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Algebra topologica. — Function Algebras over Valued Fields and  
Measures. Nota IV di E d w a r d  B e c k e n s t e i n , G e o r g e  B a c h m a n  

e L a w r e n c e  N a r i c i , presentata dal Corrisp. G. Z a p p a .

R iassu nto . Vedi la N ota I I I , dallo stesso titolo, di cui la presente è il completamento.

3. T h e  H o m o m o r p h is m s  o f  C ( T  , F )  i n t o  F

In  this section we show in our principal result th a t if F  is a complete 
discretely valued field such th a t the residue class field V /P of F  has nonm easu
rable cardinal, then the kernels of the nontiiv ial hom om orphism s of C (T  , F) 
into F  are in i —  i correspondence with the regular cr-smooth m onotone 
o I measures on the Baire sets of T  or equivalently, the m axim al ideals

such th a t Z(M ^) is closed under the form ation of denum erable intersec
tions. We note th a t all known cardinals are nonm easurable and  indeed the 
nonm easurable cardinals are a large collection [2, p. 161].

Exam ple 1 below dem onstrates th a t a complete discretely valued field F 
can be constructed having a residue class field of arb itrarily  large cardinality. 
Using this we show th a t the principal result of this section is true for all com
plete discretely valued fields if and only if all cardinals are nonm easurable.

Example 1. L et K be a field carrying the trivial valuation and consider

an £ K , N e Z where additionthe power series field F  =  K [[x]] == j 2  an %n
■ # ( N

in F  is taken componentwise and m ultiplication is taken to be /the C auchy 
product. W e define a valuation | | on F  by choosing a real num ber r  such

00
2  a„ x *
N

Clearly theth a t  o <  r  <  I and , assum ing  a N=fio, we tak e

residue class field of F  is K itself.
By [6 ,,p . 41], there exist fields K of arb itrarily  large cardinality.

T h e o r e m  i . Let F be a complete discretely valued field  whose residue class 
fie ld  has nonmeasurable cardinal and  p. a regular monotone o—smooth o — 1 
measure on §. Then is the kernel of a homomorphism of C (T , F) into F.

Proof. Suppose /  e C (T , F) a n d /e ]V U . We wish to dem onstrate the 
existence of a scalar ^ e F  such th a t z f f — akf) =  f ^ 1 Ça) e Z (M^). L et V

(*) Pervenuta all’Accademia il 5 luglio 1972.
(**) Subsequent investigations (Repletions o f  Ultraregular spaces, by the authors and 

S. W arner, to appear) have shown tha t some of the results obtained here are true in more 
general cases. In Theorems 1-3 and Prop. 15, for example, “ discretely v a lu e d ” can be 
removed.
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be the valuation ring of F  and P the m axim al ideal of nonunits. W e m ay write 
V =  U O v +  P) where the scalars ar come from  a set of representatives S

for the distinct cosets of the residue class field V /P. Choosing n e F  such
1 1 1 * OOth a t [ 7TI <  I is a generator of the value group of F, we see th a t F =  u  tJ V

Ì  — —  OO
OO

and T  =  u  / 4 (7t'V). T hus as p. is cr-smooth, there exists i0 such th a t
2 =  — 0 0

=  I.

W e note th a t 7t‘»V =  U 7r’°P). W e also observe th a t for
ar € S

any set L  C S, the set A  =  U f i Har +  tu'» P) is a clopen subset of F  and
ar  O L

therefore [ i( f^ 1(A)) m ay  be considered. Defining £(L ) =  [x(/"“1(A)), we 
see th a t we have defined a a-sm ooth  m onotone o —  i m easure on the 
collection of all subsets of S. Since we have assum ed th a t the residue class 
field has nonm easurable cardinal, there exists aro 6 S such th a t (1 (aro) =  
=  1 (pHar0 +  7zto P)) =  I. We repeat the same argum ent using the set
(A 0 ar0 +  ïï'°P) in  place of KZ'°V and we find aTl such th a t fx C/“ 1 aVo +  
+  7T*o+1 ar± +  Tr?0+1 P)) =  I. C ontinuing in this w ay we construct a nest
A n of clopen subsets of the field F whose diam eters tend towards o and such

00
th a t fx ( f  (An)) — i. As F  is complete, n  A n =  {a }. As fx is a-sm ooth,

COROLLARY I. I f  F  is a complete discretely valued field , whose residue 
class fie ld  has riorimeasurable cardinal, then there is a I —  i correspondence 
between the regular monotone a-smooth measures on S and the homomorphisms 
of C (T , F) into F.

