alpha} \neq \emptyset$. Since $A \in SO(X)$, by Lemma 2 and 3, we obtain $\prod_{j=1}^{n} \operatorname{Cl} \operatorname{Int} A_{\alpha_{j}} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha} = \operatorname{Cl} \operatorname{Int} A = \operatorname{Cl} A = \prod_{j=1}^{n} \operatorname{Cl} A_{\alpha_{j}} \times \prod_{\alpha \neq \alpha_{j}} X_{\alpha}$. Therefore, we obtain $\operatorname{Cl} \operatorname{Int} A_{\alpha_{j}} \in \operatorname{Cl} A_{\alpha_{j}}$ for each $j (1 \leq j \leq n)$. Again by Lemma 2, we obtain $A_{\alpha_{i}} \in SO(X_{\alpha})$ for each $j (1 \leq j \leq n)$.

3. SEMI-CONTINUOUS MAPPINGS

THEOREM 3. – If $f: X \to Y$ is a semi-continuous mapping and X_0 is an open set in X, then the restriction $f \mid X_0: X_0 \to Y$ is semi-continuous.

Proof. Since f is semi-continuous, for any open set V in $Y, f^{-1}(V)$ is semi-open in X. Hence by Lemma 1, $f^{-1}(V) \cap X_0$ is semi-open in X because X_0 is open. Therefore, by Theorem 6 of [3], $(f \mid X_0)^{-1}(V) = f^{-1}(V) \cap X_0$ is semi-open in X_0 . This implies that $f \mid X_0$ is semi-continuous.

Remark. In Theorem 3, if $X_0 \in SO(X)$, then $f \mid X_0$ is not always semi-continuous, as shown by the following example due to N. Levine [3, Example 8].

Example. Let X and Y be the closed interval [0, I] with the usual topology and X₀ be [I/2, I]. Let $f: X \to Y$ be a mapping as follows: f(x) = I if $0 \le x \le I/2$ and f(x) = 0 if $I/2 < x \le I$. Then f is semi-continuous. However, (I/2, I] is open in Y and $f^{-1}((I/2, I]) \cap X_0 = \{I/2\} \notin SO(X_0)$. Therefore, $f \mid X_0$ is not semi-continuous.

THEOREM 4. – Let $f: X \rightarrow Y$ be a mapping and $\{A_{\alpha} \mid \alpha \in \mathfrak{A}\}$ a semi-open cover of X, that is to say, $A_{\alpha} \in SO(X)$ for each $\alpha \in \mathfrak{A}$ and $\bigcup A_{\alpha} = X$. If the restriction $f \mid A_{\alpha}: A_{\alpha} \rightarrow Y$ is semi-continuous for each $\alpha \in \mathfrak{A}$, then f is semi-continuous. *Proof.* Suppose V is an arbitrary open set in Y. Then for each $\alpha \in \mathfrak{A}$, we have $(f \mid A_{\alpha})^{-1}(V) = f^{-1}(V) \cap A_{\alpha} \in SO(A_{\alpha})$ because $f \mid A_{\alpha}$ is semi-continuous. Hence by Theorem I, $f^{-1}(V) \cap A_{\alpha} \in SO(X)$ for each $\alpha \in \mathfrak{A}$. By Theorem 2 of [3], we obtain that $\bigcup_{\alpha \in \mathfrak{A}} f^{-1}(V) \cap A_{\alpha} = f^{-1}(V) \in SO(X)$. This implies that f is semi-continuous.

The following theorem is a generalization of Theorem B.

THEOREM 5. – Let $\{X_{\alpha} \mid \alpha \in \mathfrak{A}\}$ and $\{Y_{\alpha} \mid \alpha \in \mathfrak{A}\}$ be any two families of topological spaces with the same index set \mathfrak{A} . For each $\alpha \in \mathfrak{A}$, let $f_{\alpha} : X_{\alpha} \rightarrow Y_{\alpha}$ be a mapping. Then, a mapping $f : \Pi X_{\alpha} \rightarrow \Pi Y_{\alpha}$ defined by $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ is semi-continuous if and only if f_{α} is semi-continuous for each $\alpha \in \mathfrak{A}$.

