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Geometria. — g—gonal subconfigurations of a given 4—gonal confi-
guration. Nota di JosepH AporpHE THas, presentata ® dal Socio
B. SkGrE.

RIASSUNTO. — Si introducono e studiano certe strutture finite, includenti quelle for-
mate dai punti e dalle rette di una quadrica non degenere (su cui non giacciano piani) di
uno spazio di Galois di dimensione 3, o 4, o 3.

I. INTRODUCTION

1.1. DEFINITION. A finite 4—gonal configuration [2] is an incidence
structure S = (P, B, I), with an incidence relation satisfying the following
axioms.

(i) each point is incident with » lines (» > 2) and two distinct points
are incident with at most one line;

(ii) each line is incident with £ points (%> 2) and two distinct lines
are incident with at most one point;

(iii) if x is a point and Z is a line not incident with x, then there are
a unique point #’ and a unique line Z' such that x I Z' T+ 1L,

1.2. FUNDAMENTAL RELATIONS. /f |P|=9 and |B|=14, then
v=~Fk(hr—rk—r-+2) and b =r(kr—/k—r-+2). In [4] D. G. Higman
proves that the positive integer £-47»-—2 divides &r(f—1)(r—1).
Moreover, under the assumption that 2> 2 and 7> 2, he shows that
r—1<(—1"and £—1<(@—1)

1.3. EXAMPLES OF 4-GONAL CONFIGURATIONS. (a) Let P = {x,; ||7,; =
=1,2, -, ktand B={L,, Ly, -, L,, My, My,---, M}, where k> 2.
Incidence is defined as follows: x;1L,«=i=1/,x;1M,&=>; =1/  Then
S=(P,B,I) is a 4-gonal configuration with parameters 2= £, = 2,

v=~4#, b =2k This 4-gonal configuration is denoted by T(4).

(b) We consider a non-singular hyperquadric Q of index 2 of the
projective space PG(d,q), with d = 3,4 or 5. Then the points of Q
together with the lines of Q (which are the subspaces of maximal dimension

(*) Nella seduta dell’11 novembre 1972.
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on Q) form a 4-gonal configuration Q(4,¢) with parameters [2]
k=g+1 , r=2 , wz(g+1)2,é=2(g+1), wheha’=3;
k=r=g+4+1 , v=056=(¢+1)(g2+ 1), when d = 4;

F=g+1 , r=g+1 , =G+ D@+ , b=(@+1)(AE+1),
when 4 = 5.
REMARKS. 1) Q(3,¢) is isomorphic to T(g -+ 1).

2) The points of PG (3, ¢), together with the totally isotropic lines with
respect to a symplectic polarity =, form a 4-gonal configuration W(g) which
is ‘isomorphic to the dual of Q(4,¢) [1].

(c) Let / be a non-singular Hermitian primal [8] of the projective
space PG (d,q),q = p*. 1f d = 3 or 4, then the points of A together with
the lines of / form a 4-gonal configuration H(d,¢) with parameters [2]

k=g+1 , r=1+Vg , v=>_0+¢.(1+¢Vg) , b= (14+Vg) (1+4Vq),

when & = 3;
k=g+1,r=144gV7 , v=>+9) (1+¢Vg) , b=1+¢V7) (1+¢Vq),
when & = 4.

(d) Consider an oval O (i.e. a set of g + 2 points no three of which
are collinear) of the plane PG (2,¢),q = 2" Let PG(2,q) be embedded
as a plane /7 in PG (3,¢g) = P. Now a 4-gonal configuration O(g) is defined
as follows [3]. Points of O(g) are the points of 2-— /. Lines of O(g) are
the lines of 2 which are not contained in Z and meet O (necessarily in a unique
point). Incidence is that of 2. The 4-gonal configuration 0(g),q9 = 2%
so defined has parameters '

k:‘g: r=gqg-+z2, y=g3’ 5292<£7”|’2)

2. OVALOIDS AND SPREADS

2.1. DEFINITIONS. An ovaloid (resp. spread) of the 4-gonal configu-
ration 8§ = (P, B, I), with parameters £, 7, v, 4, is a set of br — k—r +2=10
points (resp. lines) no two of which are collinear (resp. concurrent). We
remark that 0 is the maximal number of points (lines) of S, no two of which
are collinear (resp. concurrent).

