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Topologia. — Cubical Polyhedra and H’omoz‘op‘y. Nota IV di
Weobpzimierz HorszTyNsk1 e Jozer Brass, presentata @ dal Socio
B. SEGRE.

RIASSUNTO. —Si continuano tre Note con lo stesso titolo apparse-in quésti « Rendiconti ».
Nella presente Nota IV ed in una successiva Nota V' viene costruita una teoria omologica
del tipo di Cech basata sullo schema cubico. Pill precisamente, si definisce I’'omologia cubica
di Cech di uno spazio compatto X come il limite inverso delle omologie combinatorie di
poliedri approssimativi QX (ved. [1]). Si mostra poi che la teoria omologica cosi costruita
soddisfa agli assiomi di Eilenberg—Steenrod per le teorie omologiche continue definite sulla
categoria degli spazi compatti.

INTRODUCTION

In the present paper we construct a cubical Cech homology. The basis
of our construction is the functorial assignment to every compact space X
of a cubical polyhedron QX having the homotopy type of the space X
(see [1]). For the basic definitions used in this paper, the reader is referred
to [1] and [2].

Here is an outline of the paper.

Sections 1, 2, 3. Standard definitions of oriented faces of cubical poly-
hedra and chain complexes of cubical polyhedra are described.

Section 4. The main assertion of the section (4.5) gives us as a corollary
the acyclicity of the faces of a cube.

Section 5. Here the cubical carrier theorem (5.5) is proved. The main
object of this section is to construct the functor from the
contiguous category (see [2]) restricted to finite polyhedra
into the category Ch of chain complexes and chain homotopy
classes of chain morphisms.

Sections 6, 7. Combinatorial homology of cubical polyhedra is defined
and is shown to satisfy Eilenberg-Steenrod’s axioms.

Sections 8, 9, 10, 11. The cubical Cech homology of a compact pair
(X, Xp) is defined as the inverse limit of the combinatorial
homologies of finite polyhedra approximating Q (X, Xo).

We show that the theory of homology constructed in the above manner
satisfies the Eilenberg-Steenrod axioms for the continuous homology theory
defined on the category of compact spaces.

(*) Nella seduta dell’t11 novembre 1972.
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§ 1. INCIDENCE COEFFICIENTS OF PERMUTATIONS AND ORIENTATION
OF FACES

We will introduce now notation which will lead to definitions of oriented
faces of cubical polyhedra and chain complexes of cubical polyhedra. Let B
be a finite #—element set. Let @:{r,---,#} =B and ¢,: {1,--+,2} - B
be two permutations of B. We define an incidence number

S — 1 when ¢ and ¢; are of the opposite parity

.1 [o: @] = ( 1 when ¢ and @; are of the same parity.

Let Bo CB be a subset of B such that B\Bo = { @} and card Bp = 4. Let
@ :{1,---, £} -Bo and ¢:{1,---, 2+ 1} be permutations of By and B
respectively. Let a permutation ¢; of the set B be given by

a if7=1

(1.2) ¢1(2) = po(z—1) if 2<i<E+1.

We define an incidence number {¢: ¢y} as follows:

(1.3) {0:00} = [0:91].

We observe, that {¢: 9.} depends only on the parity classes of ¢ and o,
and that a change of one of the parity classes into the opposite one will
change the sign of {@:¢g}. Let F;C I* be a face of a cube given by
B:B—{—1,1}. An orientation of a face Fy is defined as follows:

(1.4) DEFINITION. If dim Fg <1 then an orientation of Fg is a choice
of 1, — 1.
If dim Fg > 1 then an orientation of Fy is a choice of
a permutation class of the set AN\B.

We will use = (Fg) to denote an oriented face.

§ 2. INCIDENCE COEFFICIENT OF FACES

Let n(Fs) and ='(Fg/) be orientations of faces of the cube I*, where
B and B are defined on B and B' respectively. We now define the incidence
coefficient @ of the pair of orientations:

(2.1) p=[r":n]==0 iff B'C B; card (B\B') =1
and B|B=p".
If the above conditions are satisfied and if B\B' = {a} we define:
a) p=n'-7 if dim Fg =o0
b) p=mn-{r":m,} if dim Fz =1
c) p={n":7} if dim Fg >2.
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Putting an orientation on a polyhedron W C I* is to assign to each of its faces
an orientation. More precisely an orientation of the polyhedron I* is a
function y from the set of faces of W into the set of their orientations such
that y(Fg) is an orientation of Fjg.

