ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

FRANCESCO S. DE BLASI, JOHN SCHINAS

Exponential stability of difference equations which cannot be linearized

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **54** (1973), n.1, p. 16–21. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1973_8_54_1_16_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Analisi matematica.** — Exponential stability of difference equations which cannot be linearized. Nota di FRANCESCO S. DE BLASI^(*) e JOHN SCHINAS^(*), presentata^(**) dal Socio G. SANSONE.

RIASSUNTO. — Si considera l'equazione $\Delta x(t) = f(x(t-1))$ e si dimostra che, se f ha differenziale multivoco D_f in x = 0 e tutte le soluzioni di $\Delta x(t) \in D_f(x(t-1))$ tendono all'origine, allora quest'ultima è localmente esponenzialmente stabile per l'equazione data.

I. It is well known (see [2] Ch. V, § 43) that if $f: E^n \to E^n$ is continuously differentiable, with Fréchet differential A at x = 0, and if all solutions of the linear difference equation

(I)
$$\Delta x(t) = Ax(t-I)$$
, $\Delta x(t) = x(t) - x(t-I)$,

approach zero as $t \to \infty$, the origin is locally exponentially stable for

(2)
$$\Delta x (t) = f (x (t - \mathbf{I})).$$

The aim of this paper is to extend the previous result to the case in which f is not necessarily Fréchet differentiable at the origin. For differential equations such problem has been treated in a recent work by Lasota and Strauss ([3]), who have introduced for this purpose the concept of multivalued differential. The definition of the multivalued differential D_f of f, that we shall use, is essentially the same with the difference that $D_f(x), x \in \mathbb{E}^n$, will be required to be a nonempty compact subset of \mathbb{E}^n without the additional hypothesis of convexity, which occurs in [3]. If f has Fréchet differential A at the origin, we have $D_f(x) = \{Ax\}, x \in \mathbb{E}^n$. We shall prove the following generalization of the aforementioned result:

If f has multivalued differential D_f at x = 0 (see next paragraph) and if all solutions of the multivalued difference equation

$$\Delta x(t) \in \mathbf{D}_f(x(t-1))$$

approach zero as $t \to \infty$, then the origin is locally exponentially stable for equation (2).

The proof of this result can be described as the discrete analogue of a corresponding one, devised by Lasota and Strauss in the case of ordinary differential equations. It actually depends on certain perturbation theorems

^(*) This paper was written while both Authors were at the University of Warwick, Coventry, England, with the financial assistance of a N.A.T.O. fellowship.

^(**) Nella seduta del 13 gennaio 1973.

for multivalued difference equations, which have been established in [1]. Other applications of multivalued difference equations can be found in [4].

2. Denote by: $N_{t_0} = \{t_0, t_0 + 1, \dots\}$, where t_0 is any natural number or zero; E^n the *n*-dimensional real Euclidean space with norm $|\cdot|$; B(r) the closed ball with center the origin of E^n and radius $r \ge 0$; $||X|| = \sup \{|x| : x \in X\}$, where X is a nonempty and bounded subset of E^n ; K^n the family of all nonempty compact subsets of E^n . In K^n addition and multiplication by nonnegative scalars are defined by $X + Y = \{x + y : x \in X, y \in Y\}$, $\lambda X = \{\lambda x : x \in X\}$. We shall denote by Φ the family of all uppersemicontinuous functions $F: E^n \to K^n$ and by χ the subfamily of Φ consisting of all homogeneous functions, i.e. of all F such that $F(\lambda x) = \lambda F(x)$, for all $x \in E^n$ and $\lambda \ge 0$.

DEFINITION 1. Let $F: E^n \to K^n$. We say that F is locally Lipschitz at x = o if there exist positive constants L and δ such that

$$\|\mathbf{F}(x)\| \leq \mathbf{L} \|x\|$$
 for all $\|x\| \leq \delta$.

If $\delta = \infty$, F is called globally Lipschitz at x = 0.

DEFINITION 2. Let $F \in \Phi$ be locally (globally) Lipschitz at x = 0. A function $\varphi \in \chi$ is called a local (global) upper differential of F if there exists a $\delta > 0$, $(\delta = \infty)$ such that

$$F(x) \subset \varphi(x)$$
 for all $|x| \leq \delta$ (for all $x \in E^n$).

Note that if $F \in \Phi$ is locally (globally) Lipschitz at x = o, $\varphi(x) = LB(|x|)$ is a local (global) upper differential of F.

