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Equazioni differenziali ordinarie. —/Perzodic Solutions of a certain
third order differential equation. Nota di James Oxove CHUKUKA EZETLO,
presentata ) dal Socio G. SANSONE.

RIASSUNTO. — L’Autore dimostra un teorema che assicura l’esistenza di almeno una

soluzione periodica dell’equazione % -+ g(£)% + 6% + A(x, 7, %) = 2.

1. Consider the differential equation
(1.1) E+g@)F +6x +f(x)=p(

where 6 > 0 is a constant and £, g, p are continuous functions. The special

case of this equation in which f is bounded, that is | f(x) | < F (constant)

for all x, has been examined by a number of authors for the boundedness

of solutions and, where 2 is periodic, for the existence of periodic solutions.

Reissig [1], for example, generalizing an earlier result of mine [5], showed

that if f(x)sgnx >o(Jx| =%, and G (y)sgny - + oo as |y|—>oo
y ¢

(G (») E]g(v)) dn) and if P(¢) = fp (v) dv is bounded then solutions
0 d

of (1.1) are all ultimately bounded, with the bound independent of solutions.
On the periodic side there has not been as much success under the same general
conditions on f and g, and the only results so far available, on the existence
of periodic solutions, concern the two special cases: (i) g = constant ([2],
[4], [6]), (ii) g, not necessarily constant, but such that

(1.2) cly| =G (sgny Zaly| (y]| =Yo)

with @, ¢ positive constants [3].
The object if the present Note is to free G of the restriction on the left
in (1.2), and to extend the result, anyway, to the more general equation

(1.3) B b g(B)F+ bt +h(x, &, %) = p (@)

where / is a continuous function depending on all the arguments shown and,
like the function f in (1.1), is bounded, that is

(1.4) | 2(x,y,s)|<H H coﬁstant)

for all x,y and z.

(*) Nella seduta del 13 gennaio 1973.
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Our result is summarized in the following theorem:

THEOREM. Let /i satisfy (1.4) and let the periodic function p with period o
be such that | P(£)| < A < oo (¢ =0) for some constant A. Suppose further
that

(1.5) }z(x,y,z?sgnx>o (x| =Xy
(1.6) Gsgny =aly| (y|=Yo)

Sfor some constants a > o, Xo, Yo.
Then the equation (1.3) admits of at least one periodic solution with period o.

2. The proof is by the Leray-Schauder fixed point technique, a con-
venient starting point of which is the parameter (x) — dependent equation

(21 F+{0—wa+ V«g(%)}% ot (1t —wex +ph(x, £,5)=pp.

which reduces to a linear equation when u = o and to the original equation
(1.3) when p = 1. Here ¢ is a positive constant to' be fixed such that the
linear equation corresponding to w = o is asymptotically stable.

To establish the theorem it will be enough to show that there is a choice
of ¢ such that all solutions of (2.1) are ultimately bounded, with the bound
independent of solutions or of w (o < p < 1). Unfortunately, however, the
presence of the term

b= G e WG, B

which is bounded when u = 1 and unbounded otherwise makes the actual
investigation of the boundedness of solutions of (2.1) quite an intractable
one. A way out, suggested by Reissig’s treatment in [3], is to consider, instead,
the equation (2.1) with %, replaced by the function

(2.2) li = wh (%, %, %) + (1 — ) ofg ()
where
o, if |x| <R,
R Rsgnx, if |x] =R.
The function /zz is bounded: in fact, by (1.4)
(2.3) i) < H + (R

and therefore the new equation

(2.4) FH{(1—ua+pg (D} F + 62 4 fiy = pp

can be investigated readily for the boundedness of its solutions using for
example, the techniques in [7]. The problem now, as far as the theorem is
concerned, would be to prove not just that (I) the bound, so obtained, for
solutions of (2.4) is independent of solutions and of (0 < w < 1), but also
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that (II) for some suitably fixed R, every solution x () of (2.4) ultimately
satisfies | # (#) | < R. For, indeed, since %, = %, when | x | <R, (II) means
in effect that the actual Leray-Schauder fixed point considerations can be
switched back from (2.4) to (2.1), so that the existence of a periodic solution
of (2.1), and thus of (1.3), is implied in the usual way by (D).

3. SOME REMARKS ON NOTATION. Let C () = max |G (y)|. We have,
ETES
as a result of (1.6), that T

(3.1) ¥G(¥) = ay*—d, for all y,

where @ = YoG (Yo) + aY5.

