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Equazioni differenziali. — On the boundedness of the motions of
a periodic process. Nota di NicoLar Paver, presentata ™ dal Socio
G. SANSONE.

RIASSUNTO. — Riallacciandosi alla teoria delle equazioni differenziali non autonome
P’Autore discute alcuni concetti di limitatezza del moto di un processo periodico in uno spazio
di Banach.

1. INTRODUCTION

The basic theory of the periodic processes on a Banach space is deve-
loped by J. K. Hale, G. P. La Salle, J. E. Billotti and M. Slemrod in [2], [6].

The concept of process on a Banach space defined by above authors
includes ordinary differential equations, functional differential equations of
retarded type, some systems arising in the theory of elasticity, etc.

In this paper, the concepts of the boundedness of the motions of a
process defined in [2], [6], in the same spirit of Levinson [8] and Yoshizawa
[18] are defined. ,

In the case of a finite dimensional space we prove that every dissipative
periodic process is uniformly bounded and uniformly ultimately bounded.

From a result of [2], [6], it follows that every w-periodic process on E”
has at least one w-periodic motion (it is used [1]).

It seems that in the case of a general Banach space the above results
are not true.

However, in § 3 (using a result of [2], [6]) we prove that if the associated
mapping T of a periodic process on a Banach space is dissipative, then this
process is uniformly bounded and uniformly ultimately bounded. ‘

These results extend some results of [11], [15] [18] to periodic processes
on Banach spaces.

Taking into account the result of C. C. Conley and R. K. Miller in [3]
and Remark 2.2 in [11], it follows that in the case of an almost periodic
process on E”, ultimate boundedness does not necessarily imply uniform
boundedness. :

In the case of a process defined by an ordinary differential equation,
more complete results and references can be found in the books of
V. A. Pliss [15], R. Ressig, G. Sansone, R. Conti [16] and T. Yoshi-
zawa [18].

(*) Nella seduta del 13 gennaio 1973.
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- DEFINITION AND PRELIMINARY

Let X be a Banach space, R the real numbers and R, = [0, + oo).
Consider a mapping #: RXR, XX and define for c€R, 7€ R, the
operator U (¢,7): X - X by

(2.1) U, x=u(c,7,x).
The following definitions are given in [6], [2].

DEFINITIONS 2.1. A process on X is a mapping #: RXR, XX — X
‘with the properties:

(2.2) % is continuous
(2.3) U (6,0) =1, where I is the identity
(2.4) U(@+s,7) U(e,s) =U(s,s+1), forall c€R, s,7€R,.

The positive motion through (o, x) is the set {#(c,v,x),7€R}.
A motion is said-to be periodic of period a> o0, if U(s,7 + «) = U (5, 7)
for all te R,

A process % is said to be periodic of perlod N (or wperlodlc) if
U(-+w,t)=U(s,r) for all 6eR, t€R, If U(s,7)= U(O 7) for
all 6 €R, T€R,, then # is said to be autonomous (or dynamical system).

A large number of examples of such processes on a Banach space X
can be found in [6]. .

We recall only the following example of processes.

Let E” be Euclidean #z-space and f: RXE”— E” a continuous function
such that the initial value problem (2.5) + (/) has a unique solution
cp(t,(o,xo>,tZto,qJ(l‘o,l‘o,xo)=x0,;Where

(2.5) O =F )
(z) x<t0>=x0, L‘QER s onE”.

Define #: RXRyXE"—- E" by u(c,7,2)=¢(c+1,0,x).

It is easy to verify that # is a process on E".

For a w-periodic process # on X let us consider for any fixed ¢ € R
the continuous mapping T : X — X defined by

(2.6) Txr=u(c,0,x) =U(s, 0)x.

T is called in [6] “ the associated mapping of # "
It follows that T" = U (o, #nw), where T” is the #-th iterate of T.

DEFINITION 2.2. 4) T is said to be smooth if there is a non negative
integer 79 such that for each bounded set B in X there is a compact set B’
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in X such that T"x € B for # = 0,1, -+, N(N =ny) implies T?x € B for
nw=rmy, 79+ 1, --,N. )
6) T is said to be dissipative if it is smooth and if there is a bounded"
set BC X with the property that given x € X there is a positive integer N (x)
such that T"x € B for N(x) <7 < N(x) + 7o (see [2], [6])-
In [2] and [6] are established the following results.