DEFINITION 3. Let $F \in \Phi$ be locally Lipschitz at x = 0. We define the multivalued differential D_F of F by

 $D_{F}(x) = \cap \{\varphi(x) : \varphi \text{ is a local upper differential of } F\}, x \in E^{n}.$

The multivalued differential D_F^* of a function F which is globally Lipschitz at x = 0, is defined by

 $D_{\mathbf{F}}^{*}(x) = \cap \{\varphi(x) : \varphi \text{ is a global upper differential of } F\}, \quad x \in E^{n}.$

It is clear that the preceding definitions apply in particular to single valued functions $f: \mathbb{E}^n \to \mathbb{E}^n$. For the function $f: \mathbb{E}^2 \to \mathbb{E}^2$ given by $\left(\frac{1}{2}(x_1^2 + x_2^2)^{1/2} \sin(x_1^2 + x_2^2)^{-1/2}, \frac{1}{2}(x_1^2 + x_2^2)^{1/2}\right), (x_1, x_2) \in \mathbb{E}^2$, one can easily verify that

$$D_{f}(x_{1}, x_{2}) = D_{f}^{*}(x_{1}, x_{2}) = \begin{pmatrix} \left[-\frac{I}{2} (x_{1}^{2} + x_{2}^{2})^{1/2}, \frac{I}{2} (x_{1}^{2} + x_{2}^{2})^{1/2} \right] \\ \frac{I}{2} (x_{1}^{2} + x_{2}^{2})^{1/2} \end{pmatrix}, \quad (x_{1}, x_{2}) \in E^{2}.$$

2. - RENDICONTI 1973, Vol. LIV, fasc. 1.

Using the same argument as in Lemma 2.8 of [3], one can prove the following

LEMMA I. Let $F \in \Phi$ be locally (globally) Lipschitz at x = 0. Then $D_F \in \chi(D_F^* \in \chi)$. Furthermore, there exists a sequence $\{\varphi_k\}$ of local (global) upper differentials such that

$$\varphi_{k+1}(x) \subset \varphi_k(x) \quad for \ every \quad x \in \mathbb{E}^n \quad and \quad k = 1, 2,$$
$$D_F(x) = \bigcap_{k=1}^{\infty} \varphi_k(x) \quad , \quad \left(D_F^*(x) = \bigcap_{k=1}^{\infty} \varphi_k(x) \right), \quad x \in \mathbb{E}^n.$$

Note that if $F \in \Phi$ is globally Lipschitz at x = 0, we have $D_F(x) \subset D_F^*(x)$, $x \in E^*$.

DEFINITION 4. Assume that $f: \mathbb{E}^n \to \mathbb{E}^n$ is continuous and locally Lipschitz at x = 0. The function $h: \mathbb{E}^n \to \mathbb{E}^n$ is called a homogeneous differential of f at x = 0, if h is homogeneous and continuous and

|f(x) - h(x)| = o(|x|) as $|x| \rightarrow o$.

The homogeneous differential is unique ([3]).

LEMMA 2. Assume that $f: \mathbb{E}^n \to \mathbb{E}^n$ is continuous and locally Lipschitz at x = 0. If f has homogeneous differential h, then D_f is single valued and we have $D_f(x) = \{h(x)\}, x \in \mathbb{E}^n$; conversely if D_f is single valued, f has homogeneous differential h and $D_f(x) = \{h(x)\}, x \in \mathbb{E}^n$. In particular f is Fréchet differentiable if and only if, for some matrix $A, D_f(x) = \{Ax\}, x \in \mathbb{E}^n$.

The proof of Lemma 2 is given in [3].

3. Consider the multivalued difference equation

(4)

$$\Delta x(t) \in F(x(t-1)).$$

DEFINITION 5. Let $t_0 \in \mathbb{N}_0$, $x_0 \in \mathbb{E}^n$. A function $x : \mathbb{N}_{t_0} \to \mathbb{E}^n$ is called solution of (4) if $x(t_0) = x_0$ and x(t) satisfies (4) for all $t \in \mathbb{N}_{t_0+1}$.

Note that, for any $t_0 \in \mathbb{N}_0$ and $x_0 \in \mathbb{E}^n$, (4) has at least one solution x(t), with $x(t_0) = x_0$.

To prove our main results we shall use the following Lemmas which can be found in [1].

LEMMA 3. Suppose that:

(i) {F_k} is an infinite sequence of functions in χ such that F_{k+1}(x) ⊂ ⊂ F_k(x), for all x ∈ Eⁿ, k ∈ N₁, and define F(x) = ∩ F_k(x);
(ii) all solutions x(t) of (4), with x(0) ∈ Eⁿ, approach zero as t→∞.

