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Analisi funzionale. —  Some remarks on structure o f polynomially 
Riesz operators. N ota di G h eo rg h e  C o n s ta n t in ,  presentata (,) dal 
Socio G. S a n so n e .

RIASSUNTO. — L ’A utore ottiene nuovi risultati sugli operatori polinomiali di Riesz e 
alcuni teoremi sulla stru ttu ra  di questi operatori usando un risultato di T. Andò.

1. Let X be a complex Banach space and £ (X) the space of bounded 
linear operators on X. For T e C  (X), denote the null m anifold N (T) and 
the range R (T), also the ascent a (T) and the descent 8 (T) as in [13]. We 
shall write n  (X) =  dim  N (T —  XI), a (X) =  a (T —  XI) and 8 (X) =  8 (T — XI).

Riesz operators have been introduced by A. F. Ruston [12] and also 
studied by J. D ieudonné [6], H. H euser [8], S. C aradus [5], T. T. W est. [14].

A  simple characterization of the set of Riesz operators eft is given in [5] 
by: T  e eft if and only if a (X) , S (X) and n (X) are finite for all X'=f= o.

We say th a t an operator T  e £ (X) is polynom ially Riesz operator if 
there exists a non-zero  complex polynom ial p  (X) such th a t p  (T) is, a Riesz 
operator.

The purpose of this Note is to give an extension of a result of [7] for 
polynom ially Riesz operators. Also we obtain some structure theorem s of 
Riesz operators.

2. The non-zero polynom ial p  (X), of least degree and leading coeffi
cient I such th a t p  (T) is a Riesz operator, is called the m inim al polynom ial 
of T.

THEOREM 2.1. L et T  be a polynom ial Riesz operator w ith  m in im a l po ly
nom ial p  (X) =  (X —  Xi)"1 • • • (X — X fis. Then the Banach space X is decom
posed into the direct sum  X =  Xi 0  • • •' © X s and  T  =  Ti © • • • © T s 
where T- is the restriction o f T  to X z- and  (T?- — X- are a ll R iesz operators. 
The spectrum a (T) consists o f countably m any points w ith  {Xi , • • •, X̂ } as the 
only possible lim it points such that all but possibly { Xi , • • •, Xf} are eigenvalues 
o f fin ite  m ultiplicity. Each po in t X{ 6 { Xi , • • •, X̂ .} is either the lim it o f eigen
values o f T  or else T ? —  X{ \ i is quasi—n il potent w ith  X z- infinite dimensional.

Proof. F irst we observe th a t {X- : p  (xp =  0} C g (T). Indeed, in the 
contrary  case we have th a t q (T) ==. (T — X,- I)"1 p  (T) is a Riesz operator 
since (T —  X{ I)“ 1 e £ (X) and commutes with p  (T), which contradicts the 
m inim ality  of p  (X). Since the structure of the spectrum  of Riesz operators 
is the same as for com pact operators, we conclude as in [7] th a t er (T) consists (*)

(*) Nella seduta del 13 gennaio 1973.
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of countable m any points with Xi , • • •, \ s as the only possible lim it points. 
We shall now show th a t if X is an isolated point of er (T) such th a t p  (X) =J= o, 
then X is an eigenvalue of T  of finite m ultiplicity. Indeed, since X is isolated 
then there exists a circle y (X) of centre X such th a t X is the sole point of g (T) 
inside y (X) and X =  P (X ; T) X © (I —  P (X ; T)) X where P (X ; T) is the 
spectral projection associated with the spectral set { X } , g (T |P(X.T)X) =  {X} 
and P(X ; T) X is an invarian t subspace of T. But <7 (p (T |P(X.T)X)) = '{  XX)} 
and p  (X) =j= o so th a t p  (T |p(A<T)X) is an invertible Riesz operator which 
implies th a t dim  (P (X ; T) X) <  co and P (X ; T) X =  {x  : (T —  X l ^ ^ ^ o }  
for an integer k.

Let X e g (T) , p  (X) =  o and such tha t X is an isolated point in er (T). 
As above, we obtain th a t X =  X i © X2 -, T  =  Ti © T2 , (T2 — XI2)"“1 e £ (X2) 
and commutes with p  (T2). Then (T2 — XI2)“ 1 p  (T2) is a Riesz operator and 
therefore dim  (Xi) — 00 since in the contrary  case the polynom ial p  (X) is 
not m inim al. It follows th a t Ti —  Xli is quasi-nilpotent and X has infinite 
m ultiplicity.

Hence to complete the proof of this theorem  we need only show th a t 
(T,- —  \  \ f i i , i  — 1 , 2 ,  • • ’ , s are Riesz operators, since the requested decom 
positions are obtained by induction. For this we observe tha t T -— X -1?- is
invertible for each and (T,- —  X,-. I,-)”2' =  J I  ( T  —  ^ i ) ”j P ( D -

j= ¥  i
In  w hat follows, as in [4], H denotes an infinite dim ensional H ilbert 

space, co (T) the W eyl spectrum  of T  and T  is said to satisfy condition (a') 
if every direct sum m and of T  satisfies (Gi) (i.e., (T - X I ) " 1 is norm aloid for 
all X € a (T)).

