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Analisi fanzionale. — Some remarks on structure of polyvnomially
Riesz operators. Nota di GHEORGHE CONSTANTIN, presentata ) dal
Socio G. SANSONE.

R1assUNTO. — L’Autore ottiene nuovi risultati sugli operatori polinomiali di Riesz e
alcuni teoremi sulla struttura di questi operatori usando un risultato di T. Andd.

1. Let X be a complex Banach space and ¢ (X) the space of bounded
linear operators on X. For T € 2 (X), denote the null manifold N (T) and
the range R (T), also the ascent « (T) and the descent § (T) as in [13]. We
shall write z (\) = dim N (T — D), « \) = « (T —aI) and § (0) = § (T — D).

Riesz operators have been introduced by A. F. Ruston [12] and also
studied by J. Dieudonné [6], H. Heuser [8], S. Caradus [5], T. T. West [14].

A simple characterization of the set of Riesz operators & is given in [3]
by: T €& if and only if e (A), 8 (3) and » () are finite for all A =Fo.

We say that an operator T € ¢ (X) is polynomially Riesz operator if
there exists a non-zero complex polynomial p (3) such that p (T) is. a Riesz
operator.

The purpose of this Note is to give an extension of a result of [7] for
polynomially Riesz operators. Also we obtain some structure theorems of
Riesz operators.

2. The non-zero polynomfal p(k), of least degree and leading coeffi-
cient 1 such that p (T) is a Riesz operator, is called the minimal polynomial
of T. ' ,

THEOREM 2.1. Let T be a polynomial Riesz operator with minimal poly-
nomial p (X)) = N—2na)" -+ W—2N)". Then the Banach space X is decom-
posed into the direct sum X =X1® -+ DX, avd T=Ti @ --- T,
where T, is the restriction of T to X; and (T,— 1) are all Riesz operators.
The spectrum o (T) consists of countably many points with {1, -, \} as the
only possible limit points such that all but possibly {M o, N} are eigenvalues
of finite multiplicity. Each point € {\,---,\} is either the limit of eigen-
values of T or else T; — N1, is quasi-nilpotent with X, infinite dimensional.

Proof. First we observe that {A;: p (%) =0} _ ¢ (T). Indeed, in the
contrary case we have that ¢ (T)= (T —x 1) p(T) is a Riesz operator
since (T —x, 1) €2 (X) and commutes with p (T), which contradicts the
minimality of p (). Since the structure of the spectrum of Riesz operators
is the same as for compact operators, we conclude as in [7] that ¢ (T) consists

(*) Nella seduta del 13 gennaio 1973.
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of countable many points with A1,---, A, as the only possible limit points.
We shall now show that if A is an isolated point of & (T) such that p (A) == o,
then A is an eigenvalue of T of finite multiplicity. Indeed, since A is isolated
then there exists a circle y (A) of centre A such that A is the sole point of ¢ (T)
inside y(3) and X =P0;T)X ® I—P®;T) X where P(1;T) is the
spectral projection associated with the spectral set {1}, o (T],,.5x) = {2}
and P(2; T)X is an invariant subspace of T. But ¢ (p (T o) ={2M)}
and p(\)=Fo so that p(T IP.(MT)X) is an invertible Riesz operator which
implies that dim (P (A;T)X) < oo and P(A;T) X = {x: (T —A)x =0}
for an integer 4.

Let A€o (T), p (n) = o and such that A is an isolated point in o (T).
As above, we obtain that X = X1 @ Xo, T =Ty @ Te, (To —Alz) ™ € £(Xp)
and commutes with p (Tz). Then (T2 — Al2)™ p (T2) is a Riesz operator and
therefore dim (X;) = oo since in the contrary case the polynomial p () is
not minimal. It follows that Ti — Al; is quasi-nilpotent and A has infinite
multiplicity.

Hence to complete the proof of this theorem we need only show that
(T,—n1)%,i=1,2, .-, 5 are Riesz operators, since the requested decom-
positions are obtained by induction. For this we observe that T, — I, is
invertible for each 7<=; and (T,—x;1)"% =[] (T,— 1) 7% p(T).

7+

In what follows, as in [4], H denotes an ilnﬁnite dimensional -Hilbert
space, o (T) the Weyl spectrum of T and T is said to satisfy condition (&)
if every direct summand of T satisfies (G1) (i.e., (T — AI)™! is normaloid for
all A ¢6(T)).

COROLLARY 2.1. Let X =H, T a polynomially Riesz operator which
satisfies (a'). Then T is a normal operator and o (T) is a finite set.

Proof. From the Theorem 2.1, 6(T) is countable and then by [3, Theo-
rem 1] T is a diagonal normal operator. Since for normal operators the spectral
mapping theorem for ® (T) holds we have p (0 (T)=w(p(T)=1{0}
and therefore o (T) is a finite set.

By [3, Theorem 3] T is in fact a polynomially compact operator.

It is known [4] that o (T)={o0} for any compact operator T and the
converse is false; in [4] are given sufficient conditions for compactness
of T. We will show that the condition (ii) of Theorems 6.8 and 7.1 of [4] is
superfluous.

We recall that an operator T is called convexoid if conv o (T) = W (T)
where W (T) = {(Tx,x) :|x|= 1} is the numerical range of T.

