ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Udai Pratad Singh

On the induced theory of Finsler hypersurfaces from the standpoint of non-linear connections

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.6, p. 541–548. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_6_541_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — On the induced theory of Finsler hypersurfaces from the standpoint of non-linear connections. Nota di Udai Pratad Singh, presentata (*) dal Socio E. Bompiani.

RIASSUNTO. — Le connessioni non lineari negli spazi di Finsler sono state studiate da Vagner, Barthel e Kawaguchi (v. bibliografia). Nella presente Nota si studiano le connessioni indotte in una ipersuperficie di Finsler. In particolare si danno le condizioni necessarie e sufficienti affinchè una connessione metrica (secondo Rund) nell'ambiente induca una connessione pure metrica nell'ipersuperficie. Si studiano anche relazioni fra le geodetiche di una ipersuperficie e quelle dell'ambiente d'immersione.

I. Introduction

We outline below some fundamental formulae which will be used in the subsequent sections of this paper.

Let X^i be a vectorfield, $g_{ij}(x, X)$ be the components of the metric tensor of a Finsler space F_n and $Y_i = g_{ij}(x, X) X^j$. Suppose we are given functions $\overset{1}{\Gamma_k}(x, X)$ and $\overset{2}{\Gamma_{ik}}(x, Y)$ such that the absolute differentials

(1.1)
$$\delta \mathbf{X}^{i} = d\mathbf{X}^{i} + \Gamma_{k}^{i}(x, \mathbf{X}) dx^{k}$$

and

(1.2)
$$\overset{2}{\delta Y_{i}} = dY_{i} - \overset{2}{\Gamma_{ik}}(x, Y) dx^{k}$$

are respectively the components of contravariant and covariant vectors. The functions $\overset{1}{\Gamma}_{i}^{k}(x,X)$, $\overset{2}{\Gamma}_{ik}(x,Y)$ are supposed to be positively homogeneous of first degree in X and Y respectively. These are used in defining the connection parameters

(1.3)
$$\Gamma_{jk}^{i}(x, X) = \frac{\partial \Gamma_{k}^{i}}{\partial Y^{j}} , \quad \Gamma_{jk}^{i}(x, Y) = \frac{\partial \Gamma_{jk}(x, Y)}{\partial Y}.$$

We mention the following two conditions:

(A) If X^i undergoes parallel displacement (i.e. ${}^1_0 X^i = 0$) then so does Y_i (i.e. ${}^2_0 Y_i = 0$). This condition is characterised by (Rund [4], page 238)

(1.4)
$$\Gamma_{ik}^{2}(x,Y) = \frac{\partial g_{ij}(x,X)}{\partial x^{k}} X^{j} - g_{ij} \Gamma_{k}^{j}(x,X).$$

(*) Nella seduta del 9 dicembre 1972.

(B) The connection defined by $\Gamma_k^i(x,X)$ is metric, i.e. the length of the vectorfield X^i remains unchanged under parallel displacement. In other words

$$\overset{1}{\delta}(g_{ij}(x, X) X^{i} X^{j}) = 0 \quad \text{for } \overset{1}{\delta} X^{i} = 0$$

which yields

(1.5)
$${}^{1} \delta g_{ij}(x, X) X^{i} X^{j} = 0.$$

This condition is characterised by ([4] page 239)

$$(1.6) Y_i \prod_{k=1}^{1} (x, X) = \frac{1}{2} \frac{\partial g_{ij}}{\partial x^k} X^i X^j.$$

2. INDUCED CONNECTION PARAMETERS

Let $F_{n-1}: x^i = x^i(u^{\alpha}); i = 1, \dots, n; \alpha = 1, \dots, n-1$ be a hypersurface of F_n . The components X^i, X^{α} of a vectorfield of the hypersurface are related by

(2.1)
$$X^i = B^i_{\alpha} X^{\alpha}$$
 where $B^i_{\alpha} = \frac{\partial x^i}{\partial u^{\alpha}}$.