2.2. EXAMPLES OF OVALOIDS AND SPREADS. (a) If S = T (%), then
0 =4 We see immediately that {xy;, %, -, 2} is an ovaloid and that

{Z1, Ly, -+, L} is a spread (we remark that T(%) possesses 4! ovaloids
and 2 spreads).

(b) For 8 =Q(4,¢), we have 6 = g2 +1. Let PG(3,¢) be a hyper-
plane of PG(4,9)DQ for which PG 3,9 N Q=0 is an elliptic quadric

36. — RENDICONTI 1972, Vol. LIII, fasc. 6.



522 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIII — dicembre 1972 [330]

of PG(3,9). Then Q' evidently is an ovaloid of Q(4,¢9). As Q(4,9),
g = 2% is always self-dual ([9], [1]) there follows immediately that there exists
also a spread of Q(4,¢). Finally, we remark that Q(4,¢),¢ odd, does not
contain a spread [I0].

If $=0Q(5,9), then 6 =¢34 1. We do not know if Q(5,¢) possesses
spreads or ovaloids.

(c) For §=H(3,¢9),9 = p*, we have 0 =¢Vg+ 1. Let PG(2,q)
be a plane of PG (3,¢) D H for which PG(2,¢) N H = H' is a non-singular
Hermitian curve of PG (2,¢). - Then H' evidently is an ovaloid of H(3, g).
We do not know if .there exists a spread of H(3, ¢).

If S=H{4,9),9=p% then 6 =¢2Vg+1. We do not know if
H (4, ¢) possesses spreads or ovaloids.

(d) For S = 0(g), ¢ = 2% we have 6 =42 Let PGD(2,4) be a
plane of PG(3,9)D PG(2,9)D0 where PGD (2,¢9)N PG (2,9) =L has
no point in common with O. Then PGW (2, 9) —L evidently is an ovaloid
of O(g). Itis also evident that the ¢2 lines of PG (3, ¢), which are not contained
in PG (2, ¢) and meet O in a fixed point, constitute a spread of the 4-gonal
configuration O(g).

3. 4—GONAL SUBCONFIGURATIONS OF A GIVEN 4—GONAL CONFIGURATION

3.1. DEFINITIONS. The 4-—gonal configuration 8'= (P', B', I') is called
a 4—gonal subconfiguration of the 4—gonal configuration $ = (P, B, I) if and
only if PPCP,B'CB and I'=1N(P'XB). If §'==S, then we say that
S’ is a proper 4-gonal subconfiguration of S. When the parameters of $ are
denoted by 4,7, v, 4, the parameters of §' are denoted by £',+, 2", 4.

3.2. THEOREM. If S'= (P',B', 1) is a 4-~gonal subconfiguration of the
d4—gonal configuration S= (P,B,1), then y1L1x, with x,y€P and L € B,
implies L € B'. Dually, L1x1M, with L , M €B' and x €P, implies x € P'.

Proof. Suppose that yIZ1x, with x,y€P and Z€B. Let L'==7
be a line of 8’ which is incident with x. From (iii) in the definition of 4-gonal
configuration there follows immediately that there are a unique point x’ € P’
and a unique line 2" € B, such that yI'2""1'2'1'L’. As y12"12'1 L' and
wIZLIx1L', it follows that x=2" and L= L". So we conclude that Z€B'.

COROLLARIES. Cr1. If L € B then there are three possibilities:

() PreP'2x1L; (b) AlxeP|[x1L; (c) LeB.

C2. If x € P then there are three possibilities:

(a) ElEILEB'[]xIL; (b) A LeB'||x1L; (c) x€P.

C3. If S' is a proper s~gomal subconfiguration of S, then P==P' and
B==B' (ie. v'<v and &' < b).
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4. THE CASE k= /£ 7' <r

4.1. THEOREM. Suppose that the 4~gonal configuration S = (P, B, I),
with parameters k,r,v,b, has a 4-gonal subconfiguration ' = (P', B, 1",
with parameters k,r',v',6' (¥ <»). Then S' possesses an ovaloid and
r—1<(r—n/tk—1).

