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Analisi matematica. — Zxponential stability of difference equations
which cannot be linearized. Nota di Francesco S. DE BrLasi® e Jonn
Scuinas @, presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Si considera I'equazione Ax () =f(x (#— 1)) ¢ si dimostra che, se f
ha differenziale multivoco D, in x = o e tutte le soluzioni di Ax (z‘)eDf (x (#—1)) tendono
all’origine, allora quest’ultima & localmente esponenzialmente stabile per 1’equazione data.

1. Itis well known (see [2] Ch.V, § 43) that if /: E" — E” is continuously
differentiable, with Fréchet differential A at x = o, and if all solutions of the
linear difference equation

(1) Ax(H)=Ax(t—1) , M@ ==x)—x(F—1),
approach zero as #— oo, the origin is locally exponentially stable for
(2 Ax () =f(x (z—1)).

The aim of this paper is to extend the previous result to the case in
which f is not necessarily Fréchet differentiable at the origin. For differential
equations such problem has been treated in a recent work by Lasota and
Strauss ([3]), who have introduced for this purpose the concept of multi-
valued differential. The definition of the multivalued differential D, of £,
that we shall use, is essentially the same with the difference that D, (x), x € E?,
will be required to be a nonempty compact subset of E” without the additional
hypothesis of convexity, which occurs in [3]. If # has Fréchet differential A
at the origin, we have D, (x) = {Ax},x € E". We shall prove the following
generalization of the aforementioned result:

If / has multivalued differential D, at x = o (see next paragraph) and
if all solutions of the multivalued difference equation

©) Av (@) €D, (x ¢ —1)

approach zero as #— oo, then the origin is iocally exponentially stable for
equation (2). ‘

The proof of this result can be described as the discrete analogue of a
corresponding one, devised by Lasota and Strauss in the case of ordinary
differential equations. It actually depends on certain perturbation theorems

(*) This paper was written while both Authors were at the University of Warwick,
Coventry, England, with the financial assistance of a N.A.T.O. fellowship.
(**) Nella seduta del 13 gennaio 1973.
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for multivalued di‘fference, equations, which have been established in [1].
Other applications of multivalued difference equations can be found in [4].

2. Denote by: N, = {#,,% + 1,---}, where #, is any natural number or
zero; E” the 7#-dimensional real Euclldean space with norm |-|; B(7) the closed
ball with center the origin of E" and radius » > o ; | X|| = sup {|x| x€X},
where X is a nonempty and bounded subset of E”;K” the family of
all nonempty compact subsets of E”. In K” addmon and multiplication
by nonnegative scalars are defined by X+Y={x+y:xeX,yeY},
AX = {Ar:x€X}. We shall denote by ® the family of all uppersemicon-
tinuous functions F:E"— K" and by y the subfamily of ® consisting of
all homogeneous functions, i.e. of all F such that F(x) = AF (x), for all
x€E” and A >o.

DEFINITION 1. Let F: E"—+ K”. We say that I is locally Lipschitz at
x = o if there exist positive constants L. and § such that

IF @) <L|x| for all |x|<5.
If § = oo, F is called globally Lipschitz at x = o.

DEFINITION 2. Let Fe ® be locally (globally) Lipschitz at x = o.
A function ¢ € y is called a local (global) upper differential of F if there
exists a 8 > 0, (§ = oo0) such that

F(x)Co(x) for all |x| <3 (for all x€E").

Note that if F € @ is locally (globally) Lipschitz at x =0, ¢(x) = LB (|=])
is a local (global) upper differential of F. :

DEFINITION 3. Let Fe€ @ be locally Lipschitz at x = 0. We define
the multivalued differential Dy of F by

Dr(x) =0 {9 (x) ¢ is a local upper differential of F}, xe€E”

The multivalued differential Dy of a function F which is globally Lipschitz
at x = o, is defined by

Dr(x) =N{o() :¢isa global upper differential of F},  xe€E"

It is clear that the preceding definitions apply in partlcular to single
valued functions f: E" — E". For the function f: E? > E? given by
( (xl + xg)m sin (x -+ XQ>—]/2 —( + xz)l 2) (%1, x9) € E? one can easily

verify that

[_ - (x1 + x2)1/2 ("‘1 + x2)1/2]

D, (x;, %) = D} (xy, x,) =
7 (x1, x9) = Dy (27, %) 7(11+x2)1/?