THEOREM 2.1. [If T is dissipative, then theve is a compact K in X with
the property that given a compact H in X there is a positive integer N(H)
and an open neighbourhood Oy of H such that T"(0,) CK for all n > N(H).

COROLLARY 2.1. If T is dissipative and maps bounded sets into bounded
sets, then 1V has a fixed point for each integer j > n,.

Remark 2.1. Theorem 2.1 generalizes Theorems 2.1 and 2.2 of [13].
Corollary 2.1 generalizes some results of [19], [4] and Theorem 2.4 of [11].
(For the ordinary differential systems (2.5), 7, = 1).

Of course, the integers N(x) and N(H) defined above, depend on ¢
fixed in R (¢ appearing in (2.6)).

Now, in a similar way as in [8], [18] we define the following concepts
of boundedness of a process # on a Banach space X.

DEFINITION 2.3. # is called equibounded (e-4) if for any compact set H
in X and o € R, there is a compact H'(H , o) in X such that » (6,7, x) € H’
for all t€e R, and x € H. ‘

DEFINITION 2.4. % is said to be uniformly bounded (x-4) if for any
compact H in X, there is a compact H' (H) in X such that « (¢, 7, x) € H’
for all c€ R,7€R, and x € H. (i.e. H' appearing in Definition 2.3 may
be chosen independent of o).

DEFINITION 2.5. # is called preultimately bounded (p-u-8) or predis-
sipative if there is a bounded set B in X with the property that for each
o€ R, x € X there is 7y (¢, x) > 0, such that « (s, 7,,x) € B.

DEFINITION 2.6. # is called ultimately bounded (-4 ;d) or dissipative
if there is a bounded set B C X with the property that for each ¢ € R and
x € X, there is 1y (6, x) >0 such that # (c,7,%) € B for all = >

DEFINITION 2.7. = is used to be equiultimately bounded (e--4) if there
is a bounded set By in X with the property that given a compact H in X
and o € R, there is 7y (H,, 6) >0, such that « (¢, 7, x) € By, for all = > 1,
x € H.

DEFINITION 2.8. # is said to be uniformly ultimately bounded (z--4)
if 7y appearing in Definition 2.7 may be chosen independent of .

Remark 2.2. It is known that in the case of the system (2.5) these
concepts are different [18].

In the case of the initial value problem (2.5) + (¢), the author proved
the following results [11], [14].
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THEOREM 2.2. Any wultimately bounded periodic system is wuniformly
bounded [10].

THEOREM 2.3.  Any wultimately bounded periodic system is uniformly
ultimately bounded.

THEOREM 2.4. Any (u-b;d) w-periodic system has at least a o-periodic
solution.

Remark 2.3. Taking into account Theorem 2.3 and Theorem 2.1 of
Pliss [15], it follows that in the case of a periodic system (2.5), the concepts
of (p-u-b), (u,b;d), (e--6) and (#-u-b) are equivalent.

Obviously Corollary 2.1 generalizes Theorem 2.4.

3. BOUNDEDNESS OF THE PERIODIC PROCESSES ON X

The aim of this section is to show some consequences of Theorem 2.1.
Namely we shall prove the following theorems.

THEOREM 3.1. If the associated mapping T of a periodic process u is
dissipative, then wu is uniformly bounded.

THEOREM 3.2. If the associated mapping T of a periodic process u is
dissipative, then u is uniformly wultimately bounded.

Remark 3.1. Theorems 3.1 and 3.2 generalize Theorems 2.2 and 2.3
respectively.

Before proving the Theorems 3.1 and 3.2 we shall need two lemmas.

Let # be a w-periodic process on X.

LEMMA 3.1. In the case of the periodic process u, the concepts of (e-b)
and (u-6) are equivalent.

Progf. 1t is sufficient to prove that if # is (¢-6) then # is (x-4). Let H
be a compact set in X.

Since # is w-periodic we may consider only the case s € [0, »].
Let ¢ fixed in [0, ®). From (2.4) we derive

(31) u(o,t—oc,x)=u(w,t—w,u(c,n0—o0c,x),
for all z>w and x € X.

Set H={u(,~,x), tefo,w], t€fo,w], xeH}.
It follows « (o, co~—o-,x)€ﬁ, for all x € H.

But there is H'(ﬁ) such that # (0w ,t,y)€H’ for all t>o0, y€ H and
therefore (from (3.1)) we have

(3.2) u(c,t—oc,x)€H’ forall z>w, x€H.