Progf. We consider a point x € P—P’. From C2. there follows: EIEIL €B'|
x1ZL(C2'.). LetL,,Ly,---, L, be the 7 lines of S which are incident with x.
Taking account of Cr1. and C2'., it follows that Z, ;7 =1, 2,---, 7, is incident
with at most one point of 8'. Suppose that Lij s Liyyoo oy Lig {2y, 29,++, 45} C
C{r,2,---,7}, are the lines which are incident with one point of S'. If
2,1 L, 2,€P and j=1,2, -+, a then from the definition of 4-gonal
conﬁgura’aon there follows 1mmed1ately that {x; ,xi,, -+, 2, } =0 is a set
of « points of 8’ no two of which are collinear. Hence the configuration S’
contains a7’ distinct lines which are incident with one of the points
of O.

Next we consider an arbltrary line Z' of §'. There are a unique line
L"€B and a umque point x' € P such that xIZ"Ix'1Z. As x'€P/, it
follows that x'€O. So the line Z' is incident with one of the pomts
of O.

~ From the preceding there follows immediately that ar’ = &'— »/ (for' —
—4k—7'+42) or « = kr'—k—7»'-+ 2. Hence O is an ovaloid of S'. More-
over we have = Ar'—k—7r'+2<7r or 7 —1 < (r — D/(f— 1).

COROLLARIES. C4. 7 > £ ;7 = £ implies »' = 2.
Cs. If 2> 2 then we have »' < 4; #' =/ > 2 implies » — 1 = (F— 1)

Proof. From C4. there follows that » > 2, and so we have »—1 <
- < (k—1)" (12). Consequently 7 — 1< (r — D)J(A— 1)< &—1 or ¥ < &,

If #=/%>2then b—1=¢"—1<(r—1)/(f—1), and so »r— 1 >
> (£—1)°. From the preceding there follows immediately that » — 1 =

= (t— 1)

REMARK. When £ =2 it is easy to prove that 2 < /' < is the only
restriction, for 7.

C6. Suppose that »'>2 and £2>2. Then JEA—1<¢ —1 <h—1
(F) and (4 — 1)’ <r—1 < (b— D?(F).

Proof. From ' > 2 and £ > 2 there follows that »' < 4 and (' — 1)®>
>F—1. So we have JEA—1<# —1<h—1.

Next we remark that 2 — 1 < ¢'— 1)< (r—1)? [(f— 1) or (f—1)’<
<(—1)". Ask>2andr»> 2 we also have r — 1 < (£ — 1)°. We conclude
that (#—1)*? <»— 1<(/é—1)
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REMARK. Let r—1=(£— 1) £>2 and ' >2. Then » —1<
<@¢—1")(k—1) or ¥ —1<|Z—1. From (F) there follows that
y—1=VE—1.

C7. If S’ possesses a proper 4-gonal subconfiguration 8’ with para-
meters 4,7, 0, 4", k> 2, then '=2,7=4% and r—1 = (b— 1)

Progf. There holds ' < £(Cs.) and »"' — 1 < (#' — 1)/(#—1). Hence
r'—1 g% < % or /' < 2. There results that »'= 2 and »'= 4.
From Cs. there follows immediately that » — 1 = (4 — 1)%

4.2. THEOREM. Suppose that the 4—gonal configuration S = (P, B, 1),
with parameters fk,r,v,b, has a proper 4-gonal subconfiguration
S'= (P, B, 1), with parameters k,r', v, b, and suppose moreover that
¥ —1<(r—1)[(k—1). Then P’ is the union of k disjoint ovaloids of S'.

Proof. From the Proof of 4.1. there follows that »' — 1 < (r —1)/(£— 1)
if and only if B contains a line Z which is incident with no point of P'. If
%;1L, x;€ P and j=1,2, -, 4 then the points of P’ which are collinear
with x; constitute an ovaloid of 8 (see Proof of 4.1.). In this way we obtain £
ovaloids of 8. As 8 does not contain a triangle, these ovaloids evidently
are disjoint. From o' = £0', with 0'= &' — % —#' -+ 2 the number of
points of an ovaloid of §', there follows that P’ is the union of 4 disjoint
ovaloids of S'.

