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G eom etria . —  4 -g o n a l subconfigurations o f a g iven  4 -g o n a l confi­
g u ra tio n . N ota di Joseph A d olp h e T h a s, presentata (*} dal Socio  
B. S e g r e .

RIASSUNTO. — Si introducono e studiano certe strutture finite, includenti quelle for­
mate dai punti e dalle rette di una quadrica non degenere (su cui non giacciano piani) di 
uno spazio di Galois di dimensione 3, o 4, 0 5.

i. Introduction

1.1. D e fin it io n . A finite 4-gonai configuration [2] is an incidence 
structure S — (P , B , I), with an incidence relation satisfying the following 
axioms.

(i) each point is incident with r  lines (r >  2) and two distinct points 
are incident with at most one line;

(ii) each line is incident with ' k  points (k >  2) and two distinct lines 
are incident with at most one point;

(iii) if x  is a point and L  is a line not incident with ;r, then there are 
a unique point x- and a unique line Li such that x l  L ' I x ' IL .

1.2. Fundam ental r e la tio n s . I f  | p ] = p  and |B | =  b, then 
v =  k (k r  — k — r +  2) and b -== r ( k r — k  •— r  +  2). In [4] D. G. Higman 
proves that the positive integer k - \ - r — 2 divides k r ( k — 1) ( r — 1). 
Moreover, under the assumption that k  >  2 and r  >  2, he shows that 
r  — I <  (k — i)2 and k — 1 <  (r — 1)2.

1.3. Examples o f 4 -g o n a l con figu ration s, (a) Let P  =  {x0- 1| i J  =  
=  I , 2 , • • •, k} and B =  {L x , Z2 , • • •, L k , M x , M 2 , • • •, M k], where k  >  2. 
Incidence is defined as follows: x{j- \ L l i =  /  , x{j I M l <==>j =  /. Then 
S =. (P, B , I) is a 4-gonal configuration with parameters k  =  k  , r  =  2, 
v =  /è2, b — 2k. This 4-^onal configuration is denoted by T (k).

(b) We consider a non-singular hyperquadric Q of index 2 of the 
projpctive space P G ( d , ç ), with d =  3 , 4  or 5. Then the points of Q 
together with the lines of Q (which are the subspaces of maximal dimension

(*) Nella seduta dellT i novembre 1972.
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on Q) form  a 4—gonal configuration Q ( d , q) w ith param eters [2]

k  =  ç 1 , r =  2 , ^ 4~ i)2 , ■ Æ =  2 (y +  1), when d  =  3;

k =  r  =  q +  1 , =  ^ =  when =  4;

/è =  q +  I , r  =  q* +  1 , v =  (g +  1) (g* +  1) , b =  (^2 +  1) (^3 - f  1),
when d  — 5.

Remarks, i) Q ( 3 , y )  is isom orphic to T ( y +  1).
2) T he points of P G {3 , ^), together w ith the to tally  isotropic lines w ith 

respect to a sym plectic polarity  n, form a 4~^onal configuration W (^) which 
is isomorphic to the dual of Q (4  ,^ )  [1].

(c) L et H  be a non-singular H erm itian  prim al [8] of the projective 
space P G (d , q) , q =  >̂2Ä. If  =  3 or 4, then the points of H  together with 
the lines of H  form a 4-gonal configuration H (d y q) w ith param eters [2]

k =  q + i - ,  r  — I -fi fq  , v =■ (1 +  ^).(i +  q ]/q) , b =  (1 +  Vÿ) (1 +  ÿVÿ),
when d  =  3;

k =  q +  i , r = i  +  çŸq  , v =  (1 +  y) (1 +  ÿ2Vÿ) ? b =  (i +  q ]/q) (1 +  ÿ2Vÿ),
when d  =  4.

'■(d) Consider an oval <9 (i.e. a set of y +  2 points no three of which 
are collinear) of the plane P G f 2 , q) , q ■= 2*. Let PG(fi , be em bedded 
as a plane / /  in PGffi , q) =  P. Now a 4 -^onal configuration 0 (<y) is defined 
as follows [3]. Points of 0 (^) are the points of P  —  H. Lines of 0 (ÿ) are 
the lines of P  which are not contained in H  and m eet O (necessarily in a unique 
point). Incidence is th a t of P. T he 4-gonal configuration O (g) , q — 2Ä, 
so defined has param eters

k  =  q , r  =  ^ +  2 2/ =  q* , b =  y2 +  2).