(ii) all solutions x(t) of (4), with $x(0) \in E^n$, approach zero as $t \to \infty$. Then there exist $k \in N_1$ and $L \ge I$ such that every solution x(t) of

(5_k) $\Delta x(t) \in \mathbf{F}_{k}(x(t-1)),$

with $x(0) \in E^n$, satisfies $|x(t)| \le L |x(0)|$, for all $t \in N_0$.

. .

LEMMA 4. Let $F \in \chi$. Suppose that there exist $\varepsilon > 0$ and $H \ge I$ such that any solution x(t) of

$$\Delta x(t) \in \mathbf{F}(x(t-\mathbf{I})) + \varepsilon \mathbf{B}(|x(t-\mathbf{I})|),$$

with $x(o) \in E^n$, satisfies $|x(t)| \le H |x(o)|$, $t \in N_0$. Let $o \le \sigma < \varepsilon$. Then, for every solution x(t) of

$$\Delta x(t) \in \mathbf{F}(x(t-\mathbf{i})) + \sigma \mathbf{B}(|x(t-\mathbf{i})|),$$

with $x(0) \in \mathbb{E}^n$, we have $|x(t)| \leq H |x(0)| \rho^{-t}$, $t \in \mathbb{N}_0$, $1 < \rho \leq 1 + (\varepsilon - \sigma) H^{-1}$.

LEMMA 5. Suppose that:

(i) every solution x(t) of (4), where $x(0) \in E^n$ and $F \in \chi$, approaches zero as $t \to \infty$;

(ii) $G \in \Phi$ is such that ||G(x)|| = o(|x|) as $|x| \to o$.

Then there exist constants $\delta>0\,,\ M\ge I$ and $\rho>I$ such that, for any solution $x\left(t\right)$ of

$$\Delta x(t) \in \mathbf{F} (x(t-\mathbf{I})) + \mathbf{G} (x(t-\mathbf{I})),$$

if $|x(0)| < \delta$, we have $|x(t)| \leq M |x(0)| \rho^{-t}$, $t \in N_0$.

4. This paragraph contains our main results.

THEOREM 1. Let $F \in \Phi$ be locally Lipschitz at x = 0. If all solutions x(t) of

$$\Delta x(t) \in \mathbf{D}_{\mathbf{F}}(x(t-1)),$$

with $x(o) \in E^n$, satisfy $x(t) \to o$ as $t \to \infty$, then there exist constants $\delta > o$, $M \ge I$ and $\rho > I$ such that all solutions x(t) of (4), with $|x(o)| < \delta$, satisfy $|x(t)| \le M |x(o)| \rho^{-t}$, $t \in N_0$.

Proof. Let $\{\phi_{k}\}$ be the sequence which corresponds to D_{F} according to Lemma 1 and define

$$\mathbf{F}_{k}(x) = \varphi_{k}(x) + \frac{1}{k} \mathbf{B}(|x|), \qquad x \in \mathbf{E}^{n} , \quad k \in \mathbf{N}_{1}.$$

Observe that for all $k \in N_1$, $F_k \in \chi$, $F_{k+1}(x) \supset F_k(x)$ and $\bigcap_{k=1}^{\infty} F_k(x) = D_F(x)$. From Lemma 3 there exist $k \in N_1$ and $L \ge I$ such that every solution x(t) of

$$\Delta x(t) \in \varphi_{k}(x(t-1)) + \frac{1}{k} B(|x(t-1)|),$$

with $x(o) \in E^n$, satisfies $|x(t)| \le L |x(o)|$, $t \in N_0$. Applying Lemma 4 to this equation and choosing $\sigma = o$, we can find that all solutions x(t) of

(6)
$$\Delta x (t) \in \varphi_k (x (t-1)),$$

19

with $x(o) \in E^n$, approach zero exponentially as $t \to \infty$. From Definition 2 there exists a $\delta_k > 0$ such that $F(x) \subset \varphi_k(x)$ if $|x| \leq \delta_k$. Define $G: E^n \to K^n$ by:

$$\mathbf{G}(x) = \begin{cases} \{\mathbf{o}\}, & \text{if } |x| < \delta_k \\ \mathbf{B}(\|\mathbf{F}(x)\| + \|\varphi_k(x)\|), & \text{if } |x| \ge \delta_k. \end{cases}$$

Clearly

(7)

 $F(x) \subset \varphi_k(x) + G(x)$ for all $x \in E^n$.

