ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

NICOLAE TELEMAN

Fiber bundle with involution and characteristic classes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.1, p. 49–56. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_1_49_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologia algebrica. — Fiber bundle with involution and characteristic classes (*). Nota di Nicolae Teleman (***), presentata (****) dal Corrisp. E. Martinelli.

RIASSUNTO. — In questo lavoro costruisco e studio le proprietà di un sistema di classi caratteristiche t_i per fibrati localmente banali « muniti di una involuzione ». Le classi t_i generalizzano le classi di Stiefel-Whitney. Il procedimento costruttivo assomiglia alla costruzione delle operazioni coomologiche di Steenrod.

I. Introduction

It is known [5] that the Stiefel-Whitney characteristic classes of a real vector bundle E can be defined by the formula $w_i = \varphi^{-1} S_q^i U$, where φ is the Thom isomorphism in cohomology, S_q^i is the *i*-th Steenrod squaring operation, and U the Thom class of the vector bundle.

It is also known [1] that the Stiefel-Whitney characteristic classes can be defined by using the covering map $S(E \oplus I) \to P(E \oplus I)$, where S(E), resp. P(E) denotes the associated sphere, resp. projective bundle with E.

If X is a topological space, the involution $T: X \times X \to X \times X$, $T: (x_1, x_2) \mapsto (x_2, x_1)$ is used for the definition of the Steenrod squaring operations. The definition of the covering map $S(E \oplus I) \to P(E \oplus I)$ requests also an involution, the antipodal involution A, defined on each sphere of the bundle $S(E \oplus I)$. Hence, the bide constructions of the Stiefel-Whitney characteristic classes involve an involution; while the involution T is "external" (the involution T is not defined on X, but on $X \times X$), the involution A is "internal" (the involution A is defined on the space $S(E \oplus I)$).

We consider fiber bundles ξ with fiber F which is (n-1,R)-simple, (R being a commutative ring with 1), i.e. $H_i(F,R)=0$ for $1 \leq i \leq n-1$. In the bundle ξ we consider an arbitrary fiber preserving involution.

In these hypotheses we construct a system of characteristic classes $t_i(\xi)$ which generalizes the Stiefel-Whitney characteristic classes. In particular, for $F = S^n$, and $R = Z_2$ our classes satisfy all the axioms of Stiefel-Whitney characteristic classes less one of them; our characteristic class $t_0(\xi)$ is not necessarily I; for example, if the base is connected by arcs and in the total space of ξ there exists a fixed point at the involution, then $t_0(\xi) = 0$. If there exists a continuous section of fixed points then all $t_i(\xi)$ vanish.

^(*) Lavoro eseguito presso l'Istituto Matematico «G. Castelnuovo» dell'Università di Roma, come ricercatore straniero del C.N.R.

^(**) Dedico questo lavoro alla memoria di mio padre Ing. Aurelio Teleman.

^(***) Nella seduta del 13 gennaio 1973.

^{4. —} RENDICONTI 1973, Vol. LIV, fasc. 1.

We define also a cohomological invariant of involutions, called the "index of the involution".

Connected problems are studied by I. M. James and D. W. Anderson in [2], [3], [4].

I present here a summary of the results which I have obtained. I shall give an extensive exposition in a subsequent paper.

2. FIBER BUNDLES WITH INVOLUTION

2.1. DEFINITION. A "fiber bundle with involution" is a quintuple $\xi = (E, \pi, B, F, A)$, where $E \xrightarrow{\pi} B$ is a local trivial fiber bundle with fiber F; and $A: E \to E$ is a continuous, involutive, fiber-preserving map $(\pi A = \pi, A^2 = 1)$.

We suppose that any local trivial fiber bundle with fiber F over an arbitrary simplex is a product bundle.

2.2. Definition. If $\xi_i=(\mathrm{E}_i$, π_i , B, F_i, A_i), i=1, 2, are fiber bundles with involution, then these are "equivalent" if and only if there exists a homeomorphism $f:\mathrm{E}_1\to\mathrm{E}_2$ such that $\pi_2f=\pi_1$, $\mathrm{A}_2f=f\mathrm{A}_1$, and f maps E_1 homeomorphically on E_2 .