For 6 <# < we have #(c,?—c,x) € H for all x €H.
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Since 0 CH’, we obtain
(3.3) u(c,t—c,x)€H'  forall c€fo,w], t>0c, re€H.
Since H’ depends only on H, the lemma is proved.

LEMMA 3.2. /n conditions of Lemma 1, the concepts of (e-1-b) and (u-u-b)
are equivalent.

Proof. Let u be (¢-u-6) and let H be a compact set in X.

Let H(H) = {«(¢,7,%), t€[0,0], t€[0,0], € H}. Withse€ [0,n],
we have # (6, w — o, x) € H, for all x € H. By hypothesis there is 7,(H) >o0
such that

(3.4) u(w,<,y) €Bg for all =>=(H), yeH.
Using (3.1) and (3.4) we derive
(3.5) u(c,t— o6 ,x) € By for all #>w 4+ 1,, x€H
and therefore
(3.6 u(c,7,x) € By forall 1 >w +1,.

Since 1, is independent of ¢ ,# is (#-#-6) and lemma is proved.

Proof of Theorem 32 Suppose H is an arbitrary compact set in X and
let o€ [0,w). By Theorem 2.1 there is a positive integer N (H, 6) such
that T* (H)CXK for all » >N (H, o). ‘

For © = wN there is an integer p >N (H, 0) and 7, € [0, @] such that
T = pw + 7;. Therefore
(3-7) u(c,*r,x)=u(c,rl',u(c,pm;x)).

But u(c,pw,r) =TtreK for all xeH.
Let K={u(t,~,y), te€ [o,®], t€]o,w], yeK}.
It follows (from (3.7))
(3.8) u(c,7,x)€eK  forall t>N(H,q), reH
i.e. u is (¢-u-b) and therefore (by Lemma 3.2) % is (u-u-b).

The proof of Theorem 3.2 is immediate.
Indeed, with the same notations as above, if

HMH,o)={u@,v,x), tefo,w], t€o,wN (H,0)], xeH},
taking into account (3.8) we obtain
(3.9) u(c,v,x) e K UH(M ,s) forall teR,, xeH

i.e. % is (e-8) and therefore (by Lemma 3.1) # is (2-4).
Theorem is thus proved.
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Remark 3.2. The Lemmas 3.1 and 3.2 generalize the Theorems 9.2,
din 9.3 of [19].

The Theorem 4.2 in [11] is equivalent to a result of [4] so that is
not new.

One suspects that # being (#-6;d) and periodic does not necessarily
imply that « is (x-4) and (#-%-8) (i.e. it seems that Theorems 2.2, 2.3 and
2.4 are not true in the case of a general Banach space X).

4. PERIODIC PROCESSES ON E”

In this section we shall prove the following results.
THEOREM 4.1. Every preultimately bounded periodic process on E" is
uniformly bounded.

THEOREM 4.2. FEwvery preultimately bounded periodic process on E" is
uniformly ultimately bounded.

Remark 4.1. The fact that any preultimately bounded w-periodic process
on E” has at least one w-periodic motion, follows from Corollary 2.1 of [6]
(or Corollary 2.2 of [2]) and Theorem 4.2.

Remark 4.2. Taking into account Theorem 4.2 it follows that in the
case of a periodic process on E” the concepts of (p-u-6), (u-b;d), (e-u-b)
and (#-u-6) are equivalent.

It follows that Theorem 4.2 generalizes Theorem 2.1 of Pliss [15] and
Theorem 2.3. ‘

Theorem 4.1 generalizes Theorem 2.2.

Proof of Theorem 4.1. Let u be a (p-u-b4) process on E” (w-periodic).
Suppose that # is not («-4) on E”. Therefore, that is a compact set Ho in E”
with-the property that for each compact H in E” there exist o, € R, 7, € R,
and v, € Hj ‘such that » (64 » Ty s xy) €H.  Let us consider the sequence
of the compact sets H,C E” with the properties

(4.I> HOUBCA.CHICHZJ"CHpCHpq-lC"‘
(4.2) u(t,7v,x)€H, for t€fo,w], t€fo,p], x€A

where A is an arbitrary bounded- set containing the union HoUB and B is
the bounded set appearing in Definition 2.5.
Denoting

Ou,= Op THyT™ T K, = Xp p=1,2, -
it follows
(4-3), u(o,,%,,%,)€H,, x,€Ho, 7,>0, p=1,2,--

Let us consider the continuous function g: R, — E” defined by g(¢) =
=u(6,,1,%,).
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We have g(0)€A, g(r)€A.  Set 0, =sup {6€[o,r,], g(0) €A}
It follows

(4.4) u(c,,0,,x,) €A, 0<0,<1,, p=1,2, -

(4.3) u(o,,7,x%,) €A for 0, <r<1,, p=1,2,--
There is a unique integef m, such that

(4.6) o, + 0, =m,w +0,, | 0<b, <.