Moreover $G \in \Phi$ and ||G(x)|| = o(|x|) as $x \to o$. So, from Lemma 5, there exist constants $\delta > o$, $M \ge I$ and $\rho > I$ such that, for any solution x(t) of

$$\Delta x(t) \in \varphi_k(x(t-1)) + G(x(t-1)),$$

if $|x(0)| < \delta$, we have $|x(t)| \le M |x(0)| \rho^{-t}$, $t \in N_0$. Because of (7) this conclusion holds in particular for all solutions x(t) of (4) with $|x(0)| < \delta$. This completes the proof.

THEOREM 2. Let $F \in \Phi$ be globally Lipschitz at x = 0. If all solutions x(t) of

$$\Delta \mathbf{x}(t) \in \mathbf{D}_{\mathbf{F}}^{\star}(\mathbf{x}(t-\mathbf{I})),$$

with $x(0) \in \mathbb{E}^n$, satisfy $x(t) \to 0$ as $t \to \infty$, then there exist constants $H \ge I$ and $\rho > I$ such that solutions x(t) of (4), with $x(0) \in \mathbb{E}^n$, satisfy $|x(t)| \le \le H |x(0)| \rho^{-t}$, $t \in \mathbb{N}_0$.

Proof. Denote by $\{\varphi_k\}$ the sequence wich corresponds to D_F^* according to Lemma 1. By the same argument of Theorem 1 we find that all solutions x(t) of (6), with $x(0) \in E^n$, satisfy $|x(t)| \leq H |x(0)| \rho^{-t}$, $t \in N_0$, where $H \geq 1$ and $\rho > 1$ are the constants in Lemma 4. The last inequality is in particular true for all solutions x(t) of (4), with $x(0) \in E^n$, since $\varphi_k(x) \supset F(x)$ for all $x \in E^n$.

When F is single valued from the preceding Theorems we have:

COROLLARY I. Let $f: E^n \to E^n$ be continuous and locally Lipschitz at x = 0. If all solutions x(t) of (3), with $x(0) \in E^n$, satisfy $x(t) \to 0$ as $t \to \infty$, then there exist constants $\delta > 0$, $M \ge I$ and $\rho > I$ such that all solutions x(t) of (2), with $|x(0)| < \delta$, satisfy $|x(t)| \le M |x(0)| \rho^{-t}$, $t \in N_0$.

COROLLARY 2. Let $f: E^n \to E^n$ be continuous and globally Lipschitz at x = 0. If all solutions x(t) of $\Delta x(t) \in D_f^*(x(t-1))$, with $x(0) \in E^n$, satisfy $x(t) \to 0$ as $t \to \infty$, then there exist constants $H \ge I$ and $\rho > I$ such that all solutions x(t) of (2), with $x(0) \in E^n$, satisfy $|x(t)| \le H |x(0)| \rho^{-t}$, $t \in N_0$.

From Lemma 2 and Corollary 1 we have:

THEOREM 3. Let $f: E^n \to E^n$ be continuous and locally Lipschitz at x = 0and assume that f has homogeneous differential h at x = 0.

If all solutions x(t) of

(8)

$$\Delta x(t) = h(x(t-1)),$$

with $x(0) \in E^n$, satisfy $x(t) \to 0$ as $t \to \infty$, then there exist constants $\delta > 0$, $M \ge I$ and $\rho > I$ such that all solutions x(t) of (2), with $|x(0)| < \delta$, satisfy $|x(t)| \le M |x(0)| \rho^{-t}$, $t \in N_0$.

COROLLARY 3. Let $f: E^n \to E^n$ be continuous and locally Lipschitz at x = 0 and assume that f has Fréchet differential A at x = 0. Then, if all solutions x(t) of (1), with $x(0) \in E^n$, satisfy $x(t) \to 0$ as $t \to \infty$, the conclusion of Theorem 3 holds.

References

- [I] F. S. DE BLASI and J. SCHINAS, Stability of multivalued discrete dynamical systems «J. Differential Equations» (to appear).
- [2] W. HAHN, Stability of motion, Springer-Verlag, Berlin (1967).
- [3] A. LASOTA and A. STRAUSS, Asymptotic behaviour for differential equations which cannot be locally linearized, «J. Differential Equations», 10, 152–172 (1971).
- [4] G. P. SZEGÖ and G. TRECCANI, An abstract formulation of minimization algorithms, in «Differential games and related topics», Eds. H. W. Kuhn and G. P. Szegö, North-Holland, Amsterdam (1971).