Let $\mathfrak{B}(B, F_1, Z_2)$, denote the set of equivalence classes of fiber bundles with involution with fibers F_1 .

2.3. DEFINITION. If $\xi = (E, \pi, B, F, A) \in \mathcal{B}(B, F, Z_2)$ and $f: B' \to B$ is a continuous map, then in the pull-back f^*E

$$f^* E \xrightarrow{\bar{f}} E$$

$$f^* \pi \downarrow \qquad \qquad \downarrow \pi$$

$$B' \xrightarrow{f} B$$

there exists a unique involution f^*A such that $\overline{f} \circ (f^*A) = A\overline{f}$; hence there exists a well defined $f^*\xi = (f^*E, f^*\pi, B', F, f^*A) \in \mathfrak{B}(B', F, Z_2)$.

- 2.4 DEFINITION. If $\xi = (E, \pi, B, F, A) \in \Re(B, F, Z_2)$, let $C\xi \in \Re(B, CF, Z_2)$ denote the associated cone bundle with the involution \hat{A} such defined: $\hat{A}(f,t) = (Af,t)$, $(f,t) \in F_x \times I/F_x \times \{o\}$.
- 2.5. Definition. If $\xi = (E, \pi, B, F, A) \in \mathfrak{B}(B, F, Z_2)$ let $\Sigma \xi = (\hat{E}, \hat{\pi}, B, \Sigma F, \hat{A}) \in \mathfrak{B}(B, \Sigma F, Z_2)$ denote the bundle with involution which has fiber $E_x = \Sigma E_x$, $x \in B$; the involution \hat{A} is defined as follows: in $\Sigma F = C_{-1}F \bigsqcup_F C_{+1} F$ ($C_{\pm 1}F$ denoting the cone over F), if $e = (f, t) \in C_{\pm 1}F$, $0 \le t \le 1$, $f \in F$, then $\hat{A}e = (Af, t) \in C_{\mp 1}F$.

3. THE EILENBERG SUBCOMPLEX

Let R be a fixed commutative ring with 1. Let $C_*(-, R)$ denote the singular chain complex (with coefficients in R) functor; let $\partial: C_*(-, R) \rightleftarrows$ denote the boundary operator.

- 3.1. DEFINITION. If F is a topological space, we say that F is (n , R)-simple if $H_i(F,R)=o$ for $o< i\leq n$.
- 3.2. Definition. Let F be a (n-1,R)-simple space and $\xi \in \mathfrak{B}(B,F,Z_2)$. By definition, the "Eileberg relative subcomplex" of $C\xi$ (see 2.4) is $\mathcal{E}^{(n-1)}_*(C\xi,R) \subset C_*(C\xi,R)$ such defined: $\mathcal{E}^{(n-1)}_*(C\xi,R)$ is free over R; the generators of $\mathcal{E}^{(n-1)}_*(C\xi,R)$ are that and only that singular k-simplexes $\sigma:\Delta^k \to C\xi$ for which $\sigma(\Delta^k)^{(n)} \subset C\xi_0 \cdot ((\Delta^k)^{(n)})$ denotes the n-dimensional skeleton of Δ^k).
- 3.3. PROPOSITION. If $\xi \in \mathfrak{B}(B, F, Z_2)$ and F is (n-1, R)-simple, then the inclusion $\mathfrak{S}_*^{(n-1)}(C\xi, R) \stackrel{i}{\hookrightarrow} C_*(C\xi, R)$ is a chain homotopy equivalence.

4. HOMOLOGICAL LOCAL SYSTEMS IN FIBER BUNDLE WITH INVOLUTION

Let be $\xi = (E, \pi, B, F, A) \in \mathfrak{B}(B, F, Z_2)$, and R a fixed commutative ring with τ ; let n be a fixed natural number.