2. OVALOIDS AND SPREADS

2.1. D efin itio n s. A n ovaloid (resp. spread) of the 4-q^onal configu­
ration S =  (P , B, I), with param eters k, V, v, b, is a set of /èr —  k — r  +  2 =  0 
points (resp. lines) no two of which are collinear (resp. concurrent). W e 
rem ark  th a t 6 is the m axim al num ber of points (lines) of S, no two of which 
are collinear (resp. concurrent).

2.2. Examples o f ova lo id s and spreads, (a) If-S=T(>&),  then 
6 =  k. W e see im m ediately th a t {xn  , x 22, • • •, xkk\ is an ovaloid and th a t 
\ L \  , L 2 , • • •, Lfi\ is a spread (we rem ark th a t T(/è) possesses k\ ovaloids 
and 2 spreads).

(b) For S =  Q (4  , q), we have 0 =  q% +  1. Let PGf3 , q) be a hyper- 
plane of PG  (4 , q)D Q for which PG  (3 , q) n  Q == Q' is an elliptic quadric

36. — RENDICONTI 1972, Vol. LIU, fase. 6.
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of P G (3 , q). Then Q' evidently  is an ovaloid of Q (4  , q). As Q (4  , ç), 
q =  2h, is always self-dual ([9], [ i ]) there follows im m ediately th a t there exists 
also a spread of Q (4  , q). Finally, we rem ark th a t Q (4  , q) , q odd, does not 
contain a spread [10].

If  S — Q(5 , q), then 0 =  q3 +  1. We do not know if Q(5 , q) possesses 
spreads or ovaloids.

(c) For S =  H (3 , q) , q =  fi2Ä, we have 0 =  q fq -\-  1. L et PG (z  , q)
be a plane of PG  (3 , q)Z) H  for which PG  (2 , q) O H  =  H ' is a non-singular
H erm itian curve of P G (2 , q). ■ Then H ' evidently is an ovaloid of H (3 , q). 
W e do not know if . there exists a spread of H (3 , q).

If  S =  H (4  , q) , q =  then 0 =  1. W e do not know if
H (4 iq) possesses spreads or ovaloids.

(d) For S =  0 (q) , q == 2h, we have 0 =  ^2. Let P6W  (2 , ^) be a 
plane of P G {3 , D PG(2 , q) ~) O where P G (2 , n  PG (2 , q) — L  has 
no point in common w ith O. Then PG(1) (2, q) —L  evidently is an ovaloid 
of O (q). I t  is also evident th a t the q2 lines of PG (3 , q), which are not contained 
in P G (2 , q) and m eet O in a fixed point, constitute a spread of the 4~gonal 
configuration O (q).

3. 4-G ONAL SUBCONFIGURATIONS OF A GIVEN 4 —GONAL CONFIGURATION

3.1 . D efinitions. T he 4-gonal configuration S ' — (P' ,  B7, T) is called 
a 4-gonal subconfiguration of the 4-gonal configuration S — (P, B , I) if and 
only if P ' C P ,  B ' C B  and I ' =  I O C P ' x B ' ) .  , If  S'=f=S, then we say th a t 
S ' is a proper 4-gonal subconfiguration of S. W hen the param eters of S are 
denoted by k , r  , v , b, the param eters of are denoted by r ,  v , b' .

3 .2 . Theorem. I f  S' =  ( P ' , B ;, T) is a \ —gonal sub configuration of the 
âf-gonal configuration S =  (P , B , I), then y \ L \ x ,  with x  , y  € P ' and L  e B, 
implies L  € Bb D ually , L  \ x  \ M, with L  , M  c B ; and  #  G P, implies x  € Pb

Proof. Suppose th a t y l L l x ,  w ith x  , y  e P A and Z e B .  Let L'  =j= L  
be a jline of S' which is incident w ith x. From  (iii) in the definition of 4-gonal 
configuration there follows im m ediately th a t there are a unique point x ’ e P  
and a unique line L n e B ', such th a t y l ,L ,rl rx ' l fL r. As y  I L "  l x  I L '■ and 
y  l L l x l L ' , it follows th a t x  =  x ' and L  — L". So we conclude th a t L e  Bb

Corollaries. Ci . I f  L e  B then there are three possibilities'.

(a) E|3*e P ’ \ \ x lL ;  (b) 3 ! *  e P ' || *  I Z ; (c) L e  B '.

Ç 2. I f  x  e P  then there are. three possibilities'.

(a) i|3Z  e Ti’ \ \ x l L )  (b) 3 ! Z  e B '|| * I Z ;  (c) i e P ' .