The induced differential ${}^{1}_{\delta}X^{\alpha}$ is defined by

where $B_i^{\alpha} = g^{\alpha\beta}(u, X) g_{ij}(x, X) B_{\beta}^{j}$, $g_{\alpha\beta}(u, X)$ being the metric tensor of F_{n-1} . The equation (2.1) yields

(2.3)
$$dX^{i} = B^{i}_{\beta} dX^{\beta} + B^{i}_{\beta \gamma} X^{\beta} du^{\gamma} \qquad \left(B^{i}_{\beta \gamma} = \frac{\frac{2}{\partial x^{i}}}{\partial u^{\beta} \partial u^{\gamma}}\right).$$

Defining

(2.4)
$${}^{1}\delta X^{\alpha} = dX^{\alpha} + {}^{1}\Gamma^{\alpha}_{\gamma}(u, X) du^{\gamma}$$

and using (1.1), (2.2) and (2.3) we find

(2.5)
$$\overset{1}{\Gamma_{\gamma}^{\alpha}} = B_{i}^{\alpha} \left(B_{\beta\gamma}^{i} X^{\beta} + \overset{1}{\Gamma_{k}^{i}} B_{\gamma}^{k} \right),$$

where we have used the relations $B_i^{\alpha} B_{\beta}^i = \delta_{\beta}^{\alpha}$, $dx^k = B_{\gamma}^k du^{\gamma}$. After putting

(2.6)
$$Y_i = g_{ij}(x, X) X^j , Y_\alpha = g_{\alpha\beta}(u, X) X^\beta$$

and using (2.1) we obtain

$$(2.7) Y_i = B_i^{\alpha} Y_{\alpha}.$$

We now define another induced differential

$$\delta Y_{\alpha} = B_{\alpha}^{i} \delta Y_{i}.$$

The differentiation of (2.6) gives

(2.9)
$$dY_i = \frac{\partial g_{ij}(x, X)}{\partial x^k} X^j dx^k + g_{ij}(x, X) (B^j_{\beta\gamma} X^\beta du^\gamma + B^j_\beta dX^\beta)$$

and

(2.10)
$$dY_{\alpha} = \frac{\partial g_{\alpha\beta}(u, X)}{\partial u^{\gamma}} X^{\beta} du^{\gamma} + g_{\alpha\beta}(u, X) dX^{\beta}.$$

Defining

$${}^{2}_{\delta}Y_{\alpha} = dY_{\alpha} - {}^{2}_{\Gamma_{\alpha\gamma}} du^{\gamma}$$

and simplifying with the help of (1.2), (2.9), (2.10) and the relation obtained after differentiation (with respect to u^{γ}) of

$$g_{\alpha\beta}(u, X) = g_{ij}(x, X) B_{\alpha}^{i} B_{\beta}^{j}$$

we get

$$(2.11) \qquad \qquad \overset{^{2}}{\Gamma}_{\beta\gamma}\left(u,Y\right) = \left(Y,B_{\beta\gamma}^{j} + \overset{^{2}}{\Gamma}_{hk}\left(x,Y\right)B_{\beta}^{h}B_{\gamma}^{k}\right).$$

It is assumed that the function $\overset{1}{\Gamma}^{\alpha}_{\gamma}(u\,,\,X)$ and $\overset{2}{\Gamma}_{\beta\gamma}(u\,,\,Y)$ are differentiable. We now define

(2.12)
$$\Gamma^{\alpha}_{\beta\gamma} = \frac{\partial^{1}\Gamma^{\alpha}_{\gamma}}{\partial X^{\beta}} , \quad \Gamma^{\alpha}_{\beta\gamma} = \frac{\partial^{2}\Gamma_{\beta\gamma}}{\partial Y_{\alpha}} .$$