(2.2) LEMMA. Lety be an orientation of a cube 1*. Let Fy be a b-dimensional
Sace of 1* and let i be a (b — 2)~dimensional face of 1°. Then
1«2 [y(Fe) : y(Fe)]- [y (Fer) : Y (Far)] = 0 where Fo are (k— 1)~dimen-

‘3/

sional faces of 1™

Proof. Assume that B and B are defined on B and B' respectively
[Note that B might be empty]. In this case we can find @, ==, such that
@, € ANB and B"={a;,2}UB,p"|B=23. Then there are only
two elements Fy_in the sum given by restriction of B to {@,} U B for 7 =1, 2.

Hence,
o= 2 [Y(Fp) v (Fe)]- [y (Fp) : v (Fp)] =
al

= [¥(Fe) : v(Fe)l- [y (Fa) : ¥ (Fe)] -+ [y (Fp) : ¥ (Fe)] : [y (Fer)].

Let us consider . It has a constant absolute value independent of the choice
of

Tr=yF) , m=vF) , m=vF) , 7' =y(Fp).
Therefore, we may assume that the sets A\B'/, AN\B' and A\B satisfy
ANB'C {2} U(A\B") = A\B' C {a1,a,} UANB" = A\B

‘and that they are ordered so that |
[Re:m'"]=[rnimy] = [my:7'']=1.
It is easy to see that [rw: TCl‘] = —1 and therefore ¢ = 0. This completes
the proof of (2.2).
We assume that every face Fg of the cube I* has been chosen a fixed

orientation or (Fg). This assigns to every cubical polyhedron in I* an orien-
tation. We will use Fp to denote the pair [Fg, or (Fp)].

(2.3) DEFINITION. The incidence coefficient [Fg : Fg] of the pair of faces
of the cube I* is given by:

[Fo : Fe] = [or [Fgr):or (Fy)l.

§ 3. CHAIN COMPLEX OF A CUBICAL POLYHEDRON

We define a group of 4-dimensional chains Cé(IA) as follows:
if 2 <o then C,(I =o

if #>0 then C,(I" is the free group generated by Z-dimensional
faces of I* with the chosen orientation. We now define tht_e boundary ope-
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ration 3,:C, (I = Caa (1Y as follows:

(3.1) ;=0 if £<o
8:(F) = X [Fg: Fa]-For if £>o0.
BI

Notice that only the generators of C;_; (I*) can occur in the above sum with
non-zero coefficients. We have

.2) LEMMA. Zet Fy € Cy(IY and let Fyr € Cog(I1*) and b >o0. Then
3 B :

2 [Fg: Fer] [For: Fgl = 0.

Fg, €C,_4(1%)

Proof. Apply Lemma (2.2) for y=or. []
From Lemma (3.2) we obtain the familiar result:
(3.3) THEOREM. 3,70 §,=o0. []

Let VCI* be a cubical polyhedron. We define C,(V) — a group of
k—-dimensional chains of V as a subgroup of C,(I*) generated by (oriented)
faces of V. Since §,(C,(V)) C C;1(V) we have obtained a chain complex
CV) ={Cu(V); &} If V=¢Cu(V)=o for every integer £ Let (V, Vo).
be a pair of cubical polyhedra in I*. We define C, (V, Vp) to be C,(V)/C,(Vy)
and we call C;(V, Vo) the group of £-dimensional chains of the pair (V, Vj).
We will identify C,(V) and C,(V, ¢). Notice that the commutativity of the
diagram '

Cz (Vo) —> C4(V)
3 3
¥
Ci1(Vy) - > C,_4 (V)

implies that 3, induces a homomorphism
3 : Co(V, Vi) = C_1(V, Vy).
We have thus assigned to a pair of cubical polyhedra (V, V) a chain complex
CV, Vg = {Ck(V Vo), 8} .