For any point $b \in B$ we consider the homology R-module $H_n(E_b, R)$. Let $\rho: [o, \tau] \to B$ be a path. In the total space ρ^*E of $\rho^*\xi$ we have the natural inclusions

$$E_{\rho(0)} = (\rho^*\,E)_0 \xrightarrow{i_0} \rho^*\,E \xleftarrow{i_1} (\rho^*\,E)_1 = E_{\rho(1)}.$$

As the fiber bundle (without involution) $\rho^* E \to I$ is equivalent to a product bundle, i_0 and i_1 are homotopic equivalences; hence, i_0 and i_1 induce isomorphisms in homology, and in consequence the well determinated isomorphism

$$|\rho| = (i_1)_*^{-1} \circ (i_0)_* : H_n(\mathcal{E}_{\rho(0)}, \mathcal{R}) \to H_n(\mathcal{E}_{\rho(1)}, \mathcal{R}).$$

The isomorphism $|\rho|$ depends only on the homotopy class of ρ . Really, if $\rho_{\mathfrak{T}}: I \to B$ is a homotopy with fixed ends, then a similar argument applicated to the fiber bundle $\tilde{\rho}^* \to I \times I$, where $\tilde{\rho}: I \times I \to B$ is $\tilde{\rho}(\mathfrak{T}, t) = \rho_{\mathfrak{T}}(t)$, conducts to the assertion.

Now we take in consideration the involution A in connection with $|\rho|$. If we denote in general $A_b = A|_{E_b}$, we have the commutative diagram for the upper path:

$$E_{\rho(0)} = (\rho^* E)_0 \xrightarrow{i_0} \rho^* E \xleftarrow{i_1} (\rho^* E)_1 = E_{\rho(1)}$$

$$A_{\rho(0)} \downarrow \qquad \downarrow (\rho^* A)_0 \qquad \downarrow \rho^* A \qquad \downarrow (\rho^* A)_1 \qquad \downarrow A_{\rho(1)}$$

$$E_{\rho(0)} = (\rho^* E)_0 \xrightarrow{i_0} \rho^* E \xleftarrow{i_1} (\rho^* E)_0 = E_{\rho(0)}$$

from which derives the commutativity in homology

$$\left| \rho \left| \left(A_{\rho(0)} \right)_* = \left(A_{\rho(1)} \right)_* \left| \rho \right|.$$

If $b \in B$, let be

$$\mathbf{H}_{\pmb{b}} = \mathbf{H}_{\pmb{\pi}}(\mathbf{E}_{\pmb{b}} \,,\, \mathbf{R}) \quad , \quad \mathbf{H}_{\pmb{b}}^{\pm} = \frac{\mathbf{H}_{\pmb{b}}}{(\mathbf{I} \pm (\mathbf{A}_{\pmb{b}})_{\pmb{\pi}})\, \mathbf{H}_{\pmb{b}}} \,.$$

The relation (1) shows that $|\rho|$ induces two isomorphisms:

$$\mid \rho \mid^{\pm}: H^{\pm}_{\rho(0)} \rightarrow H^{\pm}_{\rho(1)}$$
 ,

which depend only on the homotopy class of the path ρ.

Let $\mathcal{H}^{\pm}(\xi, R)$, resp. $\mathcal{H}(\xi, R)$ denote the local systems $(H_b^{\pm}, |\rho|^{\pm})$, resp. $(H_b, |\rho|)$. These two local systems are called the "homological local systems of the fiber bundle with involution ξ in dimension n".

5. On the Thom isomorphism

5.1. THEOREM. Let $E \xrightarrow{\pi} B$ be a local trivial fiber bundle with fiber F(n-1, R)-simple (see 3.1), and $S = (S_b, |\rho|)$ a R-local system over B.

Then $\pi^*: \mathcal{X}^r(B, S) \to \mathcal{X}^r(E, \pi^*S)$ is an isomorphism for $0 \le r \le n-1$ and is a monomorphism for r = n.