, (2, %) € E2

2. — RENDICONTTI 1973, Vol. LIV, fasc. 1.
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Using the same argument as in Lemma 2.8 of [3], one can prove the
following

LEMMA 1. Let F € ® be locally (globally) Lipschitsz at x = o. Then
Dy €y (Dr€y). Furthermore, there exists a sequence { @} of local (global)
upper differentials such that

91 (%) C o, () Sor every x€E" and k=1,2
Dr (x) = n Pz <x> ’ (D-)Fe (x> = ﬂ Py <x>) , x € E”.
Note that if F e ® is globally Lipschitz at x = o, we have Dr(x)C
CD; (x),x€E".

DEFINITION 4. Assume that f:E"—E" is continuous and locally
Lipschitz at x =o. The function %:E”"—E" is called a homogeneous
differential of f at x = o, if % is homogeneous and continuous and

/@) —r@|=0(x]) as |z]>o.
The homogeneous differential is unique ([3]).

LEMMA 2. Assume that f: E"—E" is continuous and locally Lipschitz
at x = o. If f has homogeneous differential h, then D, is single valued and we
have Dy (x) = {h ()}, x € E"; conversely if D, is single valued, f has homo-
geneous differential h and Dy (x) = {h (x)} ,x € E*. _In particular f is Fré-
chet differentiable if and only if, for some matrix A ,D;(x) = {Ax},x € E".

The proof of Lemma 2 is given in [3].

3. Consider the multivalued difference equation

@ | Az ()€ F (x (t—1)).

DEFINITION 5. Let #,€ Ny, x,€ E". A function x:N, — E” is called
solution of (4) if x (#) = x, and x (¢) satisfies (4) for all £€ N, ;. '

Note that, for any #;, € N, and x, € E”, (4) has at least one solution x @,
with x (Z)) = x,.

To prove our main results we shall use the followmg Lemmas which
can be found in [1].

LEMMA 3. Swuppose z%at: ‘
() {F.} is an infinite sequence of functions z'n Y, such that Fuy (x) C
CF,(x), for all x € E”, éE N,, and define F (x) = m F, (®);
(i) all solutions x (¢) of (4) with x (0) € E”, approack Zero as t— oo,
Then there exist k€ Ny and L. > 1 such that every solution x (2) of
5 MA@ EF— ),
with x (0) € B, satisfies |z ()] < L|x (0], Jor all t€N,.
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LEMMA 4. Let Fey. Suppose that there exist e >0 and H > 1 such
that any solution x (£) of

Ax (#)€F (x (¢—1)) +eB (| ¢—1)|),

with x (0) € E", satisfies |x (#)] < H |x (0)|, teNy. Leto<o <e. Then,
for every solution x(¢) of :

Ax ()€ F (x (¢— 1)) + 6B (|Jx ¢ —1)]),
with % (0) €E", we have |x(#)] <H|x(0)| ¢~/ €Ny, 1<p <1+ (c—c)H™
LEMMA 5. Suppé&e that:
(i) every solution x (¢) of (4), where x.(0) € E* and F €y, approaches

zgero as t—> oo;

(i) G € ® is such that |G ()| = o (|x|) as |x|—>o.

Then there exist constants 8 >0, M >1 and o > 1 such that, for any
solution x(t) of ‘

Ax (#) € F (x (¢— 1)) +G(x(t— 1)),
if |x(0)] <3, we have |x ()] < M |x (0)] p~, £€N,.

4. This paragraph contains our main results.

THEOREM 1. Let F € @ be locally Lipschitz at x = o. If all solutions
x (8 of |
Ax (£) € Dy (x (¢ — 1)),

with x (0) € E*, satisfy x (£)—~o0 as {— oo, then there exist constants $> o,
M>1 and o> 1 such that all solutions x(z‘) of (4), with |x(0)] <3,
satisfy [x(z‘)‘ < M |z (0)] p—’ teN,.

