ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GHEORGHE CONSTANTIN

Some remarks on structure of polynomially Riesz operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.1, p. 42–45. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_1_42_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ Analisi funzionale. — Some remarks on structure of polynomially Riesz operators. Nota di GHEORGHE CONSTANTIN, presentata ^(*) dal Socio G. SANSONE.

RIASSUNTO. — L'Autore ottiene nuovi risultati sugli operatori polinomiali di Riesz e alcuni teoremi sulla struttura di questi operatori usando un risultato di T. Andô.

1. Let X be a complex Banach space and $\mathfrak{L}(X)$ the space of bounded linear operators on X. For $T \in \mathfrak{L}(X)$, denote the null manifold N (T) and the range R (T), also the ascent α (T) and the descent δ (T) as in [13]. We shall write $n(\lambda) = \dim N(T - \lambda I)$, $\alpha(\lambda) = \alpha(T - \lambda I)$ and $\delta(\lambda) = \delta(T - \lambda I)$.

Riesz operators have been introduced by A. F. Ruston [12] and also studied by J. Dieudonné [6], H. Heuser [8], S. Caradus [5], T. T. West [14].

A simple characterization of the set of Riesz operators \Re is given in [5] by: $T \in \Re$ if and only if $\alpha(\lambda)$, $\delta(\lambda)$ and $n(\lambda)$ are finite for all $\lambda \neq 0$.

We say that an operator $T \in \mathfrak{L}(X)$ is polynomially Riesz operator if there exists a non-zero complex polynomial $p(\lambda)$ such that p(T) is a Riesz operator.

The purpose of this Note is to give an extension of a result of [7] for polynomially Riesz operators. Also we obtain some structure theorems of Riesz operators.

2. The non-zero polynomial $p(\lambda)$, of least degree and leading coefficient I such that p(T) is a Riesz operator, is called the minimal polynomial of T.

THEOREM 2.1. Let T be a polynomial Riesz operator with minimal polynomial $p(\lambda) = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_s)^{n_s}$. Then the Banach space X is decomposed into the direct sum $X = X_1 \oplus \cdots \oplus X_s$ and $T = T_1 \oplus \cdots \oplus T_s$, where T_i is the restriction of T to X_i and $(T_i - \lambda_i I_i)^{n_i}$ are all Riesz operators. The spectrum $\sigma(T)$ consists of countably many points with $\{\lambda_1, \dots, \lambda_s\}$ as the only possible limit points such that all but possibly $\{\lambda_1, \dots, \lambda_s\}$ are eigenvalues of finite multiplicity. Each point $\lambda_i \in \{\lambda_1, \dots, \lambda_s\}$ is either the limit of eigenvalues of T or else $T_i - \lambda_i I_i$ is quasi-nilpotent with X_i infinite dimensional.

Proof. First we observe that $\{\lambda_i : p(\lambda_i) = 0\} \subseteq \sigma(T)$. Indeed, in the contrary case we have that $q(T) = (T - \lambda_i I)^{-1} p(T)$ is a Riesz operator since $(T - \lambda_i I)^{-1} \in \mathfrak{L}(X)$ and commutes with p(T), which contradicts the minimality of $p(\lambda)$. Since the structure of the spectrum of Riesz operators is the same as for compact operators, we conclude as in [7] that $\sigma(T)$ consists

(*) Nella seduta del 13 gennaio 1973.

of countable many points with $\lambda_1, \dots, \lambda_s$ as the only possible limit points. We shall now show that if λ is an isolated point of $\sigma(T)$ such that $p(\lambda) \neq 0$, then λ is an eigenvalue of T of finite multiplicity. Indeed, since λ is isolated then there exists a circle $\gamma(\lambda)$ of centre λ such that λ is the sole point of $\sigma(T)$ inside $\gamma(\lambda)$ and $X = P(\lambda; T) X \oplus (I - P(\lambda; T)) X$ where $P(\lambda; T)$ is the spectral projection associated with the spectral set $\{\lambda\}$, $\sigma(T|_{P(\lambda;T)X}) = \{\lambda\}$ and $P(\lambda; T) X$ is an invariant subspace of T. But $\sigma(p(T|_{P(\lambda;T)X})) = \{p(\lambda)\}$ and $p(\lambda) \neq 0$ so that $p(T|_{P(\lambda;T)X})$ is an invertible Riesz operator which implies that dim $(P(\lambda;T)X) < \infty$ and $P(\lambda;T) X = \{x: (T - \lambda I)^k x \neq 0\}$ for an integer k.

