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Analisi matematica. — Exponential stability of difference equations 
which cannot be linearized. Ei old, di F rancescoS. D e Be a s i (* (**)} e J ohn 
S ç h in  as (*\ p r e s e n t a t a ^  dal Socio G. S a n so n e .

R iassunto. — Si considera l’equazione Ax  {t) =  f { x { t ~ i ) )  e si dimostra che, se /  
ha differenziale multivoco Dy in ~x =  o e tutte le soluzioni di A x  (f) e 1)̂  (x (/ — 1)) tendono 
all’origine, allora quest’ultima è localmente esponenzialmente stabile per l’equazione data.

i . I t is well known (see [2] Ch. V, § 43) that if /  : En -> En is continuously 
differentiable, with Fréchet differential A at a; =  o, and if all solutions of the 
linear difference equation

(1) A* (t) =  A x  (t — 1) , Ax (t) =  x  (t) —  x  (t —  1),

approach zero as t -> oo, the origin is locally exponentially stable for

(2) A x( f )  = f ( x ( t —  1)).

The aim  of this paper is to extend the previous result to the case in 
w h ic h /  is not necessarily Fréchet differentiable at the origin. For differential 
equations such problem  has been treated in a recent work by Lasota and 
Strauss ([3]), who have introduced for this purpose the concept of m ulti­
valued differential. The definition of the m ultivalued differential Dy of / ,  
th a t we shall use, is essentially the same with the difference th a t Dy (x) , ^  e En, 
will be required to be a nonem pty compact subset of En w ithout the additional 
hypothesis of convexity, which occurs in [3]. If  /  has Fréchet differential A 
at the origin, we have Df (x) =  {A*} ,-x £ En. We shall prove the following 
generalization of the aforem entioned result:

I'f /  has m ultivalued differential Dy at x  =  o (see next paragraph) and 
if all solutions of the m ultivalued difference equation

(3) A at- (t) e Dy (x ( t —  1))

approach zero as / a o o , then the origin is locally exponentially stable for 
equation (2).

The proof of this result can be described as the discrete analogue of a 
corresponding one, devised by  Lasota and Strauss in the case of ord inary  
differential equations. It actually  depends on certain perturbation  theorem s

(*) This paper was w ritten while both A uthors were at the U niversity  of W arwick, 
Coventry, England, with the financial assistance of a N.A.T.O. fellowship.

(**) Nella seduta del 13 gennaio 1973.
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for m ultivalued difference, equations, which have been established in [1]. 
O ther applications of m ultivalued difference equations can be found in [4].

2. Denote by: N #o.= {/o , A) 1 >* ' '}> where /0 is any natu ral num ber or 
zero; En the ^-dim ensional real Euclidean space with norm  | • | ; B (r) the closed 
ball with center the origin of E* and radius r  >  o ; ||X || =  sup {\x\  : ^  £ X },
where X is a nonem pty and bounded subset of En ; K* the fam ily of
all nonem pty com pact subsets of En. In K* addition and m ultiplication
by nonnegative scalars are defined by X +  Y =  {x  +  y  : x  £ X , y  £ Y  }, 

— {Xx : x  £ X } . W e shall denote by ® the family of all uppersem icon- 
tinuous functions F  : En -> K n and by p the' subfam ily of ® consisting of 
all homogeneous functions, i.e. of all F  such that F (kx) = XF (x), for all 
x  £ En and X >  o.

D e f in i t io n  i. Let F : E n -> K*. W e say that F  is locally Lipschitz at 
x  =  o if there exist positive constants L  and § such tha t

Il F (x) Il <  L I x  I for all | x  | <  §.

If  § — 00, F is called globally Lipschitz at x  =  o.

D e f in i t io n  2. L et F e O  be locally (globally) Lipschitz at * == o. 
A function ,9 £ p is called a local (global) upper differential of F if there 
exists a § >  o , (S =  00) such th a t

F (x) C 9 (x) for all , | # | <  § (for all x  e E") .

Note th a t if F  e ® is locally (globally) Lipschitz at x  =  o , 9(F) == LB (\x\  ) 
is a local (global) upper differential of F.

D e f in i t io n  3. L et F e O  be locally Lipschitz at * — o. W e define 
the m ultivalued differential D F of F  by

D F (x) =  0 ( 9  (x) : 9 is a local upper differential of F } , , x  £ E n.

The m ultivalued differential Df of a function F which is globally Lipschitz 
at x  — o, is defined by

d £  w  =  n { 9 W  : 9 is a global upper differential of F }, x  £ En.

