# Atti Accademia Nazionale dei Lincei <br> Classe Scienze Fisiche Matematiche Naturali RENDICONTI 

## Francesco S. De Blasi, John Schinas

## Exponential stability of difference equations which cannot be linearized

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 54 (1973), n.1, p. 16-21.
Accademia Nazionale dei Lincei
[http://www.bdim.eu/item?id=RLINA_1973_8_54_1_16_0](http://www.bdim.eu/item?id=RLINA_1973_8_54_1_16_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi matematica. - Exponential stability of difference equations which cannot be linearized. Nota di Francesco S. De Blasi ${ }^{*}$ e John Schinas ${ }^{(*)}$, presentata ${ }^{(* *)}$ dal Socio G. Sansone.

[^0]I. It is well known (see [2] Ch. V, §43) that if $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ is continuously differentiable, with Fréchet differential A at $x=\mathrm{o}$, and if all solutions of the linear difference equation
\[

$$
\begin{equation*}
\Delta x(t)=\mathrm{A} x(t-\mathrm{I}) \quad, \quad \Delta x(t)=x(t)-x(t-\mathrm{I}) \tag{I}
\end{equation*}
$$

\]

approach zero as $t \rightarrow \infty$, the origin is locally exponentially stable for

$$
\begin{equation*}
\Delta x(t)=f(x(t-\mathrm{I})) \tag{2}
\end{equation*}
$$

The aim of this paper is to extend the previous result to the case in which $f$ is not necessarily Fréchet differentiable at the origin. For differential equations such problem has been treated in a recent work by Lasota and Strauss ([3]), who have introduced for this purpose the concept of multivalued differential. The definition of the multivalued differential $\mathrm{D}_{f}$ of $f$, that we shall use, is essentially the same with the difference that $\mathrm{D}_{f}(x), x \in \mathrm{E}^{n}$, will be required to be a nonempty compact subset of $\mathrm{E}^{n}$ without the additional hypothesis of convexity, which occurs in [3]. If $f$ has Fréchet differential A at the origin, we have $\mathrm{D}_{f}(x)=\{\mathrm{A} x\}, x \in \mathrm{E}^{n}$. We shall prove the following generalization of the aforementioned result:

If $f$ has multivalued differential $\mathrm{D}_{f}$ at $x=\mathrm{o}$ (see next paragraph) and if all solutions of the multivalued difference equation

$$
\begin{equation*}
\Delta x(t) \in \mathrm{D}_{f}(x(t-\mathrm{I})) \tag{3}
\end{equation*}
$$

approach zero as $t \rightarrow \infty$, then the origin is iocally exponentially stable for equation (2).

The proof of this result can be described as the discrete analogue of a corresponding one, devised by Lasota and Strauss in the case of ordinary differential equations. It actually depends on certain perturbation theorems

[^1]for multivalued difference equations, which have been established in [r]. Other applications of multivalued difference equations can be found in [4].
2. Denote by: $\mathrm{N}_{t_{0}}=\left\{t_{0}, t_{0}+\mathrm{I}, \cdots\right\}$, where $t_{0}$ is any natural number or zero; $\mathrm{E}^{n}$ the $n$-dimensional real Euclidean space with norm $|\cdot| ; \mathrm{B}(r)$ the closed ball with center the origin of $\mathrm{E}^{n}$ and radius $r \geq 0 ;\|\mathrm{X}\|=\sup \{|x|: x \in \mathrm{X}\}$, where X is a nonempty and bounded subset of $\mathrm{E}^{n} ; \mathrm{K}^{n}$ the family of all nonempty compact subsets of $\mathrm{E}^{n}$. In $\mathrm{K}^{n}$ addition and multiplication by nonnegative scalars are defined by $\mathrm{X}+\mathrm{Y}=\{x+y: x \in \mathrm{X}, y \in \mathrm{Y}\}$, $\lambda \mathrm{X}=\{\lambda x: x \in \mathrm{X}\}$. We shall denote by $\Phi$ the family of all uppersemicontinuous functions $\mathrm{F}: \mathrm{E}^{n} \rightarrow \mathrm{~K}^{n}$ and by $\chi$ the subfamily of $\Phi$ consisting of all homogeneous functions, i.e. of all F such that $\mathrm{F}(\lambda x)=\lambda \mathrm{F}(x)$, for all $x \in \mathrm{E}^{n}$ and $\lambda \geq 0$.