4.3. REMARK. Suppose that O is an ovaloid of the 4-gonal configu-
ration 8 = (P, B, I), with parameters 2,7»,v,4. If 8= P B,I)is a
4-gonal subconfiguration of S, with £ = £, then it is easy to prove that
ONP is an ovaloid of S’

4.4. THEOREM. LZLet 8'= (P',B', 1) be a substructure of the 4—gonal
configuration S = (P, B, 1), with parameters kv, v, b(k> 2), satisfying the
Jollowing:

(i) every two distinct points of P which are collinear in S are also colli-
near in S';

(ii) each element of B' is incident with k points of P'. Then there are
three possibilities: ‘

(@) the elements of B' are lines which are incident with a same point
of P, and P' consists of the points of P which are incident with these lines;

(6) B'= @ and P' is a set of points of P, no two of which are collinear
n S,

(¢) 8'= (P, B', 1) is a 4-gonal subconfiguration of S with parameters
B, o8

Proof. Evidently (i) and (ii) are fulfilled by (a), (b), (¢). Now we show
that there are no other possibilities.
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Suppose that 8= (P', B, I') satisfies (i), (ii) and is not of type (a),
(b). Then there holds B'== @ and P'== . Suppose that L' € B". As S’ is
not of type (a) there exists a point #' € P’ such that '¥'Z'. Let x be the
unique element of P and let L be the unique element of B for which
#'IL1xIL'. We remark that x€P' (see (ii)). From x,x €P' and
x' I L I x there follows immediately that Z € B’ (see (i)). And so axiom (iii)
in the definition of 4-gonal configuration is satisfied by 8. Now we show that
also (i) and (ii) in definition 1.1. are satisfied.

First of all we remark that every line of B is incident with 4 (> 2) points
of P’ and that two distinct lines of B’ are incident with at most one point of
P'. Next we consider a point ' € P’ and we suppose that z' is incident with
7' (> 0) lines of B'. Let 3’ € P’ be a point which is not collinear with x' and
call 7' the number of lines of 8’ which are incident with 4’ (as 8’ is not of
type (a) or (b), such a point »’ exists). If L' is a line of B’ which is incident
with x' (resp. »'), then there exists one and only one line of B’ which is inci-
dent with y' (resp. ') and which is concurrent with Z'. There follows imme-
diately that " = 7"". In the same way we can prove that #’ is the number
of lines of B’ which are incident with any point of P’ which is collinear with
x" but which is not collinear with 3’. Finally we consider a point 2’ € P’ which
is collinear with x' and 3. We have to consider two ' cases.

(a) Let us suppose that ' = 1. The line which is incident with x’ (resp.
¥") and z' is denoted by L' (resp. L'). Suppose that L is a line of B’ with
Le{L,L"}. Then x'¥L,y'YL (since » =" = 1). Since there exists a
line of B' which is incident with 2’ (resp. ¥) and which is concurrent with
L, there results that Z and L' (resp. Z and L"") are concurrent (taking account
of 7 =7""=1). So we conclude that z'IZ. Consequeritly 8" is of type (a),
a contradiction.

(b) Let us suppose that 7' > 1. We consider a line Z of B’ which is inci-
dent with x’ and which is not incident with 2. As £ > 2 there exists a point
u'eP — {x’}' which is incident with Z and which is not collinear with y'.
Such a point #' is not collinear with 2’ or y’. There follows: number of lines
of 8 which are incident with 2’ = number of lines of 8’ which are incident
with %' = number of lines of 8’ which are incident with 3 = .

Consequently every point of P’ is incident with #'(> 2) lines of B’ and
two distinct points of P’ are incident with at most one line of 8'. So we con-
clude that 8’ is a 4-gonal subconfiguration of 8 with parameters 4,7, o', &'

ReEMARK. Consider the 4-gonal configuration S = (P, B, €), where
P:{I )273’4’5»6} ‘and Bz{{l '4}’{1!5}’{1’6}’{2’4}:{2’5};
12,63,{3,4},{3,5},{3,6}} (here we have k=2, r=3, v=G6,
6= 09). Then the substructure 8§ = (P',B’,€), where P'={1,2,4,5,6}
and B'= {{1',4},{1,35},{1,6},{2,4},{2,35},{2,6}}, satisfies (i), (ii)
and is not of type (a), (b), (c). We conclude that condition %> 2, in the
statement of Theorem 4.4., cannot be deleted.
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4.5. EXAMPLES. (@) Let P={x,%,,%,%,%, %} and
B={L;l|lz,7j=1,2, --,7}, where » > 2. Incidence is defined as follows:
Ljlxje=i=17,L;ly,<=>j=17 Then S=(P,B,]) is a 4-gonal configu-
ration with parameters k=2,r=r, v=2r, b=+2 This configuration is
denoted by T*(») and is the dual of the conﬁguratlon T(r). Then the struc-
ture T ()= (P,B, 1), with 2 < < P={x, - S A R T
B' = {L,lli,j=1,-,7},I'=IN@PXxB), evidently is a 4-gonal
subconfiguration of 8 with parameters 2 =2, »' =7/, v/ = 2/, & =2,

