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Geometria differenziale. — On the induced theory of Finsler
hypersurfaces from the standpoint of non—linear connections. Nota di
Upar PraTap SingH, presentata @ dal Socio E. Bomprani.

RIASSUNTO. — Le connessioni non lineari negli spazi di Finsler sono state studiate
da Vagner, Barthel e Kawaguchi (v. bibliografia). Nella presente Nota si studiano le connes-
sioni indotte in una ipersuperficie di Finsler. In particolare si danno le condizioni necessarie
e sufficienti affinché una connessione metrica (secondo Rund) nell’ambiente induca una con-
nessione pure metrica nell’ipersuperficie. Si studiano anche relazioni fra le geodetiche di una
ipersuperficie e quelle dell’ambiente d’immersione.

I. INTRODUCTION

We outline below some fundamental formulae which will be used in
the subsequent sections of this paper.

Let X’ be a vectorfield, &, (x, X) be the components of the metric
tensor of a Finsler space F, and Y, =g, (v, X) X’. Suppose we are given

1. 2
functions I'; (x, X) and I'; (x,Y) such that the absolute differentials

(1.1) 3X = dX’ + T} (x, X) da*
and

2 2
(1.2) Y, = dY, — Ty (,Y) dat

are respectively the components of contravariant and covariant vectors. The

2

' 1 2
functions I' (x, X), T (x,Y) are supposed to be positively homogeneous of
first degree in X and Y respectively. - These are used in defining the con-
nection parameters

li 5

2
i ar . N
(1:3) L (x, X) = anj v T, Y)= ————”;2’2 ) .

We mention the following two conditions:
. .,
(A) If X* undergoes parallel displacement (i.e. X' = 0) then so does
2 .
Y, (i.e. 8Y, = 0). This condition is characterised by (Rund [4], page 238)

2 dg.. (v, X . 1.
(1.4) Iy (x,Y)=EZExé L X/ g, T, X).
ox

(*) Nella seduta del 9 dicembre 1972.
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(B) The connection defined by F/g (v, X) is metric, i.e. the length
of the vectorfield X’ remains unchanged under parallel displacement. In
other words

o 1
é (& (x, X)X'"X) =0 for 3X'=o
which yields
1 . .
(1.5) 3¢, (x, X) X' X" =o0.

This condition is characterised by ([4] page 239)

1. I agl.j Py
(1.6) Vili(r, X) = 7 X'X.
X

2. INDUCED CONNECTION PARAMETERS

Let F,_y : 2" = a7 (%) i=1, -, m;a=1,--,7—1 be a hypersurface
of F,. The components X', X* of a vectorfield of the hypersurface are
related by

(2.1) X' = B, X* where B = ;;L; .

1
The induced differential §X* is defined by

(2.2) 3X* = BY §X',
where B? = £ (x, X)g, (x,X) B, g s (#, X) being the metric tensor of
F.1. The equatlon (2. I) yields
2 .
(2.3) dX’= B dX® + B}, X* du” (BEY - —i—>
du” duY
Defining
1 1
(2.4) dX* = dX* + I} (u, X) du”

and using (1.1), (2.2) and (2.3) we find
o @ rni B | Bk
(2:5) [y = B; (Bgy X" + I By),

where we have used the relations BY Bj = 83 , dx” = Bf du”.
‘After putting

(2.6) YV, =2,;0, X)X |, Y=g, X)X
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and using (2.1) we obtain

(2.7) Y, =B Y,.
We now define another induced differential

(2.8) 3Y, = BL 3Y,.

The differentiation of (2.6) gives

. (x,X ) . .
(2.0) dY,= ._iff_a‘"k_> X' di* + g, (¢, X) (B, X®du 4 Bf dX*
X .
and
g o (u, X
(2.10) dy, = —-g—ﬂai‘Y—l XP do’ + gag (e, X) dXP,
(/2
Defining
2 2
3Y, = dY, — T, du*

and simplifying with the help of (1.2), (2.9), (2.10) and the relation obtained
after differentiation (with respect to #Y) of

£ap (0, X) =g, (x,X) B, B]
we get
2 . 2 .
(2.11) Ly, (0, Y) = (Y, By, + Iy (x, V) B, BY).
1 2 .
It is assumed that the function I} (%, X) and I, (#,Y) are differentia-
ble. We now define

1 2
1 ore 2 oI
o Y o — f& .
(2’ I 2’) FBY - QXB ) PﬂY aYa

A direct differentiation of the relation
Bf =£" (u, X) g; (x, X) B}
with respect to X® will yield (after some simplification)-

3B¢
axP?