Definition i. Let $\mathrm{F}: \mathrm{E}^{n} \rightarrow \mathrm{~K}^{n}$. We say that F is locally Lipschitz at $x=\mathrm{o}$ if there exist positive constants L and $\delta$ such that

$$
\|\mathrm{F}(x)\| \leq \mathrm{L}|x| \quad \text { for all } \quad|x| \leq \delta
$$

If $\delta=\infty, \mathrm{F}$ is called globally Lipschitz at $x=\mathrm{o}$.
Definition 2. Let $\mathrm{F} \in \Phi$ be locally (globally) Lipschitz at $x=0$. A function $\varphi \in \chi$ is called a local (global) upper differential of $F$ if there exists a $\delta>0,(\delta=\infty)$ such that

$$
\mathrm{F}(x) \subset \varphi(x) \quad \text { for all } \quad|x| \leq \delta \quad \text { (for all } x \in \mathrm{E}^{n} \text { ). }
$$

Note that if $\mathrm{F} \in \Phi$ is locally (globally) Lipschitz at $x=0, \varphi(x)=\mathrm{LB}(|x|)$ is a local (global) upper differential of F .

Definition 3. Let $\mathrm{F} \in \Phi$ be locally Lipschitz at $x=0$. We define the multivalued differential $\mathrm{D}_{\mathrm{F}}$ of F by
$D_{F}(x)=\cap\{\varphi(x): \varphi$ is a local upper differential of F$\}, \quad x \in \mathrm{E}^{n}$.
The multivalued differential $D_{F}^{*}$ of a function $F$ which is globally Lipschitz at $x=0$, is defined by
$D_{\mathbf{F}}^{*}(x)=\cap\{\varphi(x): \varphi$ is a global upper differential of F$\}, \quad x \in \mathrm{E}^{n}$.
It is clear that the preceding definitions apply in particular to single valued functions $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$. For the function $f: \mathrm{E}^{2} \rightarrow \mathrm{E}^{2}$ given by $\left(\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} \sin \left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2}, \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}\right),\left(x_{1}, x_{2}\right) \in \mathrm{E}^{2}$, one can easily verify that
$\mathrm{D}_{f}\left(x_{1}, x_{2}\right)=\mathrm{D}_{f}^{*}\left(x_{1}, x_{2}\right)=\binom{\left[-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}, \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}\right]}{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}}, \quad\left(x_{1}, x_{2}\right) \in \mathrm{E}^{2}$. 2. - RENDICONTI 1973, Vol. LIV, fasc. 1.

Using the same argument as in Lemma 2.8 of [3], one can prove the following

Lemma 1. Let $\mathrm{F} \in \Phi$ be locally (globally) Lipschitz at $x=0$. Then $\mathrm{D}_{\mathrm{F}} \in \chi\left(\mathrm{D}_{\mathrm{F}}^{*} \in \chi\right)$. Furthermore, there exists a sequence $\left\{\varphi_{k}\right\}$ of local (global) upper differentials such that

$$
\begin{aligned}
& \quad \varphi_{k+1}(x) \subset \varphi_{k}(x) \quad \text { for every } x \in \mathrm{E}^{n} \quad \text { and } \quad k=\mathrm{I}, 2, \cdots \\
& \mathrm{D}_{\mathrm{F}}(x)=\bigcap_{k=1}^{\infty} \varphi_{k}(x) \quad, \quad\left(\mathrm{D}_{\mathrm{F}}^{*}(x)=\bigcap_{k=1}^{\infty} \varphi_{k}(x)\right), \quad x \in \mathrm{E}^{n} .
\end{aligned}
$$

Note that if $\mathrm{F} \in \Phi$ is globally Lipschitz at $x=0$, we have $\mathrm{D}_{\mathrm{F}}(x) \subset$ $C D_{F}^{*}(x), x \in E^{n}$.

Definition 4. Assume that $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ is continuous and locally Lipschitz at $x=0$. The function $h: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ is called a homogeneous differential of $f$ at $x=0$, if $h$ is homogeneous and continuous and

$$
|f(x)-h(x)|=\mathrm{o}(|x|) \quad \text { as } \quad|x| \rightarrow 0
$$

The homogeneous differential is unique ([3]).
Lemma 2. Assume that $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ is continuous and locally Lipschitz at $x=\mathrm{o}$. If $f$ has homogeneous differential $h$, then $\mathrm{D}_{f}$ is single valued and we have $\mathrm{D}_{f}(x)=\{h(x)\}, x \in \mathrm{E}^{n}$; conversely if $\mathrm{D}_{f}$ is single valued, $f$ has homogeneous differential $h$ and $\mathrm{D}_{f}(x)=\{h(x)\}, x \in \mathrm{E}^{n}$. In particular $f$ is Fréchet differentiable if and only if, for some matrix $\mathrm{A}, \mathrm{D}_{f}(x)=\{\mathrm{A} x\}, x \in \mathrm{E}^{n}$.