THEOREM 2.2. If o (T) = {0} and the restriction of T to any invariant
subspace is convexoid, then T is compact and normal operator.

Proof. A characterization of Riesz operators due by A. F. Ruston [12]
asserts that Te&k if and only if 6(T)= {0} where T is the image of T in
the Calkin algebra ©(H)/H (H) [J(H) is the ideal of all compact operators].
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Since ¢(T) C o (T) it follows that o(T)={o} and thus T is a Riesz ope-
rator. On the other hand ¢ (T) has only one limit point and by [2, Lemma 4],
T is normal. But a normal Riesz operator is compact.

CorROLLARY 2.2. If T=C + Q with C = compact and o Q) ={o}
and the restriction of T to any invariant subspace is convexoid, then T is com-
pact and mormal operator.

COROLLARY 2.3. If o(T)={A} and the restriction of T to every invariant
subspace is convexoid, then T = N + C with C compact and normal.

THEOREM 2.3. If o(T)={A},A5G=0 and the restriction of T to every
invariant subspace is convexoid thew T is a normal noncommutator.

3. An operator T €< (H) is of class (N) if || T% || = | Tx |? for all
x €H, [|x]| = 1 [10]. In [1] is given a characterization of operators of class
(N) which suggests a generalization of some structure theorems.

THEOREM 3.1. If T is of class (N) then its image T in the Calkin a/geéra
is also of class (N).

Proof. From Andd's theorem [1] we have that T is of class (N) if and
only if
TT?— 22 T"T + 21 >0

for all A > o. Considering the image of T in the Calkin algebra we obtain

T —2AT*T + 221 >0
ie., T is of class (N).

THEOREM 3.2. If T is an operator of class (N) and
T . T T —C

where Py, 91, Pn, g, are positive integers and C is a compact or Riesz
operator then T is a normal operator.

Proof. If we consider the image in the Calkin algebra we obtain

T*AT% ... T* T — o

from 'which it follows that T = o, i.e., T is compact and by [10, Theorem 2.2]
we conclude that T is normal."

THEOREM 3.3. If T is an operator of class (N) and
2; @ T**T* = C
=0 -

fe )
where C is a compact or Riesz operator and f(5) = X, a,22% is an entire
=0

Sunction nonvanishing on rveal positive numbers then T is normal.
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Progf. The operator T has the property that

3

%k ok
akl* T = 0

k=0

and since T is normaloid we obtain that T =o0 and ‘the result follows by
[9, Theorem 3.1].

In [6] is given a characterization of quasi-hermitian Riesz operators
" (an operator T is quasi-hermitian if there exists a hermitian operator S > o
such that ST = T*S).

THEOREM 3.4. Let T be a quasi-hermitian operator for which the operator
S s not compact. If T is a Riesz operator then T is compact.

Proof. It is known that every Riesz operator T has the form T=C +Q
where C is compact and Q quasi-nilpotent. If we consider the image in the
Calkin algebra we obtain that S94=0 and T=0Q. Let Q=Fo0, then since
6 (Q) = {o} and the operator Q is quasi-hermitian it follows that Q = o,
which is a contradiction.

Remark. The condition of quasi-hermiticity for a compact operator is
more simple than for other operators.

REFERENCES

[1] T. ANDO, Operators with a norm condition (to appear).

[2] S. K. BERBERIAN, Some conditions on an operator implying normality, «Math. Ann. »,
188-192 (1970).

[3] S. K. BERBERIAN, Some conditions on an operator implying normalzz‘y /7, « Proc. Amer.
Math. Soc. », 26, 277-281 (1970).

[4] S. K. BERBERIAN, The Weyl spectrum of an operator, « Indiana Univ. Math. J.», 2o,
539-544 (1970).

[51 S. R. CARADUS, Operators of Riesz type, « Pacific J. Math.», 18, 61-71"(1966).

[6] J. DIEUDONNE, Quasi-hermitian operators, «Proc. Internat. Symp.», Linear Spaces
(Jerusalem 1960), 115-122.

[7] ¥. GILFEATHER, T%e structure and asympiotic behaviour of _ﬁolynomzal[y compact opera-
Zors, « Proc. Amer. Math. Soc.», 25, 127-134 (1970).

[8] H. HEUSER, Uber die lteration Rieszcher Operatoren, « Arch. Math.», 9, 202-210 (1958).

[9] I. ISTRATESCU and GH. CONSTANTIN, O Riesz operators with uniformly bounded ite-
rates, «Matem. Vestnik», 6 (21), 276-378 (1969).

[10] V. ISTRATESCU, On some hyponormal operators, « Pacific J. Math.», 22, 413-417 (1967).

[r1] V. ISTRATESCU, T. SAI1T0, and T. YOSHINO, On a class of operators, « Tohoku Math.
Journ.», 18, 410-513 (1966).

[12] A. F. RUSTON, Operators with a Fredholm theory, « J. London Math. Soc. », 29, 318-
326 (1954).

[13] A. E. TAYLOR, Introduction to functional analysis, New York 1958.

[14] T. T. WEST, The decomposition of Riesz operators, « Proc. London Math. Soc.», 16,
737-752 (1966).