A direct differentiation of the relation

$$\mathbf{B}_{i}^{\alpha} = g^{\alpha\delta} (u, \mathbf{X}) g_{ij} (x, \mathbf{X}) \mathbf{B}_{\delta}^{j}$$

with respect to X^{β} will yield (after some simplification)

(2.13)
$$\frac{\partial B_i^{\alpha}}{\partial X^{\beta}} = 2 N_i M_{\beta}^{\alpha},$$

where we have used the fact

$$(2.14) B_i^{\alpha} B_{\alpha}^j = (\delta_i^j - N^j N_i),$$

 N_i being the covariant components of the unit normal vector,

$$2C_{ijk}\left(x,X\right)=rac{\partial g_{ij}\left(x,X
ight)}{\partial X^{k}}$$
 ,

$$\mathbf{M}_{\alpha\beta}\left(u\;,\;\mathbf{X}\right)=\mathbf{C}_{ijk}\left(x\;,\;\mathbf{X}\right)\;\mathbf{B}_{\alpha}^{i}\;\mathbf{B}_{\beta}^{j}\;\mathbf{N}^{k}\quad\text{ and }\;\mathbf{M}_{\beta}^{\alpha}\left(u\;,\;\mathbf{X}\right)=g^{\alpha\gamma}\;\mathbf{M}_{\beta\gamma}\left(u\;,\;\mathbf{X}\right).$$

Differentiating (2.5) with respect to X^{β} , using the relations (1.3), (2.12), (2.13) and the fact $M^{\alpha}_{\beta}(u,X) X^{\beta} = 0$, we find

$$(2.15) \qquad \overset{1}{\Gamma}^{\alpha}_{\beta\gamma}(u,\mathbf{X}) = 2\,\mathbf{N}_{i}\,\overset{1}{\Gamma}^{i}_{k}(x,\mathbf{X})\,\,\mathbf{B}^{k}_{\gamma}\,\mathbf{M}^{\alpha}_{\beta} + \mathbf{B}^{\alpha}_{i}\,(\mathbf{B}^{i}_{\beta\gamma} + \overset{1}{\Gamma}^{i}_{hk}\,\,\mathbf{B}^{h}_{\beta}\,\,\mathbf{B}^{k}_{\gamma}) + \\ + 2\,\mathbf{N}_{i}\,\mathbf{M}^{\alpha}_{\beta}\,\,\mathbf{B}^{i}_{\delta\gamma}\,\,\mathbf{X}^{\delta}\,.$$

In order to evaluate $\Gamma^{\alpha}_{\beta\gamma}(u,X)$, we notice that a direct differentiation of $Y_i = B_i^{\alpha} Y_{\alpha}$ will give

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{Y}_{\mathbf{B}}} = \mathbf{B}_{i}^{\beta},$$

where we have used (2.13) and the relations $\frac{\partial X^{\gamma}}{\partial Y_{\beta}} = g^{\gamma\beta}$, $M_{\gamma}^{\alpha}(u, X) Y_{\alpha} = 0$ in the simplification. Differentiating (2.11) with respect to Y_{α} and using (1.3), (2.12), (2.16) we obtain

(2.17)
$$\Gamma^{\alpha}_{\beta\gamma}(u,Y) = B^{\alpha}_{i}(B^{i}_{\beta\gamma} + \Gamma^{i}_{hk}(x,Y) B^{h}_{\beta} B^{k}_{\gamma}).$$

The connection parameters $\overset{1}{\Gamma}^{\alpha}_{\beta\gamma}\left(u\,,\,X\right)$, $\overset{2}{\Gamma}^{\alpha}_{\beta\gamma}\left(u\,,\,Y\right)$ are non-symmetric in β , γ and positively homogeneous of zero degree in X, Y respectively. These will be called induced "non-linear connection parameters" of the hypersurface.

3. Properties of induced non-linear connections

Consider the following conditions in F_n and F_{n-1} respectively.

