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Topologia algebrica. — Fiber bundle with involution and charac-
teristic classes @. Nota di NicoLar TrLEMAN ¢, presentata ®*9 dal
Corrisp. E. MARTINELLI.

RIASSUNTO. — In questo lavoro costruisco e studio le proprieta di un sistema di classi
caratteristiche # per fibrati localmente banali « muniti di una involuzione ». Le classi #; gene-
ralizzano le classi di Stiefel-Whitney. Il procedimento costruttivo. assomiglia alla costruzione-
delle operazioni coomologiche di Steenrod.

1. INTRODUCTION

It is known [5] that the Stiefel-Whitney characteristic classes of a real
vector bundle E can be defined by the formula w, = ¢ S, U, where ¢ is
the Thom isomorphism in cohomology, S, is the 7-th Steenrod squaring
operation, and U the Thom class of the vector bundle.

It is also known [1] that the Stiefel-Whitney characteristic classes can
be defined by using the covering map S(E®1) - P(E@1), where S(E),
resp. P(E) denotes the associated sphere, resp. projective bundle with E.

If X is a topological space, the involution T: X X XXX X, T : (x;, %) —
> (¥g, ) is used for the definition of the Steenrod squaring operations.
The definition of the covering map S(E@1) —P(E®1) requests also an
involution, the antipodal involution A, defined on each sphere of the bundle
S(E®@1). Hence, the bide constructions of the Stiefel-Whitney characteristic
classes involve an involution; while the involution T is * external ’’ (the
involution T is not defined on X, but on X x X), the involution A is * inter-
nal ” (the involution A is defined on the space S(E®1)).

- We consider fiber bundles £ with fiber F which is (z —1, R)-simple,
(R being a commutative ring with 1), i.e. H;(F,R) =0 for 1</ < — 1.
In the bundle £ we consider an arbitrary fiber preserving involution.

In these hypotheses we construct a system of characteristic classes # &)
which generahzes the Stiefel-Whitney characteristic classes. In particular,
for F = 5", and R = Z; our classes satisfy all the axioms of Stiefel-Whitney
characteristic classes less one of them; our characteristic class #, () is not
necessarily 1; for example, if the base is connected by arcs and in the total
space of £ there exists a fixed point at the involution, then () =o. If
there exists a continuous section of fixed points then all # (£) vanish.

(*) Lavoro eseguito presso 1'Istituto Matematico «G. Castelnuovo » dell’Universita
di Roma, come ricercatore straniero del C.N.R.

(**) Dedico questo lavoro alla memoria di mio padre Ing: Aurelio Teleman.

(¥*¥) Nella seduta del 13 gennaio 1973.

4. — RENDICONTI 1973, Vol. LIV, fasc. 1.
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We define also a cohomological invariant of involutions, called the ¢ index
of the involution ”

Connected problems are studied by I. M. James and D. W. Anderson
in [2], [3], [4]

I present here a summary of the results which I have obtained. I shall
give an extensive exposition in a subsequent paper.

2. FIBER BUNDLES WITH INVOLUTION

2.1. DEFINITION. A “fiber bundle with involution” is a quintuple

¢£=(E,n,B,F, A), where E-"-> B is a local trivial fiber bundle with
fiber F; and A:E — E is a continuous, involutive, fiber-preserving map
(A =, A= 1).

We suppose that any-local trivial fiber bundle with fiber F over an
arbitrary simplex is a product bundle.

2.2. DEeriNITION. If &, =(E;,,=n,,B,F,,A), 7i=1,2, are fiber
bundles with involution, then these are ‘ equivalent’ if and only if there
exists a homeomorphism f: E; —E, such that wmyf=m;, A,/ = fA,, and f
maps E; homeomorphically on Es.

Let & (B, F1, Z2), denote the set of equivalence classes of fiber bundles
with involution with fibers Fy.

2.3. DEFINITION. If £= (E,n,B,F,A)e®(B,F,Z) and f: B'—~B
is a continuous map, then in the pull-back f*E

*E—— > E
4 f
f*x b3
v \
B/ B

there exists a unique involution f¥A such that fo(f*A) = Af; hence there
exists a well defined /¥ = (f*E,f*=,B’, F,f*A) € #(B', F, Zy).