6. CHARACTERISTIC CLASSES OF FIBER BUNDLES WITH INVOLUTION

6.1. Theorem. Let be $\xi=(E\,,\pi\,,B\,,F,A)\in\mathfrak{B}\,(B\,,F\,,Z_2)$ and F let be $(n-1\,,R)$ -simple and connected by arcs. Then there exist the local R-homomorphisms:

i)
$$k_p^{(r)}: C_p(E, R) \to C_{p+r}(E, R), 0 \le p+r \le n, k_p^{(9)} = id.$$

such that:

$$(\mathbf{I} + (-\mathbf{I})^r \mathbf{A}) k_b^{(r-1)} = \hat{\mathbf{a}}_{b+r} k_b^{(r)} + (-\mathbf{I})^{r+1} k_{b-1}^{(r)} \hat{\mathbf{a}}_b$$

ii) if $k_p^{(r)}$, $\tilde{k}_p^{(r)}$ are two such systems of local homomorphisms which satisfy i), then there exists the system of local R-homomorphisms:

$$\varphi_{\rho}^{(r)}: C_{\rho}(E, R) \to C_{\rho+r+1}(E, R), \qquad \rho+r+1 \leq n,$$

such that, if we denote $K_b^{(r)} = k_b^{(r)} - \tilde{k}_b^{(r)}$, we have:

$$K_{\rlap{\scriptsize p}}^{(r)} = (\mathbf{1} + (-\mathbf{1})^r \mathbf{A}) \, \phi_{\rlap{\scriptsize p}}^{(r-1)} + \partial \phi_{\rlap{\scriptsize p}}^{(r)} + (-\mathbf{1})^r \, \phi_{\rlap{\scriptsize p}-1}^{(r)} \, \partial \; .$$

iii) There exist the local R-homomorphisms

$$\mu_{n-r}^{(r)}: C_{n-r}(E, R) \rightarrow C_n(E, R)$$

such that:

$$\mathbf{K}_{n-r}^{(r)} = (\mathbf{I} + (-\mathbf{I})^r \mathbf{A}) \, \varphi_{n-r}^{(r-1)} + (-\mathbf{I})^r \, \varphi_{n-r-1}^{(r)} \, \partial + \mu_{n-r}^{(r)} \,, \qquad \partial \mu_{n-r}^{(r)} = 0 \,.$$

6.2. We know from the preceding considerations that:

$$(\mathbf{I}) \qquad (\hat{\omega}_r(\xi, k_p^{(r)}))(\sigma) = ((\mathbf{I} + (-\mathbf{I})^r \mathbf{A}) k_{n-r+1}^{(r-1)} - (-\mathbf{I})^{r+1} k_{n-r}^{(r)} \partial)(\sigma)$$

is a cycle; let be, for an arbitrary singular simplex $\sigma \in \nabla_{n-r+1}(E)$

$$(\omega_r(\xi , \textit{k}_{\textit{p}}^{(\textit{r})})) \, (\sigma) = [(\hat{\omega}_r(\xi , \textit{k}_{\textit{p}}^{(\textit{r})})) \, (\sigma)]$$

where $[\gamma]$ denotes the homology class of the cycle γ . Therefore $\omega_r(\xi, k_p^{(r)}) \in C^{n-r+1}(E, \pi^* \mathcal{K}_n(\xi, R)) = \text{the } R\text{-module of } (n-r+1)\text{-singular cochains}$ with coefficients in the local system $\pi^* \mathcal{K}_n(\xi, R)$.

The coboundary of $\omega_r(\xi, k_p^{(r)})$ is

$$(\mathrm{d}w_r(\xi\ ,\ k_p^{(r)}))\ (\mathbf{s}) = ((-\ \mathbf{1})^{r-1} - \mathbf{A}_{\mathbf{x}})\ (\omega_{r-1}(\xi\ ,\ k_p^{(r)}))\ (\mathbf{s})\ .$$

6.3. *Notation*. Let χ^{\pm} denote the canonical epimorphisms of local systems:

$$\chi^{\pm}: \mathcal{H}_n(\xi, R) \to \mathcal{H}_n^{\pm}(\xi, R);$$

in consequence we have the exact sequences:

(I)
$$0 \to (I \pm A_*) \mathcal{H}_n(\xi, R) \hookrightarrow \mathcal{H}_n(\xi, R) \xrightarrow{\chi^{\pm}} \mathcal{H}_n^{\pm}(\xi, R) \to 0$$
.