In what follows 8,8 ,381,- -+ (without any arguments) stand for positive
constants whose magnitudes depend only on @, é,d, A and H, but definitely
not on p. or on R. Any §, numbered or not, with some argument(s) displayed
is a positive constant whose magnitude depends on @, 4,4, A and H as well
as the argument(s) explicitly displayed: thus, for example, 3 (To, po) is a
positive constant whose magnitude depends only on a,6,d,A ,H, T
and ¢,r The d’s are not the same in each place unless numbered, but all §’s
(with or without arguments) having suffixes attached retain a fixed identity
throughout.

4. BOUNDEDNESS OF SOLUTIONS OF (2.4). We shall in fact show that
there are constants 8o, 8; and a continuous function A (y) such that every
solution x (#) of (2.4) ultimately satisfies

(4-1) || < Xo+ 4G A (o)) + 8,4 (o)

(4.2) 120 <Al » [E@] <3, + G @A),
where Xp is the constant i‘n (1.5) and

(4.3) pOIEH—FcR—i—A—{—I.

We shall start with (4.2). For this it will be convenient to take (2.4)
in the system form: i

(4.4) t=y , y=z—ay—u{G)—ay} +puP , s=—h, —by,

and sufficient to prove that every solution (x(#), ¥ (%), 2(?)) of (4 .4) ultimately
satisfies

(4-5) PO+ 2@ < (e

with 3,(p,) continuous in p,.
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The main tool for the proof of (4.5) is the continuous function

V=—@2+2)—2(,FDW
where

W — ysgnz if |z| >1y],
~\ezsgny  if |y| =|2].

It is clear from the definition that
(46) —83P?)+84<y2+22) <V £85p§+86<y2+32)

for some constants 83, 84, 85 and 3¢. Also if (x(#),¥(?),2(¢)) is any solu-
tion of (4.4) and ‘

V= lim sup YU 2+ 1) Vi @.20)
h—>+0

we have, by an elementary differentiation that
(4.7) V¥ = — (1 — ) aby2— pbyG(y) + pbyP — 2k —
—2(p, + D{e—ay—u[G(y)—ay] +uP}sgns
if [2]>]|y], and |
(4.8) V* = — (1 — p) aby® — pbyG (9) + ubyP — zhy +
+ 2 (pp+ 1) (¥ + /) sgn y

if |y| =|2]|. Observe that the coefficient of ., involving G () on the right-
hand side of (4.7) can be majorized by

: :_%@,G_{%éyG—S(Po)lGl}
<—3ap2+ 3G,

by (3.1) and by virtue of the fact, resulting from (1.6), that the term in the
curly bracket, which is continuous in y, is non negative if |y| > § (pp) = Y,
Thus (4. 7) implies, in lieu of (2.3) and (4.3), that

(49 V< — 5@+ 3G (vl + D — (ot 2zl i |y] <|z].
In the same way we have from (4.8), (3.1) and (2.3) that

(4-10) V< —abyr + 80 (¥ +1) i |y]=]z2]
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The inequalities (4.9) and (4.10) show clearly that

(4.11) VE<—1 i |y]=3,(e)

for some sufficiently large 3,(p,). In the event, however, that |y | < 3, (pg)s
(4.9) shows too that, so long as |z]| = 3,(p,),

V* < 3(py) — 22|
<—1,
provided further that |z|= 8 (p) (sufficiently large). Thus
V¥ <—1, if |y]|<8,(s,) provided that |z| =3 (p,),
which, when combined with (4.11), shows that

(4.12) Vi —1 if 2428 > 8(p),

where 83(90) = 83(90) . 8§(po).
The results (4.6) and (4.12) imply (4.5). To verify this note to begin
with, that

V() + 2 () < 8 (p,)

for some #9 > 0, because otherwise we shall have that V¥ << — 1 for all # > o,
which is incompatible with the lower bound restrict on V in (4.6). Next it
is easy to see that y2(¢) + 22(¥) < 8?0(90) for all #>¢#y, where

(4-13) 8o (o0 = {35 + 89 o + (3,4 39) 3 (e} 377"
For, indeed, since 8,9(py)>> 89(py), the existence of a To># such that
¥2 (To) + 22(To) > 3% (po)

would, imply, 3% (#) + 22 () being continuous, the existence of two instants
‘41,22 (t2 > t1 > to) such that

(4.14) V() + 2@ =8 (o), 22() + () =8 (o)
and
(4.15) PO+ 2 @) = 8o =t <n)

However (4.15) and (4.12) imply that V(%)< V(#1) whereas (4.6) and (4.14)
imply that
V() = 8,8 (o) — 3, p(2)

> 8435 (pp) + 35 pp (by (4.13))
> V(#t)
which is a contradiction. Hence ‘

22 + 2 () < 8, (o) (¢ = o),
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It remains now only to add that each § (p), with or without suffix, which
has featured in the foregoing is a continuous function of p, to complete the
verification of (4.5), and thus of (4.2). '

We turn now to (4.1). The procedure here will be almost as in [7]. Let
x = x (#) be any solution of (2.4) and define ¢ = ¢ (¥) by

(4.16) Y =%+ (1 —pwat + pG &) + bxr — pP@).