Let $\lambda \in \sigma(T)$, $p(\lambda) = o$ and such that λ is an isolated point in $\sigma(T)$. As above, we obtain that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, $(T_2 - \lambda I_2)^{-1} \in \mathfrak{L}(X_2)$ and commutes with $p(T_2)$. Then $(T_2 - \lambda I_2)^{-1} p(T_2)$ is a Riesz operator and therefore dim $(X_1) = \infty$ since in the contrary case the polynomial $p(\lambda)$ is not minimal. It follows that $T_1 - \lambda I_1$ is quasi-nilpotent and λ has infinite multiplicity.

Hence to complete the proof of this theorem we need only show that $(T_i - \lambda_i I_i)^{n_i}$, $i = 1, 2, \dots, s$ are Riesz operators, since the requested decompositions are obtained by induction. For this we observe that $T_i - \lambda_j I_i$ is invertible for each $i \neq j$ and $(T_i - \lambda_i I_i)^{n_i} = \prod (T_i - \lambda_j I_i)^{-n_j} p(T_i)$.

In what follows, as in [4], H denotes an infinite dimensional Hilbert space, ω (T) the Weyl spectrum of T and T is said to satisfy condition (α') if every direct summand of T satisfies (G₁) (i.e., (T - λ I)⁻¹ is normaloid for all $\lambda \notin \sigma$ (T)).

COROLLARY 2.1. Let X = H, T a polynomially Riesz operator which satisfies (α'). Then T is a normal operator and $\omega(T)$ is a finite set.

Proof. From the Theorem 2.1, $\sigma(T)$ is countable and then by [3, Theorem 1] T is a diagonal normal operator. Since for normal operators the spectral mapping theorem for $\omega(T)$ holds we have $p(\omega(T)) = \omega(p(T)) = \{o\}$ and therefore $\omega(T)$ is a finite set.

By [3, Theorem 3] T is in fact a polynomially compact operator.

It is known [4] that $\omega(T) = \{0\}$ for any compact operator T and the converse is false; in [4] are given sufficient conditions for compactness of T. We will show that the condition (ii) of Theorems 6.8 and 7.1 of [4] is superfluous.

We recall that an operator T is called convexoid if conv $\sigma(T) = \overline{W(T)}$ where $W(T) = \{\langle Tx, x \rangle : ||x|| = 1\}$ is the numerical range of T.

THEOREM 2.2. If $\omega(T) = \{o\}$ and the restriction of T to any invariant subspace is convexoid, then T is compact and normal operator.

Proof. A characterization of Riesz operators due by A. F. Ruston [12] asserts that $T \in \Re$ if and only if $\sigma(\overline{T}) = \{o\}$ where \overline{T} is the image of T in the Calkin algebra $\mathfrak{L}(H)/\mathfrak{K}(H)$ [$\mathfrak{K}(H)$ is the ideal of all compact operators].

Since $\sigma(\overline{T}) \subseteq \omega(T)$ it follows that $\sigma(\overline{T}) = \{0\}$ and thus T is a Riesz operator. On the other hand $\sigma(T)$ has only one limit point and by [2, Lemma 4], T is normal. But a normal Riesz operator is compact.

COROLLARY 2.2. If T = C + Q with C = compact and $\sigma(Q) = \{o\}$ and the restriction of T to any invariant subspace is convexoid, then T is compact and normal operator.

COROLLARY 2.3. If $\omega(T) = \{\lambda\}$ and the restriction of T to every invariant subspace is convexoid, then $T = \lambda I + C$ with C compact and normal.

THEOREM 2.3. If $\omega(T) = \{\lambda\}$, $\lambda \neq 0$ and the restriction of T to every invariant subspace is convexoid then T is a normal noncommutator.

3. An operator $T \in \mathcal{L}(H)$ is of class (N) if $||T^2x|| \ge ||Tx||^2$ for all $x \in H$, ||x|| = I [I0]. In [I] is given a characterization of operators of class (N) which suggests a generalization of some structure theorems.

THEOREM 3.1. If T is of class (N) then its image \overline{T} in the Calkin algebra is also of class (N).

Proof. From Andô's theorem [I] we have that T is of class (N) if and only if

$$T^{*2}T^{2} - 2 \lambda T^{*}T + \lambda^{2}I \ge 0$$

for all $\lambda > 0$. Considering the image of T in the Calkin algebra we obtain

$$\lambda^{*2} \overline{\mathrm{T}}^2$$
 — 2 $\lambda \, \overline{\mathrm{T}}^* \overline{\mathrm{T}} + \lambda^2 \, \mathrm{I} \ge \mathrm{o}$

i.e., \overline{T} is of class (N).