We obtain the following:

6.4. THEOREM. If $\xi = (E, \pi, B, F, Z_2) \in \mathfrak{B}(B, F, Z_2)$, the fiber F being (n-1,R)-simple and connected by arcs, then for any $0 \le r \le n$ we can define the cochain $\omega_r(\xi, k_p^{(r)}) \in \mathbb{C}^{n-r+1}(E, \pi^* \mathfrak{K}_n(\xi, R))$, where $k_p^{(r)}$ are defined in the Theorem 6.1 i). The coboundary of $\omega_r(\xi, k_p^{(r)})$ is:

$$d\omega_r(\xi, k_p^{(r)}) = ((-1)^{r-1} - A_{\omega}) \omega_{r-1}(\xi, k_p^{(r)}),$$

and, in consequence

$$\tilde{\omega}_r(\xi, k_p^{(r)}) = \chi^{\epsilon_r} \omega_r(\xi, k_p^{(r)})$$
, $\epsilon_r = \text{sign} (-1)^r$

is a cocycle.

- 6.5. THEOREM. The cohomology class $[\tilde{\omega}_r(\xi, k_p^{(r)})] \in \mathbb{R}^{n-r+1}(E, \mathbb{R}_n^{\varepsilon_r}(\xi, R))$ is independent of the choice of the local homomorphisms $k_p^{(r)}$ from Theorem 6.1.
- 6.6. THEOREM. The cohomology class $[\tilde{\omega}_r(\xi, k_p^{(r)})]$ defined in the Theorem 6.4. is a basic class, i.e.

$$\left[\tilde{\omega}_r(\xi, k_p^{(r)})\right] \in \pi^* \mathcal{H}^{n-r+1}(\mathbf{B}, \mathcal{H}_n^{\varepsilon_r}(\xi, \mathbf{R})).$$

6.7. Definition. If $\xi \in \mathfrak{B}(B,F,Z_2)$ and if ΣF is (n-r,R)-simple, we shall write $\xi \in \mathfrak{B}^n_R(B,F,Z_2)$. The suspension ΣF is connected by arcs, and in $\Sigma \xi$ there exist two canonical sections: the zero sections $s_{\pm 1}:B \to E_{\pm 1} \hookrightarrow \hat{E}$, where $E_{\pm 1}=C_{\pm}\,\xi$.

6.8. Definition. If $\xi \in \mathfrak{B}^n(B, F, Z_2)$, then the R-characteristic classes $t_i(\xi)$ of $\xi = (E, \pi, B, F, A)$ are

$$\begin{split} t_i(\xi) &= s_{+1}^* \left[\tilde{\omega}_{n-i+1}(\Sigma \xi \;,\; k_p^{(r)}) \right] \in \\ &\in \mathcal{H}^i(\mathbf{B} \;,\; \mathcal{H}_n^{\varepsilon_{n-i+1}}(\Sigma \xi \;,\; \mathbf{R})) \quad \; , \quad \; \mathbf{0} \leq i \leq n \quad \; , \quad \; \varepsilon_r = \mathrm{sign} \left(- \; \mathbf{1} \right)^r. \end{split}$$

6.9. Let be $\xi \in \mathbb{B}^n(B, F, Z_2)$; then $\Sigma \xi \in \mathbb{B}^{n+1}_R(B, F, Z_2)$. For the calculation of $t_i(\xi)$, resp. $t_i(\Sigma \xi)$, we must consider the local systems:

$$\mathfrak{N}_{n+1}^{\,\pm}(\Sigma\xi\;,\;R)\;,\qquad \text{resp. } \mathfrak{N}_{n+1}^{\,\pm}(\Sigma^2\xi\;,\;R)\;.$$

We remark that by the suspension isomorphism theorem in homology, which is natural, we have the equivalence of local systems

$$\mathfrak{N}_{n+1}^{\pm}(\Sigma^2\xi, R) \xrightarrow{\Sigma} \mathfrak{N}^{\mp}(\Sigma\xi, R)$$
.