(b) For 8 =Q(4,9) we have k=7 =g+ 1. If S’ is a proper 4—
gonal subconfiguration of Q(4,¢) with parameters £ =g+ 1, », 7/, 4,
then necessarily ' = 2 (C4.). It is easy to prove that Q(4 , ¢) possesses such
4-gonal subconfigurations. Next, let Q*(4,¢) = W(y) be the dual of S.
Then it is possible to prove that W (g) possesses proper 4-gonal subconfigu-
rations, with 2 = g + 1 (then necessarily #' = 2), if and only if ¢ is even,
i.e. if and only if W(g) is isomorphic to Q(4,¢) (cfr. [1]).
For S*Q(s g9) we have 2=g¢ + 1, r=¢2+ 1, and so »r—1 =
=(—1)? If S isa proper 4—gonal subconfiguration of Q(s q) W1th
% = g+ 1, then necessarily 7' < g+ 1. If#' > 2 then we have 7 >Vg 41
(cfr. C6.). Let PG(4,9) be a hyperplane of PG (5,¢) DQ for which
PG4, g) N Q = Q' is a non-singular hyperquadric of index 2 of PG(4,9).
Then Q' (4, ¢) is a proper 4-gonal subconﬁgura‘uon of Q(5,¢) with ' =g+ 1
and 7' =g+ 1. Consequently Q'(4,¢) possesses ovaloids. We remark
that in this case 7 = % (cfr. C5.). From the preceding there also follows that
Q' (4,9), and consequently Q(s, q) possesses 4—gonal subconfigurations
with parameters ¢+ 1,2, (¢ -+ 1)% 2(g + 1) (cfr. C7)
(c) As 7 <k the configuration H(3,¢),q = »°*, has no proper
4-gonal subconfigurations with 2" = ¢ 4 1(C4.).

For S-=H(4,g),q=,p2h, we have 2=g¢g-+1,r=1-+¢Vg, and
s0 7—1 = (k—1)"? (cfr. C6.). If S' is a proper 4-gonal subconfiguration
of H(4,q) with 2 = g+ 1, then necessarily ' =2 or »'=Vg +1 (see
remark of C6.). Let PG (3,¢) be a hyperplane of PG (4,¢) D H for which
PG(3,9)0 H = H' is a non-singular Hermitian primal of PG(3,¢). Then
H'(3,9) is a proper 4-gonal subconfiguration of H(4,g) with £ =g+ 1
and 7' =Yg + 1. Consequently H'(3, ¢) possesses ovaloids. It is not diffi-
cult to prove that there does not exist 4-gonal subconfigurations of H(4 , ¢)
with £ = ¢+ 1 and »' = 2.

(d) We shall prove that O(g),g = 2* and %> 1, does not possess
a proper 4-gonal subconfiguration with £ =g¢ and »' > 2. Suppose the
contrary. Then from C6. there follows that (4— 1" <7»—1 < (—1)?
or (g— 1P <gt1< (¢g—1)%, a contradiction. Finally we shall con-
struct a 4-gonal  subconfiguration S'= (P, B, 1) of 0O(g) with 2 =g
and »'= 2. Let PGM(2,¢) be a plane of PG(3,¢)D PG(2,¢)D O, where
PGD(2,9)N PG(2,¢) = L has two distinct points x , ¥ in common with O.
Define: P'= PGW(2,¢)— L, B'= {lines of PGV (2 ,4) which are diffe-
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rent from L and contain x or y}, incidence is that of PG(3,¢). Then the
configuration S8’ so defined evidently is a 4-gonal subconfiguration of S,
with parameters £ =¢,7' = 2,0 =¢2,8' = 2¢.

5. THE CASE £ < £, r'<r

5.1. THEOREM. Suppose that the 4-gonal configuration S = (P, B, ),
with parameters k,r,v, b, has a 4~gonal subconfiguration S'= (P',B’,1"), with
parameters kv V' 8 (B <k, v <r). Then (' —1) (' —1°<(r—1) (k— I)
and dually (r' —1) (K — 1> < (r —1) (A — 1)

Proof. Suppose that L'€ B, xIL  xe¢P'. Let LEB—{L'} and xI1L
(from C2. there follows that Z ¢ B). Then we prove that P’ does not con-
tain an element which is incident with Z.