The proof of Lemma 2 is given in [3].
3. Consider the multivalued difference equation

$$
\begin{equation*}
\Delta x(t) \in \mathrm{F}(x(t-\mathrm{I})) . \tag{4}
\end{equation*}
$$

Definition 5. Let $t_{0} \in \mathrm{~N}_{0}, x_{0} \in \mathrm{E}^{n}$. A function $x: \mathrm{N}_{t_{0}} \rightarrow \mathrm{E}^{n}$ is called solution of (4) if $x\left(t_{0}\right)=x_{0}$ and $x(t)$ satisfies (4) for all $t \in \mathrm{~N}_{t_{0}+1}$.

Note that, for any $t_{0} \in \mathrm{~N}_{0}$ and $x_{0} \in \mathrm{E}^{n}$, (4) has at least one solution $x(t)$, with $x\left(t_{0}\right)=x_{0}$.

To prove our main results we shall use the following Lemmas which can be found in [ I ].

Lemma 3. Suppose that:
(i) $\left\{\mathrm{F}_{k}\right\}$ is an infinite sequence of functions in $\chi$ such that $\mathrm{F}_{k+1}(x) \subset$ $\mathrm{C}_{k}(x)$, for all $x \in \mathrm{E}^{n}, k \in \mathrm{~N}_{1}$, and define $\mathrm{F}(x)=\bigcap_{k=1}^{\infty} \mathrm{F}_{k}(x)$;
(ii) all solutions $x(t)$ of (4), with $x(0) \in \mathrm{E}^{n}$, approach zero as $t \rightarrow \infty$. Then there exist $k \in \mathrm{~N}_{1}$ and $\mathrm{L} \geq \mathrm{I}$ such that every solution $x(t)$ of

$$
\begin{equation*}
\Delta x(t) \in \mathrm{F}_{k}(x(t-\mathrm{I})) \tag{k}
\end{equation*}
$$

with $x(0) \in \mathrm{E}^{n}$, satisfies $|x(t)| \leq \mathrm{L}|x(0)|$, for all $t \in \mathrm{~N}_{0}$.

Lemma 4. Let $\mathrm{F} \in \chi$. Suppose that there exist $\varepsilon>\mathrm{o}$ and $\mathrm{H} \geq \mathrm{x}$ such that any solution $x(t)$ of

$$
\Delta x(t) \in \mathrm{F}(x(t-\mathrm{I}))+\varepsilon \mathrm{B}(|x(t-\mathrm{I})|),
$$

with $x(\mathrm{o}) \in \mathrm{E}^{n}$, satisfies $|x(t)| \leq \mathrm{H}|x(\mathrm{o})|, t \in \mathrm{~N}_{0}$. Let $\mathrm{o} \leq \sigma<\varepsilon$. Then, for every solution $x(t)$ of

$$
\Delta x(t) \in \mathrm{F}(x(t-\mathrm{I}))+\sigma \mathrm{B}(|x(t-\mathrm{I})|),
$$

with $x(0) \in \mathrm{E}^{n}$, we have $|x(t)| \leq \mathrm{H}|x(0)| \rho^{-t}, t \in \mathrm{~N}_{0}, \quad \mathrm{I}<\rho \leq \mathrm{I}+(\varepsilon-\sigma) \mathrm{H}^{-1}$.
Lemma 5. Suppose that:
(i) every solution $x(t)$ of (4), where $x(0) \in \mathrm{E}^{n}$ and $\mathrm{F} \in \chi$, approaches zero as $t \rightarrow \infty$;
(ii) $\mathrm{G} \in \Phi$ is such that $\|\mathrm{G}(x)\|=\mathrm{o}(|x|)$ as $|x| \rightarrow \mathrm{o}$.

Then there exist constants $\delta>0, \mathrm{M} \geq \mathrm{I}$ and $\mathrm{\rho}>\mathrm{I}$ such that, for any solution $x(t)$ of

$$
\Delta x(t) \in \mathrm{F}(x(t-\mathrm{I}))+\mathrm{G}(x(t-\mathrm{I})),
$$

if $|x(\mathrm{o})|<\delta$, we have $|x(t)| \leq \mathrm{M}|x(\mathrm{o})| \rho^{-t}, t \in \mathrm{~N}_{0}$.
4. This paragraph contains our main results.