2.4 DEFINITION. If £=(E,=n,B,F,A)e®B (B, F,Z,), let QE € B(B,CF,Zy)
denote the associated cone bundle with the involution A such defined:

A(f, = (A, D, (f,8) € F,xIJF,x{o}.

2.5. DEFINITAION. If £e=E,n,B,F,A)e®(B,F,Z) let X =
(]:: =, B,ZF ,A) e &(B,IF,Zs) denote the bundle with involution

which has fiber E, = XE,, x € B; the involution Ais defined as follows:
in XF=C_F[ |yC,F (C:E1 F denoting the cone over F), if ¢ = (f, #) € C,F,

o<t<1, feF, then Ae = (Af, /) €Cx F
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3. THE EILENBERG SUBCOMPLEX

Let R be a fixed commutative ring with 1. Let C (—, R) denote the
singular chain complex (with coefficients in R) functor; let 3:C,(— R)&
denote the boundary operator.

3:1. DEFINITION. If F is a topological space, we say that F is (#, R)-
simple if H;(F, R) = o for o <7< ». '

3.2. DEFINITION. Let F be a (z— 1, R)-simple space and Eed(B,F,Zs).
By definition, the ‘ Eileberg relative subcomplex” of CE (see 2.4) is
&»"P(CE,R)CC,(CE,R) such defined: 87 V(CE,R) is free over R; the
* *
generators of &; V(CE,R) are that and only that singular A-simplexes
6 : A"~ CE for which o (AH™ CCEy- (A" denotes the #-dimensional skeleton
of Ab.

3.3. PROPOSITION. [f EeBB,F,Zs) and F is (n— 1, R)-simple,
then the inclusion é’aif"])(CE_, ,R) s C,.(C&,R) is a chain homotopy equivalence.

4. HOMOLOGICAL LOCAL SYSTEMS IN FIBER BUNDLE WITH INVOLUTION

Let be £ = (E,n,B,F,A)e®B(B,F,Zy), and R a fixed commuta-
tive ring with 1; let # be a fixed natural number.

For any point 4€ B we consider the homology R-module H, (E;, R).
Let p:[0,1] = B be a path. In the total space o*E of p*£ we have the

natural inclusions

Eoy= (¢*E)y 2~ ¢*E <« (o*E), = E,q.

As the fiber bundle (without involution) ¢*E —1 is equivalent to a
product bundle, 7, and #; are homotopic equivalences; hence, 7, and 7; induce
isomorphisms in homology, and in consequence the well determinated

isomorphism

le| = Gy o Go)y  © H,(Eeq,R) —H,(E,q,R).

The isomorphism |¢| depends only on the homotopy class of p. Really,
if ¢z : I — B is a homotopy with fixed ends, then a similar argument applicated
to the fiber bundle §*E " IxI, where 3:I1x1—B is §(%,#) = RO
conducts to the assertion. . '

Now we take in consideration the involution A in connection with le]-

If we denote in general A; = Alg,, we have the commutative diagram
for the upper path: :

E. = (p"E)o —— p"E <= (¢*E); = Eoq
T [ S T S [ S o
Eop = (0" E)g—— 0" E < (¢*E)g = Ey)
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from which derives the commutativity in homology
) Lo | Aoy = Aoy | 0] -
If 6 € B, let be

B £ Hp
Hy=H,(E, R) . NP =g mom

The relation (1) shows that |p| induces two isomorphisms:
Lo Hio — Hiy,

which depend only on the homotopy class of the path .

Let #*(,R), resp. #(¢,R) denote the local systems (HF, |e|®,
resp. (H,, |p[). These two local systems are called the ¢ homological local
systems of the fiber bundle with involution £ in dimension 7 .

5. ON THE THOM ISOMORPHISM

5.1. THEOREM. Let E-"— B be a local trivial fiber bundle with fiber
F(n— 1, R)-simple (see 3.1), and S=(S;,|p|) a R-local system over B.