Suppose a moment that '€ P’ and x’'I L. As 8’ is a 4-gonal configu-
ration, there exists an element 3’ € P’ which is incident with Z' and collinear
with 2. There follows that 8 possesses a triangle (with vertices x, x/, y'),
a contradiction. So we conclude that P’ does not contain an element which
is incident with Z.

Next, let yI L and x == y. From the preceding and from C2. there follows
immediately that y is incident with at most one line of 8. So the number
of elements of B'— {Z'}, which are concurrent with a line of B which is
incident with x, is not greater than 4 (+'—1)+ (4— 1) (> —1). Further
we remark that each element of B'— {Z'} is concurrent with one and only
one line of B which is incident with x. There results that |B'— {L'}| <
<HKH@E —D+ @tk —1D)@—1Dorr(kr—EF—r+2)—1 <k —1)+
+(—1)(r—1). Hence (' —1)(r — 1) < (r—1) (b—1).

Suppose a moment that (4 — 1) (*' — 1)’ = (r — 1) (f—1). If LeB—
—{L'}, xIL, yIL, x==y, then y is incident with exactly one line M’
of 8'. From the first part of the proof there follows that P’ does not contain
an element which is incident with a line M e€B—{M'}, where yI M.
Hence y is collinear with exactly 4 points of P'. As each element of P’ is
collinear with one and only one point which is incident with Z, there
results |P'| = [{allx € P|xIL}| &' = k' or B (K r' —k —r +2) = &k or
k—1 = (k—1) (" —1). Consequently »'— 1 =7—1 or » =17, a con-
tradiction. We conclude that (&' —1) (' — 1> < (r — 1) (f—1).

COROLLARIES. C8. (4 — 1)’ — 1) < (r— 1) (b — D)2
Co. Suppose that ' > 2 and 4 > 2. Then (' —1)° < (4 — 1) and
dually (# —1)° < (r — 1)°.

Proof. From 7' > 2 and 4 > 2 there follows that »' — 1 < (&' — 1)?
or J#¥—1<F—1. So Vr—1(—1)P<@—1¢—1). As r>2
and £>2 we have also »r—1<(4—1)>. Hence V7 —1( — 1)<
<¢k—1% or (¥ — 1)’ < (b—1)".
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Cro. Supposethat,é—-f-sand,é——r—s(s <s). Then (s — 1)* >
> (s' — 1)

5.2. THE PARTICULAR CASE k=r =3,k =70 =s'(s'<5). If the
4~gomal configuration S = (P, B D), with k=r =5, has a proper 4~gonal
subconﬁgumz‘zon S'=(P,B,1", wzlh B =r =y and s' > 13, then there
holds (s — 1)? > 3(s' — 1)°.

Proof. If x (resp. L) is a point (resp. line) of P—P' (resp. B — B)
which is not incident with a line (resp. point) of 8’, then the number of points
(resp. lines) of 8’ which are collinear (resp. concurrent) with x (resp. L) is
denoted by o, (resp. Br). We call « (resp. 8) the maximum value of a, (resp.BL).

Let x be a point of P— P’ which is not incident with a line of 8’ and
let o, = «. Now it is not difficult to prove that ]B |= as’ +Z B, where

the summation runs over the lines Z of B which are incident with x and which
are not incident with a point of P’ (the number of lines Z equals s— o).
Consequently |B'| < as’ 4 (x—oc)B or s'((s"— 1)’ +1) < as’ + (s—a) B(1).
Dually Bs’ + (s—B) «>=>s"((s' —1)>+1) (2). Summation of (1) and (2)
gives: a(s+ s —2B)+ B+ s)>2s ((s — 1241 (3). We distinguish
four cases.

(a) Suppose that B > (s + 5')/2 and a > (s+ s')/2. As s+s' —2B<o0
and « > (s+ s')/2, there follows from (3) that = % s (s+s"—2B)+
+BG+s) =25 (s — 2+ 1) or (s+s) >4 (s"— I) 4+ 1). Conse-
quently

=0+ =D+ 2= 40— 1P+ 46" — D+ 4 — 1)+ 4, or
(=12 40— 1P 30— D —2(s— 1) (' — 1) — 4(s —1)

(b) Suppose that B < (s +s)/2 and a < (s+ s7)/2. As s+ s —2B>0
and a < (s+ s)/2, there follows from (3) that s+3 (s+s"—2B)+
+ B+ ) =25 (s — I) + I) or (s4 sV >4s ((s — I) + 1). Conse-
quently

=0 >4 — 1D+ 3¢ — 1) —2(—1) (' — 1) — 4(s — 1).