It is clear th a t the preceding definitions apply in particu lar to single
valued functions /  : En For the function /  : E 2

{ f f ( x  1 +  .^2)1/2 sin (x\ +  x$) '1/2, y  (xf +  x\)1!2̂  , (xi , xf) 
verify th a t

e E

D/  O l > *2) =  D / , x 2) =

one

E given by 

can easily

(x1 , x 2) £ E 2.

2. — RENDICONTI 1973, Voi. LIV, fase. 1.
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Using the same argum ent as in Lem m a 2.8 of [3], one can prove the 
following

LEMMA i. Let F  e <D he locally (.globally) Lipschitz at x  =  o. Then 
D f l  y  (Df e y). Furthermore, tóm? <3 sequence {cp^} of local (.global)
upper differentials such that

<P*+i (x) C (V) fo r  every >ê =  1 , 2 , • • •

00 /  „ °° \
Df O) =  n  (pk (x) , Df (x ) =  O 9* (*) I , ^  EL

\  æ=i /

Note th a t if F  e O is globally Lipschitz at x  =  o, we have D F (at) C 
C D ? ( * ) , * e E L -

D e f in i t io n  4. Assum e th a t f  : E w E w is continuous and locally 
Lipschitz at x  =  o. The function h : En -> E w is called a homogeneous 
differential of f  at x '=  o, if h is homogeneous and continuous and

I f i x ) — & ( x ) \ = o ( \ x \ )  as \ x \ - > o .

T he homogeneous differential is unique ([3]).

Lemma 2. Assume that f \ E n - >En is continuous and locally Lipschitz 
at x  =  o. I f  f  has homogeneous differential h, then Dy is single valued and we 
have Dy (pc) — {h (x)} , x  e En; conversely i f  Dy is single valued, f  has homo­
geneous differential h and Df (x) = {h (x)} , x  6 EL In  particular f  is Fre­
che t differentiable i f  and only if, fo r  some matrix A  , Dy (pc) =  {A^} , x  e EL

T he proof of Lem m a 2 is given in [3].

3. Consider the m ultivalued difference equation 

U ) & x ( t ) e F ( x ( t — i)).

D e f in i t io n  5. Let /0 e N 0 ) r 0 e EL A function *  : N /# -> En is called 
solution of (4) if x  (t0) =  x 0 and x  (t) satisfies (4) for all t e N /o+i .

N ote that, for any t0 € N 0 and x 0 £ En, (4) has at least one solution x  (t), 
with x  (t0) =  x 0 .

To prove our m ain results we shall use the following Lem m as which 
can be found in [1].

Lemma 3. Suppose that\
(i) { F^} is an infinite sequence of functions in y such that F m  O ) C

OO

C F^ (x), f o r  all x  6 E*, ^ € N x, and define F  (x) ■= n  F^ (x);
k —1

(ii) all solutions x  (t) of (4), with x  (o) e En, approach zero as 00. 

Then there exist k e N j and  L  >  1 such that every solution x  (f) of

(S*) A r ( / ) e F  k ( x ( t — 1)),

with x  (o) e En, satisfies \x  (/)| <  L  \x  ( o ) |, fo r  all t e  N 0.
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Lemma 4. Let ¥  G x- Suppose that there exist s >  o and  H >  1 such 
that any solution x  (t) of

Hx (*)e F  (* (* — 1)) + e B ( | , ( / - i ) | ) ,

with x  (o) g E"2, satisfies | *  if) | <  H | x  (o) | , t  g N 0 . Zétf o <  <7 <  s.- 
fo r  every solution x(f )  of

A* (/) g F (x ( t —  1)) +  gB ( Ix ( t —  i ) | ) ,

with x  (o) g E”, |^ (0 | <  H \x(o)\  p-*, / e  N 0 , 1 <  p <  1 - f  (e ■— d) H“1.

Lemma 5. Suppose that’.

(i) every solution x  (t) of (4), where x fo)  G En and  F  G approaches 
zero as t~>oo\

(ii) G e O  is such that || G (x) || =  o ( | ^  | ) as \x\~+o.

Then there exist constants 8 >  o , M >  1 and p >  1 such that, fo r  any 
solution x(t )  of

A x  (t) e F  ( x ( t —  I )) +  G ( x ( t —  1)), 

i f  \x  (°)| <  we have \x  (t)\ <: M \x (o)\ p-', t G N 0.

4. This paragraph  contains our m ain results.

Theorem i . 
x  (t) of

Let F  G O be locally Lipschitz at x  =  o.

Ax (t) g D f (x  ( t — 1)),

I f  all solutions

with  (o) £ E  , satisfy x  (f) -> o as t 00, then there exist constants 8 >  o , 
M >  I and  p >  1 such that all solutions x  (/) of (4), with \x  (o)| <  8, 
satisfy \x  (t)\ <  M \x  (o)| p-*, /  G N 0.