(A₁). If X^i undergoes parallel displacement in F_n then so does Y_i . (A₂). If X^{α} undergoes parallel displacement in F_{n-1} then so does Y_{α} .

The condition (A_1) is characterised by (1.4) and the condition (A_2) is characterised by the corresponding relation

$$(3.1) \qquad \qquad \overset{2}{\Gamma}_{\alpha\gamma}\left(u\,\,,\,X\right) = -\frac{\partial g_{\alpha\beta}\left(u\,\,,\,X\right)}{\partial u^{\gamma}}\,\,X^{\beta} - g_{\alpha\beta}\left(u\,\,,\,X\right)\,\overset{1}{\Gamma}^{\beta}_{\gamma}\left(u\,\,,\,X\right)$$

in the space F_{n-1} . We shall prove the following:

Theorem 3.1. A necessary and sufficient condition that (A_2) holds in the hypersurface is that (A_1) holds in the enveloping space.

Proof. The differentiation of

$$g_{\alpha\beta}(x, X) = g_{ii}(x, X) B_{\alpha}^{i} B_{\beta}^{j}$$

gives

(3.2)
$$Y_i B_{\alpha \gamma}^i + g_{ij} B_{\delta \gamma}^i B_{\alpha}^j X^{\delta} - \frac{\partial g_{\alpha \beta}}{\partial u^{\gamma}} X^{\beta} = \frac{\partial g_{ij}}{\partial x^k} B_{\alpha}^i B_{\gamma}^k X^j.$$

A simple calculation based on the equations (2.5), (2.11) and (3.2) will yield

$$(3.3) \qquad \overset{2}{\Gamma}_{\alpha\gamma} - \frac{\partial g_{\alpha\beta}}{\partial u^{\gamma}} X^{\beta} + g_{\alpha\beta} \overset{1}{\Gamma}^{\beta}_{\gamma} = \left(\overset{2}{\Gamma}_{ik} - \frac{\partial g_{ij}}{\partial x^{k}} X^{j} + g_{ij} \overset{1}{\Gamma}^{j}_{k}\right) B^{i}_{\alpha} B^{k}_{\gamma},$$

where we have used the fact $g_{\alpha\beta} B_i^{\beta} = g_{ij} B_{\alpha}^{j}$. Since the above relation is true for every α and γ , therefore condition (3.1) implies and is implied by condition (1.4). This proves the theorem.

Let us now consider the conditions:

(B₁). $\Gamma_j^i(x, X)$ is a metric connection in Γ_n .

(B₂).
$$\Gamma_{\beta}^{\alpha}(x, X)$$
 is a metric connection in F_{n-1} .

The condition (B_1) is characterised by (1.6) while the condition (B_2) is characterised by

$$(3.4) Y_{\alpha} \prod_{\gamma}^{\alpha} (u, X) = \frac{1}{2} \frac{\partial g_{\alpha\beta}(u, X)}{\partial u^{\gamma}} X^{\alpha} X^{\beta}.$$

We shall prove the following:

THEOREM 3.2. A necessary and sufficient condition that (B_2) holds in F_{n-1} is that (B_1) holds in F_n .

Proof. Substituting from the equation (2.5) and (3.2) and using (2.7) in the simplification we find

$$(3.5) \qquad \left(\mathbf{Y}_{\alpha} \stackrel{1}{\Gamma_{\gamma}^{\alpha}} - \frac{1}{2} \stackrel{\partial g_{\alpha\beta}}{\partial u^{\gamma}} \mathbf{X}^{\alpha} \mathbf{X}^{\beta} \right) = \left(\mathbf{Y}_{i} \stackrel{1}{\Gamma_{k}^{i}} - \frac{1}{2} \stackrel{\partial g_{ij}}{\partial x^{k}} \mathbf{X}^{i} \mathbf{X}^{j} \right) \mathbf{B}_{\gamma}^{k}.$$

The theorem follows from (1.6), (3.4) and the fact that (3.5) is true for every γ .