(c) Suppose that a < (s+ s')/2 and B = (s + 5)/2.
If s—1>(s'—1)% then (s — 12> (5 — D> 4 — 1%+ 3(s'—1)?
(taking account of s'>13>35). Consequently
(6 — 1) 2 40— 1° 4 3¢ — 1P — 2 (s — 1) (' — 1) — 4 (s — 1).

Next, let s — 1 < (' — 1%, We prove that in this case a« > s’. Suppose
the contrary. If Z is a line of B— B’ which is not incident with a point of
, then it is not difficult to prove that |P'| =BLs —I—Z , where the sum-

mation runs over the points x of P which are 1nc1dent with Z and which
are not incident with a line of B". Consequently s'((s' — 1)® + 1) < B s’ +
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+ (=B a<PLs 4+ (s—B)s or s ((s"—1)*+ 1) <ss’. There results
s—1> (" —1)? a contradlctlon We conclude that o>s'.  From
B(s'—a) + s> s"((s"— I) + 1) (see (2)),s'—a<o and B=(s+ )2
there follows that - + (s —a)+sa>s((s' —1)%+1) or als —s) +

+ 245" =28 (5" — I) +1). As o < (s + s')/2 there holds Stsl (s—s)+
+ 255" =28 ((s"— 1)2 +1) or (s+s)V=4s5((s — 1)+ 1). So we

obtain again

(= P =4l — P 3 — 1 —2(— 1) (' — 1) — 4 (s — 1),
(d) If a=(s+s)/2 and B < (s+ s')/2, then again

(= 1= 40— P 3 — 1P 2 (s — 1) (5 — 1) — 4 (s — 1)
(dual of (c)).
We conclude that in all the possible cases

(1P = 40— 0P 30— P 25— 1) (' — 1) — 4 (s — 1).
Now we have to distinguish two cases.

Ds—1>(s'—1) /2 As s’ > 13 there holds 3(s' — 1)* < (s'— 1)*/4,
and so (s —1)*> (s' — D*4 > 3(s' — 1)°.

2) s—1<(s'—1)’2. Then 3(s' — 1) >6(s—1) and (s' —1)® >
>2(s—1)('—1). So (s —1)>=>3(s'—1)° —|—2(s—1) (5—1\+6(x—1)—
—2(—1)( —1)—4(5—1) or (s—1)?>3(s —1)° +2(s—1). Con-
sequently (s — 1) > 3(s' — 1)

We conclude that (s — 1)>> 3 (s'— 1)® when s' > 13.

5.3. EXAMPLES. (a) Let Q' be a non-singular hyperquadric of index 2
of the projective space PG (4 , g) over the Galois field GF(¢). Now we consider
the extension'GF(g”) (n > 1) of the field GF(g) and also the corresponding
extension PG (4 ,4¢") (resp: Q) of PG(4,¢) (resp. Q") (we remark that Q is
a non-singular hyperquadric of index 2 of the projective space PG (4 ,¢").
Then the 4-gonal configuration Q' (4, ¢) is a proper 4—gonal subconﬁguration
of Q(4,¢"). In this case we have ,ézr—g + 1, =r=g+1 (¢ is
a prime power and 7 > I).

(b): Consider an irreducible coni¢ C’ of the plane PG (2, ¢) C PG (3, g),
where ¢ = 2% If x is the nucleus of €', then C'U{x} = O is an oval of
PG(2,q). Let GF(g") (n> 1) be an extension of the field GF(g) and let
PG (3,9") (resp. PG(2,q"), resp. C) be the corresponding extension of
PG (3 ,4q) (resp. PG(2,¢), resp. C'). The nucleus of the irreducible conic €
evidently is the point x. The oval C U {x} of PG(2,¢") is denoted by O.
Then the 4- gonal configuration O’ () is a proper 4-gonal subconfiguration
of O(¢”). In this case we have =g r=¢"+2, =g, =g+2
(g = 2" and # > 1).
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