THEOREM 3.2. If T is an operator of class (N) and

T

 $\mathbf{T}^{\star p_1} \mathbf{T}^{q_1} \cdots \mathbf{T}^{\star p_n} \mathbf{T}^{q_n} = \mathbf{C}$

where $p_1, q_1, \dots, p_n, q_n$ are positive integers and C is a compact or Riesz operator then T is a normal operator.

Proof. If we consider the image in the Calkin algebra we obtain

 $\overline{\mathrm{T}}^{\star p_1} \overline{\mathrm{T}}^{q_1} \cdots \overline{\mathrm{T}}^{\star p_n} \overline{\mathrm{T}}^{q_n} = \mathrm{o}$

from which it follows that $\overline{T} = 0$, i.e., T is compact and by [10, Theorem 2.2] we conclude that T is normal.

THEOREM 3.3. If T is an operator of class (N) and

$$\sum_{k=0}^{\infty} a_k \operatorname{T}^{*k} \operatorname{T}^k = \operatorname{C}$$

where C is a compact or Riesz operator and $f(z) = \sum_{k=0}^{\infty} a_k z^{2k}$ is an entire function nonvanishing on real positive numbers then T is normal.

Proof. The operator T has the property that

$$\sum_{k=0}^{\infty} a_k \,\overline{\mathrm{T}}^{*\,k} \,\overline{\mathrm{T}}^k = \mathrm{o}$$

and since \overline{T} is normaloid we obtain that $\overline{T} = 0$ and the result follows by [9, Theorem 3.1].

In [6] is given a characterization of quasi-hermitian Riesz operators (an operator T is quasi-hermitian if there exists a hermitian operator S > o such that $ST = T^*S$).

THEOREM 3.4. Let T be a quasi-hermitian operator for which the operator S is not compact. If T is a Riesz operator then T is compact.

Proof. It is known that every Riesz operator T has the form T = C + Q where C is compact and Q quasi-nilpotent. If we consider the image in the Calkin algebra we obtain that $\overline{S} \neq o$ and $\overline{T} = \overline{Q}$. Let $\overline{Q} \neq o$, then since $\sigma(\overline{Q}) = \{o\}$ and the operator \overline{Q} is quasi-hermitian it follows that $\overline{Q} = o$, which is a contradiction.

Remark. The condition of quasi-hermiticity for a compact operator is more simple than for other operators.

References

- [I] T. ANDÔ, Operators with a norm condition (to appear).
- [2] S. K. BERBERIAN, Some conditions on an operator implying normality, «Math. Ann.», 188–192 (1970).
- [3] S. K. BERBERIAN, Some conditions on an operator implying normality II, « Proc. Amer. Math. Soc. », 26, 277–281 (1970).
- [4] S. K. BERBERIAN, The Weyl spectrum of an operator, «Indiana Univ. Math. J.», 20, 539-544 (1970).
- [5] S. R. CARADUS, Operators of Riesz type, « Pacific J. Math. », 18, 61-71 (1966).
- [6] J. DIEUDONNÉ, Quasi-hermitian operators, « Proc. Internat. Symp. », Linear Spaces (Jerusalem 1960), 115-122.
- [7] F. GILFEATHER, The structure and asymptotic behaviour of polynomially compact operators, « Proc. Amer. Math. Soc. », 25, 127–134 (1970).
- [8] H. HEUSER, Über die Iteration Rieszcher Operatoren, «Arch. Math. », 9, 202–210 (1958).
- [9] I. ISTRĂȚESCU and GH. CONSTANTIN, On Riesz operators with uniformly bounded iterates, «Matem. Vestnik», 6 (21), 276–378 (1969).
- [10] V. ISTRĂȚESCU, On some hyponormal operators, « Pacific J. Math. », 22, 413-417 (1967).
- [11] V. ISTRĂȚESCU, T. SAITÔ, and T. YOSHINO, On a class of operators, «Tôhoku Math. Journ.», 18, 410-513 (1966).
- [12] A. F. RUSTON, Operators with a Fredholm theory, «J. London Math. Soc. », 29, 318-326 (1954).
- [13] A. E. TAYLOR, Introduction to functional analysis, New York 1958.
- [14] T. T. WEST, The decomposition of Riesz operators, «Proc. London Math. Soc. », 16, 737-752 (1966).