4. Geodesics in the hypersurface

The geodesics of F_n and F_{n-1} are given by (Rund [4], page 240)

(4.1)
$$\frac{\frac{1}{\delta X^i}}{\delta c} + g^{ih} Y_j (\stackrel{1}{\Gamma}_{hk}^j X^k - \stackrel{1}{\Gamma}_h^j) = 0$$

and

(4.2)
$$\frac{\frac{1}{\delta X^{\alpha}}}{\delta s} + g^{\alpha \gamma} Y_{\beta} (\Gamma^{\beta}_{\gamma \delta} X^{\delta} - \Gamma^{\beta}_{\gamma}) = o.$$

Equations (2.2) and (2.14) will yield

(4.3)
$$\frac{\frac{1}{\delta X}^{i}}{\delta s} = B_{\alpha}^{i} \frac{\frac{1}{\delta X}^{\alpha}}{\delta s} + N^{i} N_{j} \frac{\frac{1}{\delta X}^{j}}{\delta s}.$$

A calculation based on equations (2.15), (2.5), (1.6) and relations (Rund [4] page 236)

$$\overset{1}{\Gamma}^i_{kk}\, X^k = \overset{1}{\Gamma}^i_k$$
 , $M^{\beta}_{\gamma}\, Y_{\beta} = o$ and $g^{\alpha\gamma}\, B^i_{\alpha}\, B^k_{\gamma} = g^{ik} - N^i\, N^k$

gives

$$(4.4) g^{\alpha \gamma} Y_{\beta} (\overset{1}{\Gamma}^{\beta}_{\gamma \delta} X^{\delta} - \overset{1}{\Gamma}^{\beta}_{\gamma}) B^{i}_{\alpha} =$$

$$= g^{ih} Y_{i} (\overset{1}{\Gamma}^{j}_{hk} X^{k} - \overset{1}{\Gamma}^{j}_{h}) - N^{i} N^{h} Y_{i} (\overset{1}{\Gamma}^{j}_{hk} X^{k} - \overset{1}{\Gamma}^{j}_{h}).$$

Further after putting $X^i=\frac{\mathrm{d} x^i}{\mathrm{d} s}$, $X^\alpha=\frac{\mathrm{d} u^\alpha}{\mathrm{d} s}$ and substituting

$$\frac{\mathrm{d} X^j}{\mathrm{d} s} = B^j_{\beta\gamma} \, X^\beta \, X^\gamma + B^j_\beta \, \frac{\mathrm{d} X^\beta}{\mathrm{d} s} \quad , \quad \stackrel{1}{\Gamma}^j_{k} \, \frac{\mathrm{d} x^k}{\mathrm{d} s} = \stackrel{1}{\Gamma}^j_{kk} \, B^k_\beta \, B^k_\gamma \, X^\beta \, X^\gamma$$

in

(4.5)
$$N_{j} \frac{\partial^{3} X^{j}}{\partial s} = N_{j} \left(\frac{dX^{j}}{ds} + \Gamma_{k}^{j} \frac{dx^{k}}{ds} \right)$$

we find

(4.6)
$$N_{j} \frac{\delta X^{j}}{\delta s} = \overline{\Omega}_{\beta \gamma} (u, X) X^{\beta} X^{\gamma}$$

where

$$\overline{\Omega}_{\beta\gamma}(u, X) = N_i (B_{\beta\gamma}^j + \Gamma_{hk}^j(x, X) B_{\beta}^k B_{\gamma}^k).$$

The tensor with the components $\overline{\Omega}_{\beta\gamma}(u,X)$ is called second fundamental tensor of the hypersurface. It is obviously a non-symmetric tensor.