Then =*: %" (B,S) —#"(E, «*S) is an isomorphism for 0 <7< 7% — 1
and is a monomorphism for » = 7.

6. CHARACTERISTIC CLASSES OF FIBER BUNDLES WITH INVOLUTION

6.1. THEOREM. Let be {= (E,=n,B,F,A)e®B(B,F,Z) and F let _
be (n— 1, R)-—simple and connected by arcs. Then there exist the local
R-romomor phisms:

i) 27:C,(E,R) »Cyp, (E,R),0< p+r<n, i=id,
such ‘that:
(O (A E V=5, A+ (— 1) B g,

i) if KD, B are two such systems of local homomorphisms which
satisfy 1), then z‘/zefe exists the system of local R-homomorphisms:

95 :C,(E,R) >Cpppy1(E, R), prr+1<mn,
such that, if we denote K= k) — ), we have:
K = (x4 (— 1 A) g ™+ 080+ (— 1) o2
iii) Zhere exist the local R-homomorphisms

w?,:C,_,(E,R) >C,(E,R)
such that:

K2, =+ (— A+ (— 10 e, 1o+ul,, wd,=
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6.2. We know from the preceding considerations that:
(1 (6,5, £) () = (1 + (— 1V A) A — (— 7 A2,9) (o)
is a cycle; let be, for an arbitrary singular simplex c €V, _ D)

(@,E, &) () =[(&,E, £7) ()]

where [y] denotes the homology class of the cycle y. Therefore w, (%, £) €
€C—+1(E, n*¥, (&, R)) = the R-module of (#—7 - 1)-singular cochains
with coefficients in the local system =*i(, (£, R).

The coboundary of o, (&, A7) is

(dw, E, &) (6) = (— 1 —A,) (-1 (&, £) (o) .

6.3. Notation. Let y* denote the canonical epimorphisms of local
systems:

xEI,E,R) - IEE,R);
in consequence we have the exact sequences:
(x) 0> (1£A)I,E,R) &I, E, R) 2> 1EE, R) »o.
We obtain the following:

6.4. THEOREM. [f £= (E,n,B,F, Z:)€®B(B,F,Zy), the fiber F
being (n —1,R)-simple and connected by arcs, then Jor any o <7 < n we can
define the cochain o, (% , kg)) eCr (E, =*i, (&, R)), where /é;’) are defined in
the Theorem 6.1 1). The coboundary of o, , k) is: ,

do, &, ) = (— 1" —A) o1 (&),
and, in consequence
&,E B =y o,E K) e =sign(—1)
is a cocycle.

6.5. THEOREM. T7Ve cohomology class [&,(%, A)] € (E , iy (¢,R))
is independent of the choice of the local homomorphisms K from Theorem 6.1.

6.6. THEOREM. The cohomology class [&,(5 , k)] defined in the Theo-
rem 6.4. is a basic class, i.e.

[, , £7)] € =¥ 3" (B, 17 €, R)).

6.7. DEFINITION. If £Ee€eB(B,F,Zy) and if IF is (7 — 1, R)-simple,
we shall write £ € 8% (B, F,Zy). The suspension IF is connected by arcs,
and in ZEA there exist two canonical sections: the zero sections s a1 B —
—E & E, where Ey=CLE



54 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIV — gennaio 1973 [54]

6.8. DEFINITION. If &€ &”(B, F,Z,), then the R-characteristic class‘es
;&) of E=(E,n,B,F,A) are

1) = 16,012 (B8, £ €
eW®B,u"THZE,R) , o<i<n , e =sign(—1).
6.9. Let be £€®"(B,F,Zs); then Xfe€ By (B, F,Zs). For the cal-
culation of £ (£), resp. # (X£), we must consider the local systems:
*ELCE,R), resp. IE (2%, R) .

We remark that by the suspension isomorphism theorem in homology, which
is natural, we have the equivalence of local systems

WEL (225, R) 2 0T (3L, R).