C3. I f  Z  æ proper \-gonal subconfiguration of S, then P  | P  and 
b  =4= b '  (i.e. z /<  v and bf < b).
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4. The case k  =  i ' ,  /  <  r

4. i . Theorem. Suppose that the ä^gonal configuration S =  (P , B , I), 
with parameters k  , r , v  ,b, has a 4-gonal subconfiguration S '=  (P ', B ', T), 
with parameters k  , r ' , v ' , b' (r <  r). Then S ' possesses an ovaloid and 
r ' — i <  ( r — I) l( k — 1).

Proof. W e consider a point x  e P — P' .  From  C2. there follows: :|3Z e B ' y 
x \ L (0,2 .). L et L y , L 2 , L r be the r  lines of S which are incident w ith x. 
T aking  account of C i . and C2'., it follows th a t , i =  1 , 2 , • • •, r, is incident 
w ith at m ost one point of S'. Suppose th a t L q , Z ,2 , • • •, L,-a , {iy , i2 C
C {1 , 2 , • • - , r }, are the lines which are incident w ith one point of S '. If  
T y l Aÿ> x ij£ P  and j  =  1 , 2 ,• • - , a, then from the definition of 4-gonal 
configuration there follows im m ediately th a t ,Xi2 ,--- ,  x ia } =  O is a set 
of a. points of S no two of which are collinear. Hence the configuration S' 
contains ocr' distinct lines which are incident w ith one of the points 
of O.

N ext we consider an arb itra ry  line Z ' of S'. There are a unique line 
Z " e B  and a unique point f e P  such th a t * I Z " I # ' I Z ' .  As x ' e P ' ,  it 
follows th a t x ' £ O. So the line Z ' is incident w ith one of the points 
of Ö.

From  the preceding there follows im m ediately th a t ar ’ =  b '=  r' (kr' ■— 
k r '+  2) or a =  k r ' — k  —  r' + 2 .  Hence O is an ovaloid of S'. M ore­

over we have a =  k r ' .—  k —  r ' -fi 2 <  r  or r' — 1 <  ( r —  i)/(k —  1).

C o r o lla r ies . C4. r  >  k  ; r =  k implies r ' = 2 .
C5. I f  k >  2 then we have r' <  k\ r' = k  >  2 implies r ■— 1 =  (k —  i)2.

Proof. F rom  C4. there follows th a t r  >  2, and so we have r — i <  
<  (k —  i ) 2 (1.2.). Consequently r'  —  I <  ( r —  1 )/(k —  1) <  k ■— 1 or r' <  k\

I f  r' =  k  >  2 then k — i — r'  —  1 <  (r —  1 )/(k — 1), and so r  —  1 >
I)2. From  the preceding there follows im m ediately th a t r —  1 =

=  ( ^ - 0 2-

R em ark . W hen k  =  2 it is easy to prove th a t 2 <  r' <  r  is the only 
restriction, for r ' .

C6. Suppose th a t r' >  2 and k  >  2. Then Ì  k — 7  < r '  —  1 <  k  ■— 1 
(F) and (k —  i f 12 <  r  —  1 <  (k —  i)2 (F ').

Proof. F rom  r' >  2 an d k  >  2 there follows th a t r' <  k  and (r ' — i)2 >  
>  k — I. S6 we have f  k — 1 <  r ' —

N ext we rem ark  th a t k  —  1 <  (r' —  i)2 < ( r —  i f j { k  —  i)2 or (k  —  i)3 <  
^  (r  —  r)2- As k  >  2 and r  >  2 we also have r  —  1 <  (k —  i)2. W e conclude 
th a t (k —  i f 12 <  r  —  I <  (k —  i f .
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Remark. L et r —  i — ( k —  i)3/2 , k  >  2 and r ’ >  2. Then r ' — 1 <  
<  (k — i f l2j ( k —  1) or r ' — i <  y k — i. From  (F) there follows th a t
r ’ —  I =  y —  i.

C7. I f  S ' possesses a proper 4-gonal subconfiguration S " w ith p ara ­
m eters k  , r " , v" , b" , k  >  2, then r n — 2 , r '  =  k  and r  —  1 =  (k ■— i)2.

Proof. T here holds r '  <  k  (C5.) and r n -— 1 <  (V —  1 )j(fi —  1). Hence
y . j  fe j

r"  —  i <  -7--------<  -=-------  or r"  <  2. There results th a t r"  =  2 and P  =
k —  i  k  •—  i

From  C5. there follows im m ediately tha t r — 1 — ( k —  1) .