6.10. THEOREM. The characteristic classes t, have the properties:

(o) for
$$\xi \in \mathfrak{B}^n_R(B,F,Z_2)$$
, $t_i(\xi) \in \mathfrak{X}^i(B,\mathcal{Y}^{\epsilon_{n-i+1}}_n(\xi,R))$, $0 \leq i \leq n$,

- (i) if $\xi \in \mathfrak{B}^n_R(B, F, Z_2)$ and $f: B_1 \to B$ is a continuous map, then $t_i(f^*\xi) = f^*(t_i(\xi))$.
- (ii) if $\xi \in \mathcal{B}_R^n(B, F, Z_2)$, then $\Sigma \xi \in \mathcal{B}_R^{n+1}(B, F, Z_2)$ and, by respect the equivalence of the local systems defined by the suspension isomorphism

$$t_i(\Sigma \xi) = (-1)^{n-i} A_* t_i(\xi)$$
, $0 \le i \le n$, $t_{n+1}(\Sigma \xi) = 0$;

(iii) (the "Whitney duality formula") if $\xi_1 \in \mathfrak{B}_R^m(B, F_1, Z_2)$, $\xi_2 \in \mathfrak{S}_R^n(B, F_2, Z_2)$ and if we denote by resp. χ_1, χ_2, χ the corresponding epimorphisms from 7.3 for resp. $\xi_1, \xi_2, \xi_1 \oplus \xi_2$, then there exist the cocycles

$$\begin{split} &\alpha_{p} \in \operatorname{C}^{p}(\operatorname{B}\,,\, \mathfrak{K}_{m}(\xi_{1}\,,\,\operatorname{R}))\,, \qquad \operatorname{o} \leq p \leq m\;, \\ &\beta_{q} \in \operatorname{C}^{q}(\operatorname{B}\,,\, \mathfrak{K}_{n}(\xi_{2}\,,\,\operatorname{R})) \qquad \operatorname{o} \leq q \leq n\;, \end{split}$$

such that

$$t_s(\xi_1 \oplus \xi_2) = \chi \left[\sum_{p+q=S} (-1)^{\varepsilon(p,q)} A_{1*}^{n-q} \, \alpha_p \oplus A_{2*} \, \beta_q \right]$$

and

$$\begin{split} \chi_1 & \alpha_p = t_p(\xi_1) \\ \chi_2 & \beta_q = t_q(\xi_2) \;. \end{split}$$

where

$$\varepsilon(p,q) = p(n-q+1) + m + n + 1.$$

(iv) if in $\xi \in \mathfrak{B}^n_R(B, F, Z_2)$ there exists a continuous section of fixed points for the involution in ξ , then:

$$t_i(\xi) = 0$$
 for $0 \le i \le n$.

7. The index of an involution

If F is a topological space with involution such that Σ F is (n-1, R)-simple, then we can consider F as a fiber space with involution over a point.

Hence
$$t_0(\mathbf{F}) \in \frac{\mathbf{H}_n(\mathbf{F}, \mathbf{R})}{(\mathbf{I} + (-\mathbf{I})^{n+1} \mathbf{A}_*) \mathbf{H}_n(\mathbf{F}, \mathbf{R})}$$

- 7.1. DEFINITION. If F is a topological space with involution such that ΣF is (n-1,R)-simple, then $t_0(F)$ will be called the index of the involution, and will be denoted $I_R^n(F,A)$.
 - 7.2. Theorem. The index of the involution has the properties:
- (i) if $A_t: F \to F$ is a continuous deformation of the involution A_0 in the involution A_1 , then

$$I_R^n(F, A_0) = I_R^n(F, A_1)$$
.

