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Equazioni differenziali. —- Convergent solutions of nonlinear 
differential equations. Nota di D a v i d  L o w e l l  L o v e l a d y , presen
tata (#) dal Socio G. S a n s o n e .

RIASSUNTO. — Sono date condizioni sufficienti che assicurano che se f  e convergente 
allora ogni soluzione v (t) dell’equazione

v\t)  = f ( t ) +  F
è convergente.

Questi risultati sono applicati per scegliere lim v it):
t ->oo

Soluzioni convergenti sono pure ottenute per l’equazione perturbata 

u(f) = f ( t )  +  F ( t , u (/)) +  G ( t , u (/)) .

I . I n t r o d u c t i o n

Let Y be a Banach space with norm  | |, and let R+ be the set of all nonne- 
gative real num bers. W e shall obtain herein conditions which ensure th a t 
every solution v of

(1) . + F (* ,» ( /) )

is convergent (i.e., lim v(t) exists), where F is a continuous function from
t —>oo

R + X Y to Y and f  is a convergent continuous function from R + to Y. T he 
hypotheses which we shall place on F will be such th a t global existence and 
uniqueness for (1) follows from  both of [13] and [17]. O ur results on (1) will 
be related to the results of [12], and, indeed, the results of [12] will p lay a 
part in our proofs.

In  § I I I  wë will indicate how the results of § II relate to term inal value 
problem s for (1). In  particu lar we will show th a t if is in Y then there is 
p 0 in Y such th a t v (t) -> z0 if /  (/) -> p 0.

W e will also trea t the perturbed equation

(2) u'(f) — /  (/) +  F (t , u  (Z)) +  G ( t , u (0 )

and obtain conditions which ensure the convergence of its solutions. The 
technique in '(2) will be to cite asym ptotic equivalence results from [11] which 
ensure th a t (1) and (2) have the same asym ptotic behavior. Thus asym ptotic 
conclusions for (1) can be transferred  to (2). Since the proofs in [11] required 
th a t Y be finitedimensional, we will impose th a t restriction when studying (2).

The problem  of determ ining when solutions of ord inary  differential 
equations are convergent has been studied by several A uthors, usually  for

(*) Nella seduta del io  febbraio 1973.
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linear equations with “ small ” nonlinear perturbations. See, for example, 
A. W intner [19], [20], [21], F. B rauer [1], [2], T. G. H allam  [4], [5], H allam , 
G. Ladas, and V. L akshm ikantham  [7], H allam  and L akshm ikantham  [8], 
H allam  and J. W. Heidel [6], and J. D. M am edov [15]. O ur techniques will 
be the use of differential inequalities of L akshm ikantham  and S. Leela [9] 
and the notion of logarithm ic derivative developed by T. W azewski [18] 
and S. M. Lozinskii [14] and most recently em ployed by R. H. M artin , Jr. 
and the present A uthor [16], [13], [10], [11], [12].

II. C o n v e r g e n t  s o l u t io n s

Let 9 be a continuous real-valued function on R +. W e shall need the 
following conditions for our theorems.

(Cj): If  ( t , x  , y) is in R + x Y x Y  and c is a positive num ber then

I *  —  y  —  c [F(V , X) —  ¥(t  , y ) ] \  >  [1 —  Cf (7)] \ x — y \ .

(■C2): There is a num ber M such tha t

/ /
J exp J <p(V) dr <  M

whenever t is in R +.
(C3): If  x  is in Y then lim F ( t , x) exists, and if K is a com pact subset

/ ->oo
of Y then  this convergence is uniform  for x  in K.

T h e o r e m  i. Let f  be a convergent continuous function from  R + to Y, 
and suppose that each of (C i), (£2), and (C3) is true. Then there is a member 
z o f T  such that i f  v is a continuously differentiable function satisfying  (1) on 
R+ then

lim v (f) =  z .
t  —>00

It should be noted tha t in Theorem  1 the existence of lim v (t) is part
/  -->00

of the conclusion, not hypothesis. The theorem  can be thought of as saying 
th a t every solution of (1) is convergent and all solutions converge to the same 
point. It is known th a t (Cf)  implies th a t if x  is in Y then there is exactly  one 
continuously differentiable function v from R + to Y such th a t v (o) =  x  and 
such th a t (1) is true w henever t is in R +. This result was obtained indepen
dently  by N. Pavel [17] and by R. H. M artin, Jr. and the present A uthor 
[13]. Before proving Theorem  1, we need the following lemma. Note that 
if (Cx2) holds then M is necessarily positive.

L e m m a . Suppose that (C2) is true, and let m  =  i / M .  Then

lim inf 9 (t) <  — m .
t —> 00
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Proof. It follows from [3, Lem m a 1, p. 68] th a t there is a num ber k 
such th a t

exp cp(s) d̂ * <  exp (k — mt)

whenever t is in R +. Thus

j 9 (s) dv <  k — mt

whenever t is in R +. Now, if b is in R + and £ is a positive num ber and 
9 (/) >  •— m  +  s whenever t is in [b , 00), then

k —  m t >  j  9 (j*) ds 
0

b t

=  j* <P (s) ds +  j* <p (s) ds
b 't

b

>  j' 9 (s) dj* +  (■— m +  e) ( t — b) 
0

whenever t  is in \b , 00). This clearly cannot be, so the lemma is proved.. 