4.2. Theorem. Suppose that the 4- gonal configuration S =  (P, B , I),
with parameters k  , r , v , b, has a proper A^-gonal sub configurati on 
S A =  (P A, B a, T), parameters k , r  br, suppose moreover that
r* —  I <  ( r —  l ) l (h -— 1). T hen P A is the union of k disjoint ovaloids of Sb

Proof. From  the Proof of 4.1. there follows th a t r' —  1 <  (r —  i)/(>è —  1) 
if and only if B contains a line L  which is incident w ith no point of Pb If 
X j l L ,  Xj  6  P  and j  — 1 , 2 , * • - , k, then the points of P A which are collinear 
w ith Xj constitute an ovaloid of S A (see Proof of 4.1.). In  this w ay we obtain k 
ovaloids of S \  As S does not contain a triangle, these ovaloids evidently 
are disjoint. From  vr =  kQ', w ith 0A =  kr’ —  k —  r' +  2 the num ber of 
points of an ovaloid of S A, there follows th a t P A is the union of k disjoint 
ovaloids of S \

4.3. REMARK. Suppose th a t O is an ovaloid of the 4-gonal configu­
ra tion  S — (P , B , I), with param eters k , r  , v , b. If  S A =  (P ;, B ', T) is a
4-gonal subconfiguration of S, with k ’ =  k, then it is easy to prove tha t 
O n  P A is an ovaloid of S '.

4.4. THEOREM. Let S r =  (P ', B ', I') be a substructure of the \-gonal 
configuration S =  (P , B , I), with parameters k , r  , v , b(k >  2), satisfying the 

following'.

(i) every two distinct points of P ' which are collinear in S are also colli­
near in $';

(ii) each element of B ' is incident with k points of P '. Then there are 
three possibilities'.

(a) the elements of B ' are lines which are incident with a same point 
of P , and  P ' consists of the points of P  which are incident with these lines',

( * ) » '  =  0  and  P ' is a set of points of P , no two of which are collinear
in  S;

(fi) S ' =  (P ', B ', I ') is a gonal sub configuration of S with parameters 
k , r \  v , b!.

Proof. E vidently  (i) and (ii) are fulfilled by (a), (b), (c). Now we show 
th a t there are no other possibilities.
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Suppose tha t S -  (P ', B ', T) satisfies (i), (ii) and is not of type (a),
(b). Then there holds B'=f=’0  and P'={= 0 .  Suppose th a t L ' £ B '. As S ' is 
not of type (a) there exists a point x  £ P ' such th a t x  X' L r. L et x  be the 
unique element of P  and let L  be the unique elem ent of B for which 
x  \ L \ x \ L ’. W e rem ark th a t x  £ P ' (see (ii)). From  x  , x'  £ P ' and 
x' I L  I x  there follows im m ediately th a t L  £ B ' (see (i)). A nd so axiom  (iii) 
in the definition of 4~gonaI configuration is satisfied by S '. Now we show th a t 
also (i) and (ii) in definition 1.1. are satisfied.

F irst of all we rem ark th a t every line of B ' is incident with k ( >  2) points 
of P ' and th a t two distinct lines of B ' are incident with at most one point of 
P  . N ext we consider a point x  £ P  and we suppose th a t x ’ is incident with 
fi {>  o) lines of B '. Let y '  £ P ' be a point which is not collinear w ith x f and 
call r"  the num ber of lines of S ' which are incident w ith y r (as S ' is not of 
type (a) or (b), such a point y f exists). If  L'  is a line of B ' which is incident 
with x'  (resp. y'), then there exists one and only one line of B ' which is inci­
dent w ith y ! (resp. x r) and which is concurrent with L ' . There follows im m e­
diately th a t r' — r n. In  the same w ay we can prove th a t r ’ is the num ber 
of lines of B which are incident with any  point of P ' which is collinear with 
x' but  which is not collinear with j / .  F inally  we consider a point fi £ P ' which 
is collinear with x r and y r. W e have to consider two cases.

(a) L et us suppose th a t fi  =  'i . The line which is incident w ith x ’ (resp. 
y')  and fi is denoted by lfi (resp. L").  Suppose th a t L  is a line of B ' with 
L  £ {Z/, L "} .  T hen x  XL , y ' X L  (since fi =  r"  =  1). Since there exists a 
line of B ' which is incident with x'  (resp. y')  and which is concurrent w ith 
L , there results th a t L and lfi (resp. L  and L")  are concurrent (taking account 
of fi — r"  — 1). So we conclude th a t fi I L. Consequently S ' is of type (a), 
a contradiction.