(2.13) = 2N, Mg,

where we have used the fact

(2.14) B B = (8! —N/N)),
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N; being the covariant components of the unit normal vector,

Sgl.]. (x,X)
ox*

M, (., X)=C,, (v, X) B, B/N* and M (u, X) ="M, (x,X).

2C,~jé (x , X) =

3

Differentiating (2.5) with respect to X®, using the relations (1.3), (2.12), (2.13)
and the fact Mj (z, X) X* = o, we find

1 1. . 1.
(2.15) T8 (0, X)=2N; T} (x, X) By M§ + B} (Bf, + [, BE BY) +
+ 2N, Mj Bj, X°.

2
In order to evaluate ngy(u , X), we notice that a direct differentiation
of Y;= B} Y, will give

(2.16) A
8
. axY B o
where we have used (2.13) and the relations wo—& » My(u,X)Ye=0

in the simplification. Differentiating (2.11) with respect to Y, and using (1.3),
(2.12), (2.16) we obtain

2 . 2,
(2.17) Tf (u,Y) = B (B, + I (x, Y) BL BY).

The connection parameters Il‘gy (,X), I (x,Y) are non-symmetric
in B,y and positively homogeneous of zero degree in X ,Y respectively.
These will be called induced “ non-linear connection parameters ”’ of the
hypersurface.

3. PROPERTIES OF INDUCED NON-LINEAR CONNECTIONS

Consider the fdllowing conditions in F, and F,_; respectively.
(Ap. If X’ undergoes vparallel displacement in F, then so does Y;.
(Ag). If X* undergoes parallel displacement in F,_; then so does Y,.

The condition (A;) is characterised by (1.4) and the condition (Ayp) is
characterised by the . corresponding relation

2 . 1
(3.1) Ty (0, X) = - XP g (e, X) T2 (0, X)

in the space F,_ ;. We shall prove the following:

THEOREM 3.1. A4 necessary and sufficient condition that (D) holds in
the hypersurface is that (Ay) holds in the enveloping space.
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Proof. The differentiation of
£ (x,X) =g, (x,X) BB

gives

. X . o)
(3.2) Y, By +&,; Biy B X" — 2

.. . .
BGLN G i B B: X/

du”
A simple calculation based on the equations (2.5), (2.11) and (3.2) will yield

2 Ly L z %y i L\
33 Te— X' g It = (P,}— 5 X ey I‘i) B BY,
where we have used the fact Lop B? =g BJ. Since the above relation is
true for every o and v, therefore condition (3.1) implies and is implied by
condition (1.4). This proves the theorem.
Let us now consider the conditions:

1.
(By). Iy (x,X) is a metric connection in F,,.
1
By). I§(x,X) is a metric connection in F, ;.
2 B8

The condition (By) is characterised by (1.6) while the condition (Bp) is
characterised by

1“ I agaﬁ (Z{ ) X)

(3-4) Yo Iy (o0, X) = ———

2 du”

X* XP.
We shall prove the following:

THEOREM 3.2. A necessary and sufficient condition that (By) holds in
F.-1 is that (By) holds in F,.

Progf. Substituting from the equation (2.5) and (3.2) and using (2.7)
in the simplification we find

1 ) 1. o .. N
(3.5) (Ya e L e xa X‘3> = <Yl. Iy — L Z4 x X’> B:.

2 ¥ at
The theorem follows from (1.6), (3.4) and the fact that (3.5) is true for every .
4. GEODESICS IN THE HYPERSURFACE
The geodesics of F, and F,_; are given by (Rund [4], page 240)

1.
SX* J 1. 1.
4D e Y X =T =0

and

1
8Xa o lg: 1
(4.2) 5 T Y %X —Tf) =o.
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Equations (2.2) and (2.14) will yield

1. 1
3X* i SX
(4.3) = = B. +N° Nj

8&

A calculation based on equations (2.15), (2.5), (1.6) and relations (Rund [4]
page 236)

Li kb i 8 oy 1pi i ik
M X"=I% , MyYg=o0 and ¢ BB—— “__N'N
gives

1 1 .
(4.4) & Vg (1% X° —T%) B;, =

=Y, (T XE— T — N'N* Y, (I, XA — 1Y),

Further after putting X' = 1: , X* = % and substituting
dX]___ 7 [¢] Y 7 d.X Y dx . 1_7' h B ¥
4 = B, X" X" + B , I‘ =1I,,B, B, X" X
in
1 . .
X7 D CANNNR RN P
(4-5) Nj 8 Nj( ds + I —d.v—>
we find
1 .
X7 =.
(4.6) Ny =5 = Qg (u, X) X* X
where

Qg (e, X) = N, (BBY—[—Fk(x,X)BéB’;).