Let 7,=0, +1,—m,w, p=1,2, -, therefore T, =0,—0,4 1,.
In as much as % is w-periodic and using (2.4), we derive

4.7) u(@,t——@,a‘cﬁ):u(%,t—i—Gp—ﬁp,xl,), 'z 2@,, p=1,2,--

where X, = u(6,,0,,x,) €A. _
Because @ <t <, implies 6,<¢ 4 0, — 0, < ,, taking into account
(4-3), (4.5) and (4.7) we obtain

l

(4-8) u(®,,7,—0,,%,)€H, ?
p

1,2, --
112)

I

(4.9) u(ﬁp,z‘—@,,@)EA, for 6p<t§?pz

Without loss of generality we may assume that the bounded sequences
{0,} and {X,} are convergent.

Let 6 and xo be their limit, respectively.

Since % is supposed to be (p-u-4), there is 1, > 0 such that

(4.10) u(0y,7,x,) € BCA.

Let 7 =15+ 0, and let p, be a posifivé,integer such that 7, < %,.
We have

(4.11) # 0y, —0y,2,) €B
(4.12) u(t,v,x)€H, for te€fo,w], t€fo,7], x€A.

Obviously, we may always assume that B is open, therefore there is 2, =2,
sufficiently large such that

(4-13) u (B, , 71— 0, ,%,)€B, 0y, <71 -

Now, it is easy to see that t; is incomparable with 7, (which is a con-
tradiction). :

Indeed if we assume 7,< 7, we have @1 < Ty < T4, so that from (4.9)
we derive

(4.14) u (8, 71— 0, ,%,)EA.
But (4.14) contradicts (4.13) (since B CA).
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_ Finally 7, <7, implies o <7, — 6, < T, so that (from 4.12)
u (85, ,75, — 0, , X4,) € Hy, which contradicts (4.8).
The theorem is thus proved.

Proof of Theorem 4.2. Let u be a w-periodic process on E”. Suppose
that # is (p-u-0). ' '
We may always assume that B, in Definition 2.5, is open. Let H be an
arbitrary compact set in E”. In the first instance we consider ¢ = w.
For y € H, there is #,> o such that

(4.15) u(w,t,,y)€B.

Since « is continuous and B is open, there is a neighbourhood V, of y
such that

(4.16) u(w,t,,x)€B  for all x€V,.

But {V,},cn covers H and therefore we can select a finite covering

A% -+, V,, of H (where y;,---,5,€H) such that

r10° Yp
(4.17) u(w,t,x)€B  forall xeV,, i=1,2,,p,

where #, = z,.. _
By Theorem 4.1 there is a compact set H'(B) in E” such that

(4.18) u(c,7,y)€H" forall ceR, T€eR,, y€eB.
Taking-into account (2.3) we derive
(4.19) u(w,t—o,x)=u(ott;, t—o—=it, ulo,t,x), (=ot+i.

Set T(H) = max{#,---,¢,}. If xy€H, there is 7€ {1,2,---, p} such that
xg €V, .

Using (4.17), (4.18) and (4.19) we obtain

(4.20) u(w,t—ow,x) €H’ for t>o 4+ TH), ie.

(4.21) (o, ,x)€eH for all = =T(H), x€H.
If o <6 < w, we have as usual

(4.22) u(c,t—c,x)=u(m,f-m,u‘(o,m%d,x)), t>w, xekE"
‘There is a compact H(H) in E” such that

(4.23) #(6,0—c,;x)€H  for all x€eH.

iUsing the above result (i.e. (4.21)), there is a positive number T (H)
such that

(4.24) u(o,7,y) € H(B): forall «>T(H), yeH.
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From (4.22), (4.23) and (4.24) it follows

(4.25) u(c,t—o,x)€H' for all ¢+>w +TH), xeH
therefore
(4.26) u(c,7,x)€H for all > +T(H), xeH,

ie. the process u is (#-u-6) with By = H'(B) and To(H =0 4+T (H (H)).
The theorem is proved.
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