Proof. Sufficiency. Suppose V is a basic open set of the topology of ΠY_{α} . Then there are $\alpha_j \in \mathfrak{A}$ $(\mathbf{I} \leq j \leq n)$ and open sets V_{α_j} in Y_{α_j} such that $V = \prod_{j=1}^n V_{\alpha_j} \times \prod_{\alpha \neq \alpha_j} Y_{\alpha}$. Since f_{α_j} is semi-continuous, $f_{\alpha_j}^{-1}(V_{\alpha_j})$ is semi-open in X_{α_j} for each j $(\mathbf{I} \leq j \leq n)$. If there exists α_j such that $f_{\alpha_j}^{-1}(V_{\alpha_j}) = \emptyset$, then $f^{-1}(V) = \prod_{j=1}^n f_{\alpha_j}^{-1}(V_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_{\alpha} = \emptyset$. Hence $f^{-1}(V)$ is semi-open in ΠX_{α} . If $f_{\alpha_j}^{-1}(V_{\alpha_j}) \neq \emptyset$ for all $j(\mathbf{I} \leq j \leq n)$, then $\prod_{j=1}^n f_{\alpha_j}^{-1}(V_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_{\alpha} \neq \emptyset$. Hence by Theorem 2, $f^{-1}(V) = \prod_{j=1}^n f_{\alpha_j}^{-1}(V_{\alpha_j}) \times \prod_{\alpha \neq \alpha_j} X_{\alpha}$ is semi-open in ΠX_{α} . Now for any open set W in Y, there exists a family $\{V_{\lambda} \mid \lambda \in \Delta\}$ of basic open sets such that $W = \bigcup_{\lambda \in \Delta} V_{\lambda}$. Hence by Theorem 2 of [3], $f^{-1}(W) = \bigcup_{\lambda \in \Delta} f^{-1}(V_{\lambda})$ is semi-open in ΠX_{α} . This implies that f is semi-continuous. *Necessity*. For each fixed $\alpha \in \mathfrak{A}$, let $p_{\alpha} : \Pi Y_{\beta} \to Y_{\alpha}$ be the projection.

Suppose V_{α} is an arbitrary open set in Y_{α} . Then $p_{\alpha}^{-1}(V_{\alpha}) = V_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}$ is open in ΠY_{β} . Since f is semi-continuous, $f^{-1}[p_{\alpha}^{-1}(V_{\alpha})] = f_{\alpha}^{-1}(V_{\alpha}) \times \prod_{\beta \neq \alpha} X_{\beta}$ is semi-open in ΠX_{β} . If $f_{\alpha}^{-1}(V_{\alpha})$ is empty, then it is obvious that f_{α} is semi-continuous. If $f_{\alpha}^{-1}(V_{\alpha})$ is not empty, then $f_{\alpha}^{-1}(V_{\alpha}) \times \prod_{\beta \neq \alpha} X_{\beta} \neq \emptyset$ and hence by Theorem 2, $f_{\alpha}^{-1}(V_{\alpha})$ is semi-open in X_{α} . This implies that f_{α} is semi-continuous.

The following theorem is a generalization of Theorem 15 of [3].

THEOREM 6. – Let $\{X_{\alpha} \mid \alpha \in \mathfrak{A}\}$ be any family of topological spaces. If $f: X \to \Pi X_{\alpha}$ is a semi-continuous mapping, then $p_{\alpha} \circ f: X \to X_{\alpha}$ is semi-continuous for each $\alpha \in \mathfrak{A}$, where p_{α} is the projection of ΠX_{β} onto X_{α} .

Proof. We shall consider a fixed $\alpha \in \mathfrak{A}$. Suppose U_{α} is an arbitrary open set in X_{α} . Then $p_{\alpha}^{-1}(U_{\alpha})$ is open in ΠX_{α} . Since f is semi-continuous, we have $f^{-1}[p_{\alpha}^{-1}(U_{\alpha})] = (p_{\alpha} \circ f)^{-1}(U_{\alpha}) \in SO(X)$. Therefore, $p_{\alpha} \circ f$ is semi-continuous.

[136]

D. R. Anderson and J. A. Jensen [I] showed that if $f: X \to Y$ is a continuous and open mapping, then $f^{-1}(B) \in SO(X)$ for every $B \in SO(Y)$. The following theorem is a slight improvement of this theorem.

THEOREM 7. – If $f: X \to Y$ is an open and semi-continuous mapping, then $f^{-1}(B) \in SO(X)$ for every $B \in SO(Y)$.

Proof. For an arbitrary $B \in SO(Y)$, there exists an open set V in Y such that $V \subseteq B \subseteq Cl V$. Since f is open, we have $f^{-1}(V) \subseteq f^{-1}(B) \subseteq Cf^{-1}(Cl V) \subseteq Cl [f^{-1}(V)]$ [4, (i), p. 13]. Since f is semi-continuous and V is open in Y, $f^{-1}(V) \in SO(X)$. Therefore by Theorem 3 of [3], we obtain $f^{-1}(B) \in SO(X)$.

By Remark 12 of [3], the composition mapping of two semi-continuous mappings is not always semi-continuous. However, we obtain the following corollary as an immediate consequence of Theorem 7.

COROLLARY. – Let X, Y and Z be three topological spaces. If $f: X \rightarrow Y$ is an open and semi-continuous mapping and $g: Y \rightarrow Z$ is a semi-continuous mapping, then $g \circ f: X \rightarrow Z$ is semi-continuous.

References

- D. R. ANDERSON and J. A. JENSEN, Semi-continuity on topological spaces, «Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. », (8) 42, 782-783 (1967).
- [2] H. KAWASHIMA, On the topological product of minimal Hausdorff spaces, «TRU Math.», 1, 62-64 (1965).
- [3] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, «Amer. Math. Monthly», 70, 36-41 (1963).
- [4] R. SIKORSKI, Closure homomorphisms and interior mappings, «Fund. Math. », 41, 12–20 (1955).