(b) L et us suppose th a t fi >  1. W e consider a line L  of B ' which is inci­
dent with x'  and which is not incident w ith f i . As k >  2 there exists a point 
u ' £ P ' — { x !} which is incident with L  and which is not collinear with j / .  
Such a point u' is not collinear with fi  or ÿ . There follows: num ber of lines 
of S ' which are incident w ith fi =  num ber of lines of S ' which are incident 
w ith u' — num ber of lines of S ' which are incident w ith y r — f i .

C onsequently every point of P ' is incident with fi ( >  2) lines of B ' and 
two distinct points of P ' are incident w ith a t most one line of S '. So we con­
clude th a t S ' is a 4-gonal subconfiguration of S with param eters k , r', v , b'.

REMARK. Consider the 4-gonal configuration S =  (P, B , e), where 
P  =  {1 , 2 , 3 , 4 , 5  , 6} and B =  {{i , 4} , {1 , 5 } , {1 , 6} , { 2 , 4 }  , {2 , 5 } , 
( 2 » 6} » {3 > 4} . {3 » 5} . { 3 . 6 } }  (here we have k =  2, r  =  3, _v =  6, 
b =  9). Then the substructure S ' =  (P', B', £), where P' =  {i , 2 , 4_, 5 , 6} 
and B '=  {{1 , 4} , {1 , S} > U > 6} , { 2 , 4 }  , {2 , 5} , { 2 , 6 } } ,  satisfies (i), (ii) 
and is not of type (a), (b ),'(c). W e conclude th a t condition k >  2 , in the 
statem ent of Theorem  4.4., cannot be deletedv
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4.5. E x am p les . (a) L et P  =  { x 1 , x% , • • -, x r , y x , y 2 , ■ ■ - , y r } and
B =  {Ay II i  >j — 1 . 2 ,• • - , r),  where r  >  2. Incidence is defined as follows:
Ay I x i <==> i  =  I , Ay I y i < => / =  Then S =  (P, B , I) is a 4-gonal configu­
ration with param eters k =  2 , r  =  r ,  & = 2 r ,  <$ =  r 2. This configuration is 
denoted by T *(r) and is the dual of the configuration T (r). T hen the struc­
tu re T *(r') =  (P ', B , I'), with 2 < r ' <  r, P '=  {Xl , • • •, *r, , y 1 , ■ ■ •, y r, } , 
B 7 =  {Ay II i , j  =  I > • • -, r '}  , r  = I O (P ' X B '), evidently is a 4-gonal 
subconfiguration of S w ith param eters k! =  2 , r' — r ' , v' =  2 r ' , b' =  r '2.

(b) For S =  Q (4  , q) we have k  =  r  =  q 1. I f  S ’ is a proper 4—
gonal subconfiguration of Q ( 4 , ^ )  w ith param eters k' =  q - \ - i ,  r ' , v ' , b ’, 
then necessarily r' =  2 (C4.). It is easy to prove th a t Q (4 , q) possesses such 
4-gonal subconfigurations. N ext, let Q*(4 , q) =  W(y) be the dual of S. 
T hen it is possible to prove th a t W (q) possesses proper 4-gonal subconfigu­
rations, with k' =  q +  I (then necessarily r' =  2), if and only if q is even,
i.e. if and only if W (g) is isom orphic to Q (4  , q) (cfr. [1]).

For S =  Q ( S , ^ )  we have k =  q - \ - i ,  r — q ^ + i ,  and so r — 1 =  
=  ( k — i)2. I f  S ' is a proper 4-gonal subconfiguration of Q (5 , q) w ith 
k' =  q +  F then necessarily r' <  q +  1. If  r' >  2 then we have r' >  Vÿ +  1 
(cfr. C6.). Let P G ( \ , q )  be a hyperplane of P G ( $ , q ) ' 2)Q  for which 
PG(A , q ) n Q  =  Q' is a non-singular hyperquadric of index 2 of P C  ( 4 , ^ ) .  
Then Q ' (4 , q) is a proper 4-gonal subconfiguration of Q(5 , q) w ith k' =  q +  1 
and r' =■ q -j- 1. C onsequently Q ' (4 , q) possesses ovaloids. W e rem ark 
th a t in this case r r =  k (cfr. C5.). From  the preceding there also follows th a t 
Q!(4 >ç)> and consequently Q (s  , q \  possesses 4-gonal subconfigurations 
with param eters q +  1 , 2  , (q +  i )2, 2 (q +  1) (cfr. C7.).

(c) As r < k  the configuration H (3 , q) , q =  p 2h, has no proper 
4-gonal subconfigurations w ith k' =  q +  1 (C4.).