Theorem i. Let $\mathrm{F} \in \Phi$ be locally Lipschitz at $x=\mathrm{o}$. If all solutions $x(t)$ of

$$
\Delta x(t) \in \mathrm{D}_{\mathrm{F}}(x(t-\mathrm{I})),
$$

with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then there exist constants $\delta>0$, $\mathrm{M} \geq \mathrm{I}$ and $\mathrm{\rho}>\mathrm{I}$ such that all solutions $x(t)$ of (4), with $|x(0)|<\delta$, satisfy $|x(t)| \leq \mathrm{M}|x(0)| \rho^{-t}, t \in \mathrm{~N}_{0}$.

Proof. Let $\left\{\varphi_{k}\right\}$ be the sequence which corresponds to $\mathrm{D}_{\mathrm{F}}$ according to Lemma $I$ and define

$$
\mathrm{F}_{k}(x)=\varphi_{k}(x)+\frac{\mathrm{I}}{k} \mathrm{~B}(|x|), \quad x \in \mathrm{E}^{n}, \quad k \in \mathrm{~N}_{1} .
$$

Observe that for all $k \in \mathrm{~N}_{1}, \mathrm{~F}_{k} \in \chi, \mathrm{~F}_{k+1}(x) \supset \mathrm{F}_{k}(x)$ and $\bigcap_{k=1}^{\infty} \mathrm{F}_{k}(x)=\mathrm{D}_{\mathrm{F}}(x)$. From Lemma 3 there exist $k \in \mathrm{~N}_{1}$ and $\mathrm{L} \geq \mathrm{I}$ such that every solution $x(t)$ of

$$
\Delta x(t) \in \varphi_{k}(x(t-\mathrm{I}))+\frac{\mathrm{I}}{k} \mathrm{~B}(|x(t-\mathrm{I})|)
$$

with $x(0) \in \mathrm{E}^{n}$, satisfies $|x(t)| \leq \mathrm{L}|x(0)|, t \in \mathrm{~N}_{0}$. Applying Lemma 4 to this equation and choosing $\sigma=0$, we can find that all solutions $x(t)$ of

$$
\begin{equation*}
\Delta x(t) \in \varphi_{k}(x(t-\mathrm{I})) \tag{6}
\end{equation*}
$$

with $x(0) \in \mathrm{E}^{n}$, approach zero exponentially as $t \rightarrow \infty$. From Definition 2 there exists a $\delta_{k}>0$ such that $\mathrm{F}(x) \subset \varphi_{k}(x)$ if $|x| \leq \delta_{k}$. Define $\mathrm{G}: \mathrm{E}^{n} \rightarrow \mathrm{~K}^{n}$ by:

$$
\mathrm{G}(x)=\left\{\begin{array}{l}
\{0\}, \quad \text { if } \quad|x|<\delta_{k} \\
\mathrm{~B}\left(\|\mathrm{~F}(x)\|+\left\|\varphi_{k}(x)\right\|\right), \quad \text { if } \quad|x| \geq \delta_{k}
\end{array}\right.
$$

Clearly

$$
\begin{equation*}
\mathrm{F}(x) \subset \varphi_{k}(x)+\mathrm{G}(x) \quad \text { for all } \quad x \in \mathrm{E}^{n} . \tag{7}
\end{equation*}
$$

Moreover $\mathrm{G} \in \Phi$ and $\|\mathrm{G}(x)\|=\mathrm{o}(|x|)$ as $x \rightarrow 0$. So, from Lemma 5, there exist constants $\delta>0, \mathrm{M} \geq \mathrm{I}$ and $\rho>\mathrm{I}$ such that, for any solution $x(t)$ of

$$
\Delta x(t) \in \varphi_{k}(x(t-\mathrm{I}))+\mathrm{G}(x(t-\mathrm{I})),
$$

if $|x(0)|<\delta$, we have $|x(t)| \leq \mathrm{M}|x(0)| \rho^{-t}, t \in \mathrm{~N}_{0}$. Because of (7) this conclusion holds in particular for all solutions $x(t)$ of (4) with $|x(0)|<\delta$. This completes the proof.

Theorem 2. Let $\mathrm{F} \in \Phi$ be globally Lipschitz at $x=\mathrm{o}$. If all solutions $x(t)$ of

$$
\Delta x(t) \in \mathrm{D}_{\mathrm{F}}^{*}(x(t-\mathrm{I})),
$$

with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then there exist constants $\mathrm{H} \geq \mathrm{I}$ and $\rho>1$ such that solutions $x(t)$ of (4), with $x(0) \in \mathrm{E}^{n}$, satisfy $|x(t)| \leq$ $\leq \mathrm{H}|x(\mathrm{o})| \mathrm{p}^{-t}, t \in \mathrm{~N}_{0}$.