Proof of Theore?n 1. Let A  from Y to Y be given by A (x) =  lim F ( 7  , x).
t  —»00

Now, by (63)> A  is continuous on com pact subsets of Y and hence is conti
nuous on Y. Also, if  (x , y)  is in Y X Y and c is a positive num ber,

x y  c [A (x) —~A (y)ì  I =  lim \ x — y  — c[F(t ,x)  — F(t ,y)]  |
/ —>00

>  lim sup [1 — ccp (/)] \ x  — y  |
t —>oo

>  [1 +  cm] \ x  — y  I .

It now follows from [16] th a t if p  is in Y then there is exactly one m em ber 
z ° f  Y such th a t p  -j- A (z) =  o. Let p  =  lim f  (f) and find z  such tha t

/->oo
P~\r.A (z) o. Thus lim \ f  (t) +  F ( t , z) | =  o. It follows from the results

t —>00
cited in the proof of the lem m a tha t

(3) lim exp
t —>oo

9 (V) d̂ * =  o ,

14. RENDICONTI 1973, Voi. LIV, fase. 2.
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and now an easy com putation shows that

t t

(4) lim  f  | / ( j )  +  F (x  , z) I exp
t —>00 J

<p (r) dr ds =  o .
0 j

Now [12] says th a t (3) and (4) im ply the conclusion of the theorem , and we 
are through.

III .  T e r m i n a l  v a l u e  p r o b l e m s

It is clear in Theorem  1 th a t z  depends on / ,  or, more specifically, on 
l i m / (7). This brings up the question of controlling (1) with chosen forcing

t —> 00

functions, in order to reach a desired term inal value.

THEOREM 2. Let each of (C j ), (C2), and (Cfi) be true, and let z0 be in  Ÿ. 
Then there is a member p 0 of Y such that, i f  f  is a continuous function from  
R + to Y and p 0 =  lim / ( / ) ,  then every solution v of (1) satisfies

t —>- 00

zo =  lim v (f) .
t —4 0 0

Theorem  2 is clear from the construction in the proof of Theorem  1, and 
we shall not include a proof here.

IV. Stability  of convergent solutions

From  this point forward we shall assume th a t Y is finitedimensional. 
Let G be a continuous function from R + X Y to Y, and let co be a continuous 
function from R + x R + to R +. We shall need the following conditions.

(Cfi) : If  ( t , x) is in R + X Y then | G (/ , x) | <  co ( t , | x  |).

(Cf) : If  c is in R + then lim co ( t , c) =  o.
t ->oo

(C6) : If  (r , s , t) is in R + X R + X R + and s < t  then co (r , s) <  co (r , t).

T heorem  3. Suppose that each of (C i), (C2), (C f), (C5), and  (C6) is true 
and that f  is a continuous f  unction from  R + to Y. Then (1) and  (2) are asymp
totically equivalent in the sense that each of i f) and (it) is true.

(i) : I f  v is a bounded solution of (fi) on R + then there is a member b
of R + and a solution u of (fi) on [b , 00) such that

(5) lim I v (f) — u (f) I =  o .
t  00

(ii) : I f  b is in  R + and u is a bounded solution of fi)  on [b , 00) then
there is a solution v of (1) on \b , 00) such that (5) is true.
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THEOREM 4. Suppose that, in addition to the hypotheses o f Theorem 3, 
(£3) is true a n d f  is convergent. Then there is a member b o f R + such that there 
exists a convergent solution of (2) on \b , oo). Furthermore, i f  b is in  R+ and u 
is a bounded solution of (2) on [b , 00) then u is convergent.

Theorem  3 follows easily from argum ents so sim ilar to the proof of [ix, 
Theorem ] th a t we shall not include them  hère. Theorem  4 follows directly 
from Theorem s 1 and 3. Note that, in Theorem  4, all bounded (and hence 
convergent) solutions of (2) have the same limit, since (5) is true and we know 
from  Theoreqi 1 th a t all solutions of (1) have the sam e limit.

The condition on the dimension of Y was imposed so as to perm it the 
proof ideas of [11] to carry  over to Theorem  3. The proof of [11, Theorem ] 
involved applying the Schauder-T ychonoff theorem , in the form  of [3, p. 9], 
to sets of Y -valued  functions, and this requires Y to be finitedimensional.

Acknowledgment. The A uthor gratefully  acknowledges private corre
spondence with Professor R. H. M artin , Jr., of N orth  C arolina S tate U n iver
sity, Raleigh; correspondence which led to an im provem ent of both the 
statem ent and proof of Theorem  1.
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