For S • =  H  (4 , q) , q == fi2A, we have k =  q +  1 , r =  i.+  q' /ç,  and 
so r — I =  { k —  i)3/2 (cfr. C6.). If  S ' is a proper 4-gonal subconfiguration 
of r t (4  , q) with Iz — q - f  I, then necessarily r' =  2 or r r =  ~̂q +  1 (see 
rem ark  of C6.). Let P C ( 3 , q) be a hyperplane of P C (4 , q) D H  for which 
P C (3  , q) O H  =  H '  is a non-singular H erm itian prim al of P C (3 , q). Then 
H ' (3,, q) is a proper 4-gonal subconfiguration of H (4 , q) w ith k' =  q +  1 
and r ’ =  Gq +  1. Consequently H ' ( j  , q) possesses ovaloids. It is not diffi­
cult to prove th a t there does not exist 4-gonal subconfigurations of H  (4 , y) 
with k' =  q I and r ’ =  2.

(d) W e shall prove th a t O (q) , q =  2/2 and h >  1, does not possess 
a proper 4-gonal subconfiguration with k' =  q and r' >  2. Suppose the 
contrary. T hen from C6. there follows th a t (k —
or ( q — i)3/2 <  q +  I <  ( q — i)2, a contradiction. F inally  we shall con­
s tru it  a 4-gonal subconfiguration S '=  (P ', B ', T) of O (q) w ith k' =  q 
and r r =  2. Let PG^ ( 2 , q) be a plane of P G (3 , D P C (2 , q)Z) O, where 
P C (b(2 -, q) O P C  (2 , q) =  L  has two distinct points x  , y  in common w ith C. 
Define: P ' =  P C ^ (2  , q) —  L  , B ' =  {lines of P G ^ ^ . q )  which are diffe-
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rent from A and contain x  or y} ,  incidence is th a t of PG \ 3 , q). T hen the 
configuration S ' so defined evidently  is a 4-gonal subconfiguration of S, 
w ith param eters yk' =  q , r f =  2 , v r =  q1, b’ =  2 q.

5. The case  l! < k  , r < r

5.1. Theorem. Suppose that the \ —gonal configuration S =  (P, B , I), 
with parameters k ,r  , v , b, has a y-gonal sub configuration S '— (P ', B ', T), with 
parameters k ', r \  z/, b' (k' <  k , r  <  r). Then (kr— 1) ( r — l f < ( r — 1) (>§ — 1) 
and dually ('fi —  l ) f i ' — i)2 <  (r —  1) (fi —  0-

Proof. Suppose th a t L  E B ', x  IA' ,  x  & P '. L et L e B —  { A ' } and x l L  
(from C2. there follows th a t L  & B '). Then we prove th a t P ' does not con­
tain  an element which is incident w ith A.

Suppose a m om ent th a t x  E P ' and x ’ l L .  As S ' is a 4-gonal configu­
ration, there exists an elem ent y  E P ' which is incident with L! and collinear 
w ith x ’. There follows th a t S possesses a triangle (with vertices x  , x r, y r), 
a contradiction. So we conclude th a t P ' does not contain an element which 
is incident w ith L.

Next, let y  I A and x  =j= y.  From  the preceding and from C2. there follows 
im m ediately th a t y  is incident with at most one line of S'. So the num ber 
of elements of B '— {L! }, which are concurrent w ith a line of B which is 
incident with x, is not g reater th an  k' (r — 1) +  ( k —- 1) (r -— 1). F urther 
we rem ark th a t each element of B ' — {A'} is concurrent with one and only 
one line of B which is incident w ith ' x. There results tha t | B ' —: {A/ }| <
<  k' (r —  1) +  (fi —  1) (r —  1) or r  (k' r  —  k! — r +  2) — 1 <  L  (’r ' —  1) +  
+  (k —  1) (r —  1). Hence (k’ —  1) (rf — i)2 <  (r -— 1) (k ■— 1).

Suppose a m om ent th a t (fi! —  1) (r1— i)2 =  (r •— 1) (k — 1). I f  A E B — 
— {A'},  I A,  y l L ,  x=j=y, then y  is incident with exactly one line M '  
of S '. F rom ! the first part of the proof there follows th a t P ' does not contain 
an elem ent which is incident with a line M e  B — {M '} ,  where y l M .  
Hence y  is collinear with exactly h' points of P '. As each element of P ' is 
collinear with one and only one point which is incident with A, there 
results I P ' I =  I { all x  E P  || x  IA  } | k' =  kk! or h! (k! r  —  k' —  r -f- 2) =  kk! or 
k — I =  (k(—  1) (fi’ —  1). Consequently r' —  1 =  r  —  1 or r  =  r-\ a con- 
tradictiop. W e conclude th a t (fi!. —  1) (rf — i)2 <  ( r — 1) ( k —  1).