Proof. Denote by $\left\{\varphi_{k}\right\}$ the sequence wich corresponds to $D_{F}^{*}$ according to Lemma I. By the same argument of Theorem I we find that all solutions $x(t)$ of (6), with $x(0) \in \mathrm{E}^{n}$, satisfy $|x(t)| \leq \mathrm{H}|x(\mathrm{o})| \mathrm{p}^{-t}, t \in \mathrm{~N}_{0}$, where $\mathrm{H} \geq \mathrm{I}$ and $\rho>\mathrm{I}$ are the constants in Lemma 4. The last inequality is in particular true for all solutions $x(t)$ of (4), with $x(0) \in \mathrm{E}^{n}$, since $\varphi_{k}(x) \supset \mathrm{F}(x)$ for all $x \in \mathrm{E}^{n}$.

When F is single valued from the preceding Theorems we have:
Corollary I. Let $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ be continuous and locally Lipschitz at $x=0$. If all solutions $x(t)$ of (3), with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then there exist constants $\delta>0, \mathrm{M} \geq \mathrm{I}$ and $\rho>\mathrm{I}$ such that all solutions $x(t)$ of (2), with $|x(0)|<\delta$, satisfy $|x(t)| \leq \mathrm{M}|x(0)| \rho^{-t}, t \in \mathrm{~N}_{0}$.

Corollary 2. Let $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ be continuous and globally Lipschitz at $x=\mathrm{o}$. If all solutions $x(t)$ of $\Delta x(t) \in \mathrm{D}_{f}^{*}(x(t-\mathrm{I}))$, with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then there exist constants $\mathrm{H} \geq \mathrm{I}$ and $\rho>\mathrm{I}$ such that all solutions $x(t)$ of (2), with $x(0) \in \mathrm{E}^{n}$, satisfy $|x(t)| \leq \mathrm{H}|x(\mathrm{o})| \rho^{-t}, t \in \mathrm{~N}_{0}$.

From Lemma 2 and Corollary 1 we have:
THEOREM 3. Let $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ be continuous and locally Lipschitz at $x=0$ and assume that $f$ has homogeneous differential $h$ at $x=0$.

If all solutions $x(t)$ of

$$
\begin{equation*}
\Delta x(t)=h(x(t-\mathrm{I})) \tag{8}
\end{equation*}
$$

with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, then there exist constants $\delta>0$, $\mathrm{M} \geq \mathrm{I}$ and $\rho>\mathrm{I}$ such that all solutions $x(t)$ of (2), with $|x(0)|<\delta$, satisfy $|x(t)| \leq \mathrm{M}|x(\mathrm{o})| \rho^{-t}, \quad t \in \mathrm{~N}_{0}$.

Corollary 3. Let $f: \mathrm{E}^{n} \rightarrow \mathrm{E}^{n}$ be continuous and locally Lipschitz at $x=\mathrm{o}$ and assume that $f$ has Fréchet differential A at $x=0$. Then, if all solutions $x(t)$ of $(\mathrm{I})$, with $x(0) \in \mathrm{E}^{n}$, satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$, the conclusion of Theorem 3 holds.

## References

[I] F. S. De Blasi and J. Schinas, Stability of multivalued discrete dynamical systems "J. Differentiai Equations» (to appear).
[2] W. Hahn, Stability of motion, Springer-Verlag, Berlin (1967).
[3] A. Lasota and A. Strauss, Asymptotic behaviour for differential equations which cannot be locally linearized, «J. Differential Equations», Io, I52-172 (1971).
[4] G. P. Szegö and G. Treccani, An abstract formulation of minimization algorithms, in «Differential games and related topics», Eds. H. W. Kuhn and G. P. Szegö, NorthHolland, Amsterdam (197r).


[^0]:    RiAsSunto. - Si considera l'equazione $\Delta x(t)=f(x(t-\mathrm{I}))$ e si dimostra che, se $f$ ha differenziale multivoco $\mathrm{D}_{f}$ in $x=\mathrm{o}$ e tutte le soluzioni di $\Delta x(t) \in \mathrm{D}_{f}(x(t-\mathrm{I}))$ tendono all'origine, allora quest'ultima è localmente esponenzialmente stabile per l'equazione data.

[^1]:    (*) This paper was written while both Authors were at the University of Warwick, Coventry, England, with the financial assistance of a N.A.T.O. fellowship.
    ${ }^{* *}$ *) Nella seduta del I3 gennaio 1973 .