Proof.  Let {9} be the sequence which corresponds to Dy according
to Lemma 1 and define

Fo(x) =, (x) +B(|x]), x€E" , keN,
Observe that for all 2€ N, ,F, ey, Fyyy () D F, (x) and ;: F, () = Dy (x).
, =1 :
From Lemma 3 there exist 2 € N; and L > 1 such that every solution » (&) of
Ax (@) €y (x¢— 1) + 5 B(lx—1)]),

with x (0) € E”, satisfies |x ()] < L|x (0)], z€N,. Applymg Lemma 4 to
this equatlon and choosing ¢ = 0, we can ﬁnd that. all solutions x (#) of

©) Ax@eqx(t—1),
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with x (0) € E”, approach zero exponentially as #— co.  From Definition 2
there exists a §;> o such that F(x) Cq,(x) if |x| <3,. Define G:E"—K” by:

{o}, if |x| <39,

G () = ) )
OZUBAF@I+Ia@h, i |x|=s,.
Clearly
@) Fx)Coo(x) +G () for all xe€E",
Moreover G € ® and ||G (x)|| = o (|x|) as x —o. So, from Lemma 5, there

exist constants § >0, M > 1 and p > 1 such that, for any solution x (#) of
Ax (@D equ(x(t—1) + G (—1)),

if |x(0)] <38, we have |x ()| <M |z (0)] p% € Ny. Because of (7) this
conclusion holds in particular for all solutions x (#) of (4) with |x (0)| < §.
This completes the proof.

THEOREM 2. Let F € @ be globally Lipschitz at x = o. If all solutions
x (2 of .
Ax (£) € Dy (x (¢t — 1)),

with x (0) € E", satisfy x (£)—>0 as t— oo, then there exist constants H > 1
and o> 1 such that solutions x(¢) of (4), with x (0) € E”, satisfy |x (¢)| <
<H|x ()] =" t€N,.

Proof. Denote by {¢,} the sequence wich corresponds to Dy according
to Lemma 1. By the same argument of Theorem 1 we find that all solutions
x (2) of (6), with x (0) € E”, satisfy |x (#)] < H |x (0)| p=¢, 2 € N, where H > 1
and p > 1 are the constants in Lemma 4. The last inequality is in particu-
lar true for all solutions x (¢) of (4), with x (0) € E*, since ¢, (x) D F (x) for
all x € E*.

When F is single valued from the preceding Theorems we have:

COROLLARY' 1.  Let f: E"—E" be continuous and locally Lipschitz at
x = 0. If all solutions x () of (3), with x (0) € E”, satisfy x (¢)— 0 as t — oo,
then there exist constants S > 0, M>=1 and o> 1 such that all solutions x (¢)
of (2), with ]x(o)] <3, sm‘zsfy x| <M |z (0)] o7 #€Ny.

COROLLARY 2. Let f:E"— E" be continuous and globally Lipschitz at
x=0." If all so/m‘zons x(2) of Ax () € D} (x (1 — 1)), with x (o) € E”, satisfy
x (£) > 0 as £ ->.00, then there exist constants H > 1 and o> 1 such that all
solutions x @) of (2), with x (0) € E", satisfy |x ()| <H |x (0)] e € Ny.

From Lemma 2 and Corollary 1 we have:

THEOREM 3. Let f: E"— E" be continuous and locally Lipschitz at x = o0
and assume that f has ﬁomogeneous dzﬁerentzal h at x = o.
If all solutions x @) of

® Ax (&) =4 (x (2—1)),
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with x (0) € E*, satisfy x (£) —o0 as t—> oo, then there exist comstants 8> o,
M=>1 and o> 1 such that all solutions x () of (2), with |x (0)| < 8, satisfy
|x ()] <M |x(0)] o=/, £€Ny.

COROLLARY 3. Let f:E"—E" be continuous and locally Lipschitz at
x =0 and assume that f has Fréchet differential A at x = o. Then, if all
solutions x (¢) of (1), with x (0) € E", satisfy x (£)— 0 as t — oo, the conclusion
of Theorem 3 holds. k
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