C o r o lla r ies . C8. (fi! —  i)3 ( /  - i)3 <  (r i )2 (k —  i)2.
C9. Suppose th a t r' >  2 and k' >  2. Then (r r— i)5 <  (fi —  i)6 and 

dually  (k' —  i)5 <  ( r —• i)6.

Proof. From  r ’ > 2 and k' >  2 there follows th a t r ’ —  1 <  (k' —  i)2 
or ^ r ' ~ i < k ' — I .  So ]/V; -— I (r' ■— i f  < ( r —’ 1) ( k — 1). As. r >  2
and k > 2 we have also r —  1 <  (k ■— i)2. Hence ]/r7 —  1 (:r1 —  i)2 <
<  (k — i)3 or (r ’ — i)5 <  (k —  i)6.
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C io. Suppose th a t k  =  r  =  s and k' — r' — s' (s' < s). T hen (s —  i)2 >  
> ( T - i ) 3.

5.2. The p a r ticu la r  case  k =  r  =  s , k' =  r' =  s' (s' < s). I f  the 
\-gonal configuration S =  (P, B , I), with k  =  r  =  r, has a proper Af-gonal 
subconfiguration S '=  (P', B ', T), with h ' =  r ' =  s' and s' ~> 13, then there 
holds (s —  i)2 >  3 (s' — i)3.

Proof. If  *  (resp. L ) is a point (resp. line) of P  — P ' (resp. B — B ') 
which is not incident w ith a line (resp. point) of S ', then the num ber of points 
(resp. lines) of S ' which are collinear (resp. concurrent) with ;r (resp. L) is 
denoted by a*(resp. ßL)- W e call oc (resp. ß) the m axim um  value of a*(resp. ßL).

L et r  be a point of P —  P ' which is not incident w ith a line of S ' and 
let ccx =  oc. Now it is no t difficult to prove th a t | B ' |=  as' +  ^  ßL , where

L
the sum m ation runs over the  lines L  of B which are incident w ith t  and which 
are not incident w ith a point of P ' (the num ber of lines L  equals s —  ol). 
C onsequently | B ' [ <  as' +  (s — oc) ß or T ((s'—  i)2 +  1) <  ocT +  (j —  a) ß (1). 
D ually  ßr' +  (s —  ß) oc >  s' ((s’ —  i)2 +  1) (2). Sum m ation of (1) and (2) 
gives: oc (j +  s' 2 ß) -f- ß (s +  r ')  >  2 s' ((s' — i)2 -f- 1) (3). W e distinguish 
four cases.

(a) Suppose th a t ß >  (s +  s')12 and oc >  ( j - f  T)/2. As s' — 2 ß <  o 
and oc >  (s +  s')/2, there follows from (3) th a t T d lT  ^ 3 . /  —  2 ß) +

+  ßCf +  0  Sì 2s ' ( ( s ' —  I ) 2 + . I )  or ( r  +  j ' )2 > 4 T ( ( T — i)2 +  1). Conse- 
quently

((s ~~ 0  +  (?' 0  +  2) 2̂ 4 (+ I)3 +  4 (+'— i)2 +  4 ( V — 0 + 4 )  or

0  —  O2 >  4 (*' —  0 3+  3 (s' — i)2 —  2 (s —  i) (s'—  i) — 4(s  — 1).

(b) Suppose th a t ß <  (s +  s') 12 and a <  (s+ s')/2. As s +  s ' —  2 ß >  o 
and oç <  (s +  s')/2, there follows from (3) th a t + + -■-. (s s' —  2 ß) +

+  ß (s +  s ‘0 2̂  2 s ' C(s ' 0  + ' 0  or 0  +  s')2 ^  4 s ' ((?' '— 0 2 +  0 - Conse­
quently

( r — i )2 > 4 ( T —  i )3 + ' 3 ( j ' — i )2 — 2(s — i) (T — i ) — 4 ( j — i).

(c) Suppose th a t oc (s —j— s'')j2 and ß > ( *  +  T)/2.

I f  -S'—  !>(-*■'—  I)2, then (s — i)2 >  (s.’~  i)4 >  4 ( r ' —  i)3 +  3 (s’ —  i )2 
(taking account of s' >  13 >  5). Consequently

(* —  O2 >  4 (S  —  I ) 3 +  3 (s'. —  I)2— 2 (s — I)  (s' —  0 — 4 (s —  I) .