We recall that a chain complex is acyclic in dimension # iff the sequence

8pp1 3 .
Cop1 25 C,—2C,_, is exact.
A chain complex is acyclic iff it is acyclic in all dimensions.

(3.3) REMARK. For a chain complex C(V) we can define an augmentation
e:C(V) = Z as follows:

<(Fy) = or (F)- [] p(a).

28. — RENDICONTI 1972, Vol. LIII, fasc. 5.
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It is casy to notice that -8, = 0. If V is connected and non-empty then
¢ and — ¢ are unique homomorphisms of Cy(V) —Z making the augmented
complex acyclic in dimension o.

§ 4. CYLINDER

Let A be a finite set and let @ € A. Let us assume that (V, V) is a pair
of (A\{@}) — cubical polyhedra. (Vo CV C I**) and let g: AN{a} > A
be the inclusion.

The pair I,(V, Vo) = (£, (V) , 5" (Vy)) of A—cubical polyhedra is said
to be cylinder (a—cylinder) over (V, V).
(4.1) PROPOSITION.  Inclusion ¢q:AN\{a YA is a cubical morphism of

1,(V', Vo) into (N, Vo) for every pair of (AN\{a}) — polyhedra (V , Vo).
Proof of (4.1) is obvious.

(4.2) A pair
LV, Vo) = Fuoy 0 LV, Vo) = (F,—ty 0 V), Far_py 0 £ (Vo)

is said to be the lower base of the cylinder I, (V, Vy). Similarly, IF 1 V,Vy) =
= Fu,41y N I,(V,Vy) is called the upper base.

We define the chain homomorphism C (¢) : C(I,(V , Vp)) - C(V, Vo) as
follows

(4-3) C(g) [Fe] =

| o a€B
[ B(@)-[or (Fg): or (f,(Fe))]-f,(Fg) .

Geometrically C(g) is the projection of the faces of I* onto I*M% and it
decreases the dimension of the faces not lying in the bases. For this reason
we define C(g) to be zero on these faces. Let Fg be a face of the polyhedron
V C I We define a chain homomorphism

7.:C(V, V) —>C(,(V,Vy)

as follows:
(4.4) i.(Fg) = - [or (Fy) : or (Fg)]-F,
where B.: BU{a} ~>{—1,1} is given by

pwy = L T

(4.5) THEOREM.

@) C(g) oi. = ldewv,v,)
) i.0C(g) ~ Idea,w, v

Jor € = 41 (~ denotes chain homotopy).

(1) Note that [or‘(FB): or (fg (Fgh] is defined since A\(2)\B = A\B,
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Before we prove (4.5) we will state three corollaries.
(4.6) COROLLARY 1. z'+i, is chain homotopic to i_y. [
This can be considered as a combinatorial homotopy axiom.

(4.7) COROLLARY 2. The chain complex of a cylinder is isomorphic to the
chain complex of its bases. [

(4.8) COROLLARY 3. The faces of a cube are acyclic.

Proof (of Corollary 3). The proof will proceed by induction. Let £ be the
dimension of Fg. When £ = o then Fg is a point and our assertion was proved
in (3.3). If 2> o then Fg is a cylinder over a (4#— 1)-dimensional face Fp.
By the induction hypothesis Fs is acyclic. Hence from (4.7) Fg is acyclic.

Proof (of the Theorem (4.5)). We will prove the theorem for the case
e = -+ 1 only, the proof for ¢ = — 1 is similar. We prove (@) first.

(C(g) o 741) (Fg) = C(g) ([or (Fg): or (Fg,)]-Fp , =
= [or (Fg):or (Fg, )]-C(g) (Fe,,) =
= [OI‘ (FB> : 0? (Fﬁ+1)]  [or (Fﬁ+1> :or fq (FB+1>] 'fq (Fﬁ+1> .
Note that pointwise f,(Fg, ) = Fa. Hence:
(C(g) o is1) (Fg) = [or (Fg:or (Fg )]+ [or (Fa,,): or (Fg)]-Fy =

= ([or (Fp): or (F, )])*-Fp = Fg.
We now prove (4).