- (ii) If F_1 resp. F_2 are two topological spaces with involutions A_1 , resp. A_2 , and ΣF_1 , resp. ΣF_2 are (m-1,R)-simple, resp. (n-1,R)-simple, then $I_R^{m+n+1}(F_1\oplus F_2,A_1\oplus A_2)=(-1)^{m+n+1}A_{1*}^n\ I_R^m(F_2,A_1)\cdot A_{2*}\ I_R^n(F_2,A_2)$.
- (iii) If A is an involution in F, and if A has at least a fixed point, then $I_R^n(F,A) = o$.
- 7.3. COROLLARY. If $\xi \in \mathfrak{B}_{R}^{n}(B, F, Z_{2})$ and if B is connected by arcs, if there exists at least a fixed point in the total space of ξ , then $t_{0}(\xi) = 0$.

8. Characteristic classes of involutions in sphere bundles

In this section we particularize the coefficients to Z_2 and we consider only spherical fibers. Then the Theorem 6.10 becomes:

- 8.1. Theorem. The characteristic classes of sphere bundles with involution have the properties:
 - (o) for $\xi \in \mathfrak{B}^n_{Z_2}(B, S^{n-1}, Z_2)$, $t_i(\xi) \in H^i(B, Z_2)$, $0 \le i \le n$,
 - (i) if $\xi \in \mathfrak{B}^n_{Z_2}(B,F,Z_2)$ and $f:B_1 \to B$ is a continuous map, then $t_i(f^*\xi) = f^*(t_i(\xi)),$
 - (ii) if $\xi \in \mathfrak{B}^n_{Z_2}(B, S^{n-1}, Z_2)$, then $t_i(\Sigma \xi) = t_i(\xi) \qquad 0 \le i \le n$ $t_{n+1}(\Sigma \xi) = 0$,
 - (iii) if $\xi_1 \in \mathcal{B}_{Z_2}^m(B, S^{m-1}, Z_2)$, $\xi_2 \in \mathcal{B}_{Z_2}^n(B, S^{n-1}, Z_2)$,

then

$$t_i(\xi_1 \oplus \xi_2) = \sum_{p+q=i} t_p(\xi_1) t_q(\xi_2) ,$$

(iv) if in $\xi \in \mathcal{B}^n_{Z_a}(B,S^{n-1},Z_2)$ there exists a continuous section of fixed points, then

$$t_i(\xi) = 0$$
, $0 \le i \le n$,

(v) if $\xi \in \mathcal{B}_{Z_2}^n(B, S^{n-1}, Z_2)$, then

$$t_n(\xi) = w_n(\xi)$$

- 8.2. Remark. The classes t_i satisfy all Stiefel-Whitney axioms less one of them: $t_0(\xi)$ can be o, while $w_0(\xi)$ is ever 1.
- 8.3. Remark. For the classes t_i the relation $t_i(\xi) = w_i(\xi) \cdot t_0(\xi)$ is generally false.
- 8.4. Theorem. If $\xi \in \mathfrak{B}^n_{Z_2}(B, S^{n-1}, Z_2)$ and if ξ is in addition an Euclidean sphere bundle (associated with a real vector bundle) provided with the antipodal involution, then

$$t_i(\xi) = w_i(\xi) .$$

REFERENCES

- [1] R. Bott, Lectures on K(X), Benjamin, New York, Amsterdam, 1969.
- [2] I. M. JAMES, Bundles with special structure, I, « Annals of Math. », 89 (2), 359-390 (1969).
- [3] D. W. Anderson and I. M. James, Bundles with special structure, II, « Proceedings London Math. Soc. Third Series », 24, 324-330 (1972).
- [4] I.M. JAMES, On sphere-bundles with certain properties, «The Quarterly J. of Math. », 22 (87), 353-370 (1971).
- [5] J. MILNOR, Lectures on characteristic classes. Notes by J. Stasheff. Princeton, 1957.
- [6] E. SPANIER, Algebraic Topology. McGraw-Hill, New York, 1966.
- [7] N. STEENROD, The topology of fiber bundles. Princeton U.P. 1951.