Proof. L et {9^} be the sequence which corresponds to Dp according 
to Lem m a 1 and define

O ) =  O ) +  -J B (I X I) ,  : x e E n , k g Ni'.

Observe th a t for all K N ^ F ^ x ,  F*+1 (x) D EÂ (x) and n  F^ (a:) =  D F (*).
æ=i

From  Lem m a 3 there exist k  G N x and L >  1 such tha t every solution *  (/) of 

Ax if) g ? * (* ( /  —  1)) +  ~ B  ( \ x ( t —  i ) | ) ,

with x  (o) F E  , satisfies \ x (f)\ < l E \ x  (o)| , t G N 0 . A pplying Lem m a 4 to 
this equation and choosing <7 =  0, we can find th a t all solutions x  (f) of

(6) (zf) e (̂ r (/ —
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with J  (o) e E ' , approach zero exponentially as t -> 00 . From  Definition 2 
there exists a ^ >  0 such th a t F (* )Ccp^(V) if \x\  <  8^. Define G : En- >Kn by:

Q(  \ __ i t ° }  if  \x \ <  h  
■ “  \ B ( | |F (* ) | |  +  ||<p*(i)||), if k | > S , .

Clearly

(?) F  0*0 C ^  (r)  +  G (x) for all # e EL

M oreover G g O and ||G  (x)\\ =  o ( | # | ) ' a s  x  -> o. So, from Lem m a 5, there 
exist constants 8 >  o , M >  1 and p >  1 such that, for any solution x- (f) of

(0 e 9k (x (t —  1)) +  G (x (t —  1)) ,

if I (o)I <  S, we have |.i; :Y | M |;r p}| p-' ,  / c N 0. Because of (7) this 
conclusion holds in particu lar for all solutions x  f t )  of (4) with \x (o)\ <  8. 
This completes the proof.

T heorem  2. 
x  00 of

Let F  G <P" be globally Lipschitz at x  =  o. 

A x (t) e Dp (x {t —  1)),

I f  all solutions

with x  (o) G En, satisfy ;r (/) —> o as t ->.00,. then there exist constants H >  1 
and  p >  I such that solutions x  (t) of (4), with x  (o) G En, satisfy \x  (f)\ <  
<  H \ x  (o) I p_/, t g N 0

Proof Denote by {cp^} the sequence wich corresponds to Dp according 
to Lem m a 1. By the same argum ent of Theorem  1 we find th a t all solutions 
x i f )  of (6), w ith 3; (o) e En, satisfy \x (f) | <  H \x  (o)| p~L t g N 0, where H >  1 
and p >  I are the constants in Lem m a 4. The last inequality  is in particu ­
lar true for all solutions x  (t) of (4), with x  (o) G En, since <$k f x )  D F (x) for 
all x  e EL

W hen F is single valued from the preceding Theorem s we have:

C o r o l l a r e  i. Let f  : En -> En be continuous and locally Lipschitz at 
x  =  o. I f  all solutions x  (t) of (3), with x  (o) G En, satisfy x  (f) -> o as t 00, 
then there exist constants 8 >  o , M >  1 and  p >  1 such that all solutions x  if) 
of (2), with \x  (o)| <  8, satisfy \x  (t)\ <  M \ x  (o)| t  G N 0 .

COROLLARY 2. Let f : E n - >En be continuous and globally Lipschitz at 
?  =  o. I f  a ll solutions x  (t) of A x  (f) G D* (x ( t — 1)), with x  (o) G E*, satisfy 
'X (f) ~> o as t  ->.00, then there exist constants H >  1 and  p >  1 such that all 
solutions x  (Z) of (2), with x  (o) g Es, satisfy \x  (t)\ <  H \x  (o)| p - f, / g N0.

From  Lem m a 2 and Corollary 1 we have:

T h eo rem  3* Let f  : En -> En be continuous and locally Lipschitz at x  =  o 
and assume that f  has homogeneous differential h at x  — o.

I f  a ll solutions x  (f) of

A x  f t )  — h (x ( t —  1)),(8)
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with x  (o) € Kn, satisfy ^  f t )  o as / a o o ,  then there exist constants 8 >  o, 
M >  I and  p >  i such that all solutions x  (f) of (2), with lx  (o)| <  8, satisfy
I* (01 < M | *  (o)| p-', / € N 0.

C o r o l la r y  .3. Let f  : En- > E n be continuous and locally Lipschitz at 
x  =  o and assume that f  has Frêchet differential A  at x  — o. Then, i f  all 
solutions x  ft) of (1), with  ^  (o) e En, satisfy x  ft) -> o a s 00, the conclusion 
of Theorem 3 holds.
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