COROLLARY 2.1. L et X =  H, T  a polynomially Riesz operator which 
satisfies (a'). Then T  is a norm al operator and  co (T) is a fin ite  set.

Proof. From  the Theorem  2.1, cr(T) is countable and then by [3, T heo
rem  1] T  is a diagonal norm al operator. Since for norm al operators the spectral 
m apping theorem  for co (T) holds we have p  (co(T)) =  W( / ( T ) )  =  {o} 
and therefore co (T) is a finite set.

By [3, Theorem  3] T  is in fact a polynom ially compact operator.
It is known [4] th a t co(T) =  {o} for any com pact operator T  and the 

converse is false; in [4] are given sufficient conditions for compactness 
of T. W e will show th a t the condition (ii) of Theorem s 6.8 and 7.1 of [4] is 
superfluous.

W e recall th a t an operator T  is called convexoid if conv a (T) — W  (T) 
where W  (T) =  { (T #  , x )  : \\x || — 1} is the num erical range of T.

T h eo rem  2.2. I f  co(T) =  {0} and the restriction o f T  to any invariant 
subspace is convexoid\ then T  is compact and normal operator.

Proof. A characterization of Riesz operators due by A. F. R uston [12] 
asserts th a t TiEoH if and only if a ( T ) =  {0} where T  is the image of T  in 
the Calkin algebra £(H)/dC (H) [dC(H) is the ideal of all com pact operators].
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Since cr(T) Ç cù (T) it follows th a t a (T ) =  {o} and thus T  is a Riesz ope
rator. On the other hand <7 (T) has only one limit point and by [2, Lem m a 4], 
T  is norm al. B ut a norm al Riesz operator is compact.

C o ro lla ry  2.2. I f  T  =  C +  Q w ith  C =  compact and  g (Q) =  { o } 
and the restriction o f T  to any invariant subspace is convexoid^ then T  is com
pact and norm al operator.

COROLLARY 2.3. I f  co(T) =  {X} and the restriction o f T t o  every invariant 
subspace is convexoid, then T  =  -Xl + C  w ith  C  compact and  normal.

Theorem 2.3. I f  <o(T) =  {X} , X =j= o and the restriction o f T  to every 
invariant subspace is convexoid then T  is a norm al noncommutator.

3. An operator T  e £ (H) is of class (N) if || T 2x  || >  || T x  ||2 for all 
x e H ,  \\x\\ =  I [10]. In  [1] is given a characterization of operators of class 
(N) which suggests a generalization of some structure theorems.

Theorem 3.1. I f T i s  o f class (N) then its image T in  the Calkin algebra 
is also o f class (N).

Proof. From  A ndo’s theorem  [1] we have th a t T  is of class (N) if and 
only if

T * 2T 2 ~  2 X T * T  +  X2 Ï >  0 

for all X >  o. Considering the image of T  in the Calkin algebra we obtain

T * 2 T2 —  2 X T* T +  X2 I >  o
i.e., T  is of class (N).

Theorem 3.2. I f  T is an operator o f class (N) and

where p x , q± , • • •, p n , qn are positive integers and  Ç is a compact or R iesz  
operator then T  is a norm al operator.

Proof. If  we consider the image in the Calkin algebra we obtain

T* A T*1 • • • T * Pn V n =  o

from  which it follows th a t T  =  o, i.e., T  is compact and by [10, Theorem  2.2] 
we conclude th a t T  is normal.

Theorem 3.3. I f  T is an operator o f class (N) and

0 0

k=Q
00

where C is a compact or R iesz operator and f  (z) =  ^  ctk*111 is an entire
k=0

fu n c tio n  nonvanishing on real positive numbers then T  is norm al.
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Proof. The operator T  has the property  that
oo

2j  a k  I T  =  o

and since T  is norm aloid we obtain th a t T  =  o and the result follows by 
[9, Theorem  3.1].

In  [6] is given a characterization of quasi-herm itian Riesz operators 
(an operator T  is quasi-herm itian if there exists a herm itian operator S >  o 
such th a t ST =  T*S).

THEOREM 3.4. L et T be a quasi-hermitian operator fo r  which the operator 
S is not compact. I f  T  is a R iesz operator then T  is compact.

Proof. It is known th a t every Riesz operator T  has the form T  =  C +  Q 
where C is com pact and Q quasi-nilpotent. If  we consider the image in the 
Calkin algebra we obtain th a t S o and T =  Q. Let Q=j= o, then since 
<y(Q)= '{°}  and the operator Q is quasi-herm itian it follows th a t Q  =  o, 
which is a contradiction.

Rem ark. The condition of quasi-herm iticity for a com pact operator is 
m ore simple than  for other «operators.
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