Next, let s —  1 <, (s' ■— i)2. W e .prove th a t in this case oc >  s'. Suppose 
the contrary. If  L  is a line of B — B'  which is not incident with a point of 
S , then it is not difficult, to prove th a t | P ' | =  ßL s' -j- 2  > where the sum-

X

m ation runs over the points x  of P  which are incident w ith L  and which 
are no t incident with a line of B '. Consequently s' ((s' —  i)2 +  1) <  ßL s' +
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+  (J —  P O 'OC <  P l  s ' +  (s —  P O  s ' or s' ((s' —  i ) 2 +  i) <  ss'. There results 
s —  I >  (V — i)2, a contradiction. W e conclude th a t a >  s'. From  
ß (s' —  a) -j- sa >  s' ((s' —  i ) 2 +  i) (see (2)), s' —  a < o  and ß > ( j  +  j ' ) /2  

there follows th a t — (s' —  oc) +  ja  >  s.' ((s' —  i ) 2 +  1) or <x.(s— s') +

+  s'2 +  ss' > 2  s' ((s' — i)2 +  1). As a <  (s +  s') 12 there holds L.L (s —-j') _j_-

+  j'a +  j j '  >  2 s' ((s'—  I)2 +  i) or (s +  s')2 >  4 j '  ((s' —  i)2 +  1). So we 
obtain again

0  -  l f  > 4  (S' —  i f  +  .3 (S' —  I)2-  2 (s -  I) (s' ■ I ) 4 (s I).

(d) If  <*>(s +  sr)/2 and ß <  (s +  s')j2, then again

(s ■ i)2 > 4  (sf i)3 +  3 (sr   L')2-— 2 (s -■ I) (sr    1)  4 ( 4 — 1)
(dual of (c)).

We conclude th a t in all the possible cases

(s i )2 >  4  (s' ■ i)3 -f- 3 (s' —  i)2—  2 (s —  1) (s' —  1) —  4 (s -— 1).

Now we have to distinguish two cases.

0  s ■— I >  (s' —  i)2/2. As s' >  13 there holds 3 (s' — i)2 <  (s' — i)4/4, 
and so ( s — i)2 >  (s' —■ i)4/4 >  3 (sr —  i)3.

2) s — I <  (s' —  i)2/2. T hen 3 ^ '  — i)2 > 6 ( s —  1) and (s' — i)3 >  
>  2 (s — i )  —  i). So (s —  i )2>  3 (s'—  i)3+  2 (s I) (T -— 1) T  6 (s —  I) —

2 1 ) (s 1 ) 4 (s 1 ) or (s 0  ^  3 ($' I )3 T  2 (s ■— I ). Con­
sequently (s —  i)2 >  3 —  i)3.

W e conclude th a t (s — i)2 >  3 (s' —  i)3 when s' >  13.

5.3. EXAMPLES, (a) Let Q' be a non-singular hyperquadric of index 2 
of the projective space PG(4 , q) over the Galois field GF(q). Now we consider 
the extension ]GF(qn) (n >  1) of the field GF(q) and also the corresponding 
extension P G ( \ , q n) (resp: Q) of P G (4 ,q )  (resp. Q') (we rem ark th a t Q is 
a non-singular hyperquadric of index 2 of the projective space P G ( 4 , q n)). 
Then the 4-gonal configuration Q ' (4 , q) is a proper 4-gonal subconfiguration 
of Q’(4 , qn). In  this case we have k =  r  =  qn +  1 , Jz =  r' =  q fi- 1 (q is 
a prim e power and n >  1).

(b)* Consider an irreducible coniç C’ of the plane P G (2 , q) C P G (3 , q), 
where q =  2h. I f  .x  is the nucleus of C’, then Cr \j { x }  =  O’ is an oval of 
PG(2 ,q) .  Let GF(qn) (n >  1) be an extension of the field GF(q) and let 

(resp. P G ( 2 ì qn')ì resp. C) be the corresponding extension of 
^ ^ ( 3  > ç); (resp- PG(2 ,q ), resp. C'). T he nucleus of the irreducible conic C 
evidently  is the point x. T he oval C \j  { x }  of P G (2 , qn) is denoted by O. 
T hen the 4-gonal configuration (q) is a proper 4-gonal subconfiguration 
of O (qn). In  this case we have k =  qn, r  =  qn - f  2 , k ’ =  q , r' =  q +  2 
(q =  2h and n >  1).
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