Further in view of the fact $\overset{1}{\Gamma}_{h}^{j}(x\,,\,\mathrm{X})=\overset{1}{\Gamma}_{kh}^{j}(x\,,\,\mathrm{X})\,\mathrm{X}^{k}$ we find

$$(4.7) Nh Yi (\stackrel{1}{\Gamma}_{hk}^{i} X^{k} - \stackrel{1}{\Gamma}_{h}^{i}) = \hat{\Omega}_{\beta\gamma} (u, X) X^{\beta} X^{\gamma}$$

where

$$\hat{\Omega}_{\beta\gamma}\left(\boldsymbol{u},\boldsymbol{X}\right)=\boldsymbol{N}^{h}\boldsymbol{g}_{jl}\left(\overset{1}{\boldsymbol{\Gamma}}_{hk}^{j}-\overset{1}{\boldsymbol{\Gamma}}_{kh}^{j}\right)\boldsymbol{B}_{\beta}^{l}\;\boldsymbol{B}_{\gamma}^{k}.$$

Substituting from (4.4), (4.6) in (4.3) and simplifying with the help of (4.7) we get

$$(4.8) \quad \frac{\frac{1}{\delta X^{i}}}{\delta s} + g^{ih} Y_{j} \left(\stackrel{1}{\Gamma}_{hk}^{j} X^{k} - \stackrel{1}{\Gamma}_{h}^{j} \right) = B_{\alpha}^{i} \left[\frac{\frac{1}{\delta X^{\alpha}}}{\delta s} + g^{\alpha \gamma} Y_{\beta} \left(\stackrel{1}{\Gamma}_{\gamma \delta}^{\beta} X^{\delta} - \stackrel{1}{\Gamma}_{\gamma}^{\beta} \right) \right] + \\ + \Delta_{\beta \gamma} \left(u, X \right) X^{\beta} X^{\gamma} N^{i}$$

where

(4.9)
$$\Delta_{\beta\gamma}(u, X) = \overline{\Omega}_{\beta\gamma}(u, X) + \hat{\Omega}_{\beta\gamma}(u, X).$$

The scalar

(4.10)
$$k = \Delta_{\beta \gamma} (u, X) X^{\beta} X^{\gamma}$$

will be called the normal curvature and \boldsymbol{X}^{α} will be called along the asymptotic line if

(4.11)
$$\Delta_{\beta\gamma}(u, X) X^{\beta} X^{\gamma} = o.$$

The equations (4.1), (4.2), (4.8) and (4.11) may be used in proving the following:

Theorem 4.1. A geodesic of F_n is both a geodesic and an asymptotic line of the hypersurface. Conversely, a geodesic of the hypersurface is a geodesic of the enveloping space if and only if it is an asymptotic line.

It may be noted that contrary to usual convention the normal curvature is not given by $\overline{\Omega}_{\beta\gamma}(u,X)\,X^{\beta}\,X^{\gamma}$. However, in view of equations (4.7), (4.9) and (4.10) this $(k=\overline{\Omega}_{\beta\gamma}(u,X)\,X^{\beta}\,X^{\gamma})$ will happen if the condition

$$(C_1) Y_j (\stackrel{1}{\Gamma}_{hk}^j X^k - \stackrel{1}{\Gamma}_h^j) = 0$$

is true. We shall prove

Theorem 4.2. The condition (C_1) holds in F_n if and only if the corresponding condition

$$(C_2) \hspace{1cm} Y_{\alpha} \, (\overset{1}{\Gamma}^{\alpha}_{\beta\gamma} \, X^{\gamma} \, - \overset{1}{\Gamma}^{\alpha}_{\beta}) = o$$

holds in F_{n-1} .

Proof. A calculation based on the equations (2.15), (2.5) and the conditions $Y_{\alpha} M_{\gamma}^{\alpha} = o$, $Y_{\alpha} B_{i}^{\alpha} = Y_{i}$ yields

$$\mathbf{Y}_{\alpha}\,(\overset{1}{\Gamma}{}^{\alpha}_{\beta\gamma}\,\mathbf{X}^{\gamma}\,-\,\overset{1}{\Gamma}{}^{\alpha}_{\beta}) = \mathbf{Y}_{i}\,(\overset{1}{\Gamma}{}^{i}_{hk}\,\mathbf{X}^{k}\,-\,\overset{1}{\Gamma}{}^{i}_{h})\;\mathbf{B}^{h}_{\beta}\,.$$

Since this is true for every β , therefore (C_1) implies and is implied by (C_2) . This proves the theorem.