Assume that Fg C I* is a face such that ¢ € B. We define Fg to be face
of I* given by B|B\{a}—{—r1,1}. We define the chain homomorphism
A, as follows:

A : GG V) = (L (V)
if a€B or Bla)=1
Ay (Fp) = 3 _ F2) . F F?
[or (Fp):or (Fg)]-Fg.
We show that

(4.9) SoA+ Aol =14110C(g) — Idca,w,vy)
o} if 2€B
7110C(g) (F)) = Fo if B@)=1
| — [or (Fg) : or (FB+1)] -F9+1 if B(a) = —1
—F, if a€B

(141 0C(g) — Ideq, v vg) (F) =1 © if B =1
| —[or (Fy) : or (Fa, )]-Fa,,—F if B(&)=—1.
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i) Assume that ¢ € B.

(38) (F) = o.

(A3) (Fg) = A([or (Fp) : or (Fa, )])-Fa,,+ A([or (Fp) : or (Fp_)])-Fp_, +

(5, )
FBG F
B @)++1

= — [or (Fg) : or (Fg_,)]-[or (Fs_,) : or (Fg_)]-F5_,.
Notice that pointwise Fg = F;_ . Hence
(A3) (Fg) = — F..
Thus (4.9) holds in this case.
if) Assume that Bla) = 1.
5A (Fg) = o
(A3) (Fg) =o.

Hence (4.9) holds in this case.

iii) Assume that B(e) = — 1.
SA(F) = 8(— [or (Fp) : or (Fg)]-Fg) = — [F§: Fg] - 3 [Fj: Fyp]-Fy.
FgrCrg
A8<FB)=A< 2 [FaiFa"]'Fa")= 2 :
Fai C Fg Fau CFB—[FB: Fﬂ,,].[Fg,, : FB,,]-Fg,,

(8A+A3) (Fg) = — [Fa: Fo] - [Fg: Fy,,1-Fy, — [F§: Fg] - [Fg: Fa_,]-Fp_ +
+ 2 —[F§:Fp]-[Fp: Fo] -Fy -+
FB,CFE

B (@ ++£1

+ X — [Fp: ] [Fgo: Fy] - Fo.
FB/ICFB

First note that
[Fg: Fol-[Fg: Fg ] = [or (Fp) : or (Fa,]
and that

Fg_,= Fg (pointwise).
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Hence
(8A + A8> <FQ> == — [OI‘ FB . or FB+1] 'FB+1_ FB +
"I“ Z [FQ . Fﬁn] . [Fgu . FB//] ‘Fgu -—l—-
FB/ICFB
F(a)++1
+ 2 [Fg:Fe]-[Fo: Fy]-Fyr =
Fﬂ/ICFB

= (¢+12C(9) — Idcq,v.vy) (Fa) +

+ 2 —I[Fa: Fa]-[F§: Fg]-Fa +
Fo CFg
B (@)1

+ 2 [Fe:Fol-[Fi: Fou] - Fio.
FeIICFB

To prove (4.9) we have to show

(4.10) Z [Fgl FB][FE Fg»]-Fﬁ/ - Z [FB: FB"]'[FE": FQ»/]-FSU =0.
Fg, CFQ Fg, CFg ‘
B’ (a) F£1

Let Fg be a face of Fg such that 8'(2) <= 1. Then Fg = F§_ . Let Fy be a
face of Fg. Then Fg. is a face of F§ given by B |B\{a}—>{—1,1}.
Note also that the above correspondence is 1 — 1. Thus Fg occurs in our
sum with the following coefficients:

— [Fa: Fg] - [Fg: For]-Fo — [Fg: Fo_,]-[Fg: Fp_,]-Fo =
= — ([Fb: Fg)-[F§: Fo] + [Fy: For_]-[Fy: For_,])-For .
Proving Lemma (2.2) we showed:
[F&: Fgl-[Fg: For_,] + [Fs: Fgl-[For: Fp_ ] =o0.
Our result is a consequence of the following simple lemma:

(4.11) LEMMA. Let |A|=|B|=|C|=|D|=1 and A-B+C.-D=o.
Then A-C+ B.-D=o0. [] '

(4.12) REMARK. All of the chain homomorphisms constructed above commute
with augmentations. Hence an augmented complex of a face is also
acyclic (look(3.3)).