6.10. THEOREM. The characteristic classes t; have the properties:
(0) for Ee®r(B,F,Zs),2:(E) €’ (B, "™ (£, R),0<i<n,
(i) ¢ £eBr(B,F,Zy) and f: By - B is a continuous map, then

L8 =f(%®) .

(i) of E€eBr(B,F,Zy), then ZE€ By (B, F,Z) and, by respect
the equivalence of the local systems defined by the suspension isomorphism -

£;(28) = (— I>”_ZVA*ti ®, o0 i< n,
l‘n+1 (Zg) =0,

(iti) (the < Whitney duality formula”) if & € BB, F;,Zy), 5y €
€ Br(B, Fy,Zy) and if we denote by resp. 1, Y2, the corresponding epi-
morphisms from 7.3 for resp. &, 8y, E1DEy, then there exist the cocycles

«,€C’(B, 1,5 ,R), o<p<m,
B, €C/(B,u,(k, R)) o<g<mn,

such that
t,(E1DE) =y [ 2 (— I)E(p’q)A’;;q o, Ag, Bq]
: p+g=S
and
A1 %y =, ()
X2 Bq = Z(q (‘22) .
where

e, q)=pn—qg+1)+tm+n+r1.

(iv) if in E€ BrR(B, F,Zy) there exists a continuwous section of fixed
points for the involution in &, then:

&) =o0 for o<i<nm.
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7. THE INDEX OF AN INVOLUTION

If F is a topological space with involution such that XF is (# — 1, R)-
simple, then we can consider F as a fiber space with involution over a point.

H, (F, R)
H to (F '
ence 7y (F) € (1 + (— 1" A,) Hp (F,R)

7.1. DEFINITION. If F is a topological space with involution such
that XF is (z — 1, R)-simple, then #,(F) will be called the index of the
involution, and will be denoted I} (F, A).

7.2. THEOREM. 7he index of the involution has the properties:

() if A,:F T is a continuous deformation of the involution Mgy in
the involution Ay, then

I5(F, Ag) = Ia(F , Ay) .

(it) If Ty resp. Fo are two topological spaces with involutions Ax, resp.
As, and XFi, resp. XZFs are (m— 1, R)-simple, resp. (n— 1, R)-simple,
then TE" T (FL@F,, A,@Ay) = (— 1) " AL 17 (F,, A))-Ay, TIr(Fy , Ay).

(iii) If A 4s an involution in ¥, and if A has at least a fixed point,
then I (F,A) = o.

7.3. COROLLARY.  If £ € BR (B, ¥ ,Z,) and if B is connected by arcs,
if there exists at least a fixed point in the total space of &, then ty(£) = o.

8. CHARACTERISTIC CLASSES OF INVOLUTIONS IN SPHERE BUNDLES
In this section we particularize the coefficients to Zs and we consider
only spherical fibers. Then the Theorem 6.10 becomes:

8.1. THEOREM. The characteristic classes of sphere bundles with involu-
tion have the properties: :

(0) for E€By (B,S ™, Zy),4,(E)eH B ,Zy), o<i<n,
i) z'f& €B7,(B,F,Zy) and f:B,— B is a continuous map, then
L8 =1 &®),
(i) #f £ e By (B,S" ™, Zy), then
4 (Z8) = ¢,(B) o<i<nm
i1 (ZE) =0,
(i) &f & € B7,(B,S" 71, Zy) , Ex € By (B, S Zy),
then

4,108 = pfj.l ; AEAE
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(iv) if in &€ By (B, S"™Y, Zy) there exists a continuous section of fixed
points, then

() =o, o<i<#n,
(v) if Ee B3, (B,S" ", Za), then
2,(8) =, ()

8.2. Remark. The classes #; satisfy all Stiefel-Whitney axioms less one
of them: #y(§) can be o, while w,(8) is ever 1.

8.3. Remark. For the classes # the relation ¢ (8) = w,(E) #,(%) is
generally false.

8.4. THEOREM. IfEe€ &, (B,S"™",Zy) and if £ is in addition an Ewcli-
dean sphere bundle (associated with a real vector bundle) provided with the
antipodal involution, then

;&) = w; (%) .
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