It has been proved in [4] (page 240) that (C_1) is a necessary and sufficient condition in order that the geodesics of F_n may be auto-parallel curves. Theorem 4.2 may now be put in the form:

THEOREM 4.3. The geodesics of F_{n-1} are auto-parallel curves if and only if the geodesics of F_n are auto-parallel.

The following theorem is immediate from equations (4.9), (4.10), (4.11) and condition (C_1) .

THEOREM 4.4. The asymptotic lines of F_{n-1} are given by

$$\overline{\Omega}_{\beta\gamma}(u,X) X^{\beta} X^{\gamma} = 0$$

if and only if the geodesics of F_n are auto-parallel.

Let $C: u^{\alpha} = u^{\alpha}(s)$ be a curve of F_{n-1} and $X^{\alpha} = \frac{du^{\alpha}}{ds}$. The vectors

$$q^{i} = \frac{\frac{1}{\delta X}^{i}}{\delta s} + g^{ih} Y_{j} (\overset{1}{\Gamma}^{j}_{hk} X^{k} - \overset{1}{\Gamma}^{j}_{h}) \quad , \quad p^{\alpha} = \frac{\frac{1}{\delta X}^{\alpha}}{\delta s} + g^{\alpha \gamma} Y_{\beta} (\overset{1}{\Gamma}^{\beta}_{\gamma \delta} X^{\delta} - \overset{1}{\Gamma}^{\beta}_{\gamma})$$

are called the first curvature vectors of the curve with respect to F_n and F_{n-1} respectively. The first curvature vector q^i is, in general, different from the derived vector $\delta X^i/\delta s$ of the unit tangent X^i . However, it is easy to prove

THEOREM 4.5. The first curvature vector q^i differs from the derived vector $\delta X^i/\delta s$ by a vector which is orthogonal to the tangent vector X^i .

Also we have

Theorem 4.6. The derived vector ${}^{1}_{\delta}X^{i}/\delta s$ is orthogonal to X^{i} if and only if $\Gamma^{i}_{k}(x,X)$ is a metric connection.

Proof. Differentiating $g_{ij}(x, X) X^i X^j = I$ we find

$$(4.12) g_{ij} - \frac{{}^{1}_{\delta X}{}^{i}}{\delta s} X^{i} = -\frac{1}{2} - \frac{{}^{1}_{\delta g}}{\delta s} X^{i} X^{j}.$$

The theorem is immediate from the equations (1.5) and (4.12). Using Theorems 4.6 and 4.5 we have

Theorem 4.7. The first curvature vector q^i is orthogonal to X^i if and only if $\Gamma^i_j(x,X)$ is a metric connection.

Finally, Theorems 3.2 and 4.7 yield

THEOREM 4.8. The first curvature vector with respect to F_{n-1} is orthogonal to X^{α} if and only if the vector q^i (the first curvature vector with respect to F_n) is orthogonal to X^i .

REFERENCES

- [1] VAGNER V. V., The geometry of Finsler as a theory of field of local hypersurfaces in X_n , «Trudy Sem. Vektor. Tenzor. Analizu», 7, 65–166 (Russian 1949).
- [2] BARTHEL W., Ueber eine parallelverschiebung mit Längeninvarianz in lokal Minkowskische Raumen I, II, «Arch. Math. », 4, 346–365 (1953).
- [3] KAWAGUCHI A., On the theory of non-linear connections, «Tensor N.S.», 6, 165-199 (1956).
- [4] RUND H., The differential geometry of Finsler spaces, Springer-Verlag (1959).