Verify that { = — 4}, so that by (1.5) and (2.2), ¢ is strictly positive (or
negative) when x <— X, (or = X,). Also, by (4.2),

(4-17) (@ —bx| < 2G (Apy) + 3, () » ¢ = To
for some 3 (p,) and To. We will now show, as a result, that |
(4.18) | 4] < 6Xo + 2G (Ape) + 81 (eo) » t=Ta

(for some Ty = Tg) from which (4.1) will then follow in lieu of our definition
(4.16) of .
We start by proving the existence of Ta > Ty such that

(4.19) $(T2) < 6Xg + 2C (A(pg)) + 811 (po) -

Suppose indeed that this were not the case so that
(4.20) V(&) = 6Xo 4+ 2G (Aley) + 811(pg), for all £z =T,.

Then, by (4.17), x(#) = X, and therefore, by the property of LI) stated earlier,
Y (&) < ¢ (To) for all #=>To. Thus ¢ is bounded and so we have not just
x(t) = Xy, but indeed Xo < x(#) < 3 (T, o), for all #>Ty. However, since
4, is continuous in the variables x, #, %, the fact that each of x, #, # is
bounded for all # > Ty leads to the stronger estimate

‘L:_hzé—8<’r0:90><0 (z = To)

which is impossible in view of the lower bound restriction (4.20) on ¢. Thus
there is a Tz =Ty for which (4.19) holds. We assert now that, corresponding
to any such Ty, '

(421 V(&) < 8Xo + 2C (Ao) + 3 e0) t=To.

For the existence of a Ts > Tz such that

‘ $(Ts) > 06Xy + 2G (A(py) + 311 (po)
implies that |
(4.22) b(Ty) = 8Xy +2G (Ale)) + 8ulpe) and §(Tq) >o

for some Ty in the open interval (T2, Ts). However, if ¢ (Tq) = 6Xo+
+2G (A(pg) + 811(po) then, by (4.17), x(Ts) > Xo so that as before
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{ (T4) < o which contradicts the second condition in (4.22). This proves
(4.21).

By an entirely analogous reasoning it can also be shown that

Y& =—16Xo +2G (A(ro) + Su(po) }
for all sufficiently large #. Thus (4.18) holds, and (4.1) then follows.

5. COMPLETION OF THE PROOF OF THE THEOREM. By the remarks at
the end of § 2 it remains now only to show that there are constants ¢ > o
and R > o such that (i) #he linear system

T4+ ax +bx +cx=o0

is asymptotically stable, and such that also '(ii) every solution x () of (2.4)
ultimately satisfies |x (£)| < R.

We observe that, by the Routh-Hurwitz stability criteria, only the
condition 0 < ¢ << aé is required to secure (i). Also, by (4.1) and (4.3), the
condition (ii) would be met by any pair ¢ and R which satisfy the inequality

(5.1) R >y (R + dia)
where ¥ (9) = X0+ 4G (A(») + 81A(y) and S12=H + A +1. Now let
%) = max y ().
|y|Sr‘ ‘
t is easy to check that (5.1) is satisfied, for example, by
(52) R = i (312 -—}— I) = 813 , c = (813 + 2)_%
for any real number # > 1. If we now fix # large enough to ensure that

(813 + 2)™" < ab

then the value of ¢ given in'(5.2) will also suffice for (i).

It is thus possible to fix ¢ and R so that (i) and (ii) together are satisfied,
and the theorem now follows, as indicated earlier.

6. A FURTHER GENERALIZATION. The present theorem is extendable
to the case, investigated in an earlier paper [7] for boundedness only, in
which the coefficient 4 in (1.3) is replaced by a continuous function ¢ ()
satisfying

6.1) Ow)—yr=o0(1) as |x|->oo (@(x)zf(l)(y)dy>
0

for some constant y > o, with g,%, p as before.
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The procedure for the new equat_ioh is exactly as for the present (1.3)
except that (2.1), (4.4) and (4.16) respectively would have to be replaced by

(2.1)" FH{t—we+ue @} +{0—wy+pe @)} +
+ (@ —wexr +ph=pp

(4.4)* i=y , y=x—ay—p{G—ay} —pu{®x) —yx} +pP
2=—li—yy,

4107 =+ {T—waet +uG@} + (1 — ) yx + ud(x) — uP,

and the estimate (4.17) for |4 —&x| by an estimate for | ¢ —yx| which
should take into account the fact that ®(x) — yx is bounded, by (6.1).
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