The tensor with the components Qg (z, X) is called second fiindamental
tensor of the hypersurface. It is obviously a non-symmetric tensor.

1. 1.
Further in view of the fact I} (x , X) = I'/, (x , X) X* we find
7 1. » 1., ~ B v
(4.7) NYY, (T X' —T) = Qpy (0, X) X" X
where
~ A L L\ nl Tk
QQY (% , X) =N &1 (F}zk — I‘k},) BQ B"{

Substituting from (4.4), (4.6) in (4.3) and simplifying with the help of (4.7)
we get

(4.8) + YL (T XE— T = BL |20 4 g Y, (r

+ Agy (u, X) XP X* N
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where

49) Age (10, X) = Qpy (2, X) + Qg (0, X).
The scalar

(4.10) k= Doy (w0, X) x® X

will be called the normal curvature and X* will be called along the asymp-
totic line if

(4.11) Apy (e, X)X X" = 0.

The equations (4.1), (4.2), (4.8) and (4.11) may be used in proving the
following:

THEOREM 4.1. A geodesic of ¥, -is both a geodesic and an asymptotic line
of the hypersurface. Conmversely, a geodesic of the hypersurface is a geodesic
of the enveloping space if and only if it is an asymptotic line. \

It may be hotedm:chat contrary to usual convention the normal curva-
ture is not given by Qgy (2, X) x* X, However, in view of equations (4.7),
(4.9) and (4.10) this (£ = Qg, (z, X) X* X*) will happen if the condition

1. 1.,
(&) Y, ([ X —T)) =o
is true. We shall prove

THEOREM 4.2. The condition (C,) holds in F, if and only if the corve-
sponding condition

1 1
Cy) Y, (T5, X' —T%) = o
holds in F,_4 .

Proof. A calculation based on the equations (2.15), (2.5) and the con-
ditions Y, My =o0,Y, Bf =Y; yields

1 1 1. P 1. 7
Y, (T, X" —T%) =Y, (I X* —T%) Bj.
Since this is true for every B, therefore (C,) implies and is implied by (Cg).
This proves the theorem. ,
It has been proved in [4] (page 240) that (Cy) is a necessary and suffici-

ent condition in order that the geodesics of F, may be auto-parallel curves.
Theorem 4.2 may now be put in the form:

THEOREMi 4.3. The geodesics of F,_y are auto-parallel curves if and only
of the geodesics of F, are auto-parallel.

.The following theorem is immediate from equations (4.9), (4.10), (4.11)
and condition (Cy).
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THEOREM 4.4. The asymptotic lines of ¥, 1 are given by
Qo (u, X)X X" =0

if and only if the geodesics of ¥, are auto-parallel.

Let C: 4" = 4" (s) be a curve of F,_; and X" = (Zia The vectors
7 éXi 73 ylj k lj o gxoc ay IB b E )
g =% T Y,TX —T) , p=—-+g Yo(IuX —1IY

are called the first curvature vectors of the curve with respect to F, and F, ;
respectively. The first curvature vector ¢’ is, in general, different from the

1 . .
derived vector 3X’/8s of the unit tangent X'. However, it is easy to prove

THEOREM 4.5. The first curvature vector ¢* differs from the derived vector
3X'[3s by a vector which is orthogonal to the tangent vector X'.
Also we have

. - ‘
, THEOREM 4.6. The derived vector 3X'[8s is orthogonal to X' if and only
if T (x,X) is a metric connection.

Proof. Differentiating £,; (v, X) X' X’ = 1 we find

1 !
X! i 1 %, i
(4.12) &y 5y X=— s XX

2

The theorem is immediate from the equations (1.5) and (4.12).
Using Theorems 4.6 and 4.5 we have

. THEOREM 4.7. The first curvature vector qi is orthogonal to X’ if and only
of T (x, X) is a metric connection.
Finally, Theorems 3.2 and 4.7 yield

THEOREM 4.8. The first curvature vector with vespect to ¥, 1 is orthogonal
to X* if and only if the vector q' (the first curvature vector with respect to F,) is
orthogonal to X'.
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