COROLLARY 2. With hypothesis as in Corollary 1, a maxim al ideal M lx 
of C ( T , F) is the kernel o f a homomorphism i f  and only i f  Z (M^) is closed under 
the formation of denumerable intersections.

PROPOSITION 10. I f  ß is a nonmeasurable cardinal, is a nonmeasurable
cardinal.

Proof. Let F  be a field such th a t the cardinality  of the residue class 
field of F  is greater than  or equal to ß and F is discretely valued. Endow 
F  wij:h discrete topology and denote F with this topology as T. Let [i be a 
^ s m o o th  m onotone o — 1 m easure on S. By the result of Theorem  1, for 
every /  e C (T , F) there exists a scalar ^ F  such th a t jj1 (z ( f  — -akT)) =  1. 
If  we choose f  to be a bijection between T  and F  we conclude th a t there is 
a point a € F  such th a t ii(d )=  1. Thus the cardinal associated with T  =  F 
is nonm easurable and so is ß^o.

COROLLARY. The cardinal c =  2^°  is nonmeasurable.

THEOREM 2. Let Y be any complete discretely valued field. The nontrivial 
homomorphisms of C ( T , F) are in 1 — 1 correspondence with the regular
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monotone <j- smooth o —  1 measures on cB i f  and only i f  all cardinals are 
nonmeasurable.

Proof. Let ß be an arb itra ry  cardinal and F a complete discretely valued 
field whose residue class field has cardinality  greater than  or egual to ß. A ssu
m ing the hom om orphism s of C ( T , F) into F  are in 1 — T correspondence 
with the regular m onotone a-sm ooth  o —  1 measures for any space T, we 
take T  =  F  endowed with discrete topology and by an argum ent sim ilar to 
th a t of Proposition 10 we conclude th a t the a-sm ooth  m easures on T  are 
concentrated at points. Thus the cardinal of V /P and therefore ß is non
m easurable.

T he converse is trivial.

Example 2. L et F  be any  complete nonarchim edean nontrivially  valued 
field. L et X be a subalgebra of C (T ,F )  which is “ closed under inverses ” 
(if x  6 X and i ' 1eC (X  , F), then x^ 1 e X). We apply  M ichael’s proof 
[4, p. 51] and observe th a t if conditions (1) and (2) below are satisfied, then 
the hom om orphism s of X into F  are generated by the points of T.

n
(1) For any  n elements x ± , • • •, x n 6 X such th a t O z (x/) =  0 , there

n i = 1
exists y ± , • • •, e X such th a t x i Fi =  ^ t  •

i= 1
(2) T here exists x ± , • • •, x m € X such th a t for any  oq , • • •, <xm e F

m -
O z(x g — a i k f )  is compact.
*= 1

We note th a t if X  =  C ( T , F), then X satisfies (1) (Prop. 4). We 
observe th a t if there exists a bijection r  eC '(T  ,F ), then C ( T ,F )  will satisfy 
(2). Thus if we choose T  =  F  and endow T  with any  topology finer than  the 
topology induced by the valuation (with the restriction th a t T  rem ains a 
o-dim ensional Hausdorfif space), then C (T ,F )  will satisfy both (1) and (2). 
Thus, in particular, any  complete nonarchim edean nontrivially  valued field F 
is an F — Q space [ 1 ].

W e m ay now reduce the question of the existence of nonm easurable 
cardinals to the following statem ent.

E very  cardinal is nonm easurable if and only if each m axim al ideal 
M C C (T , F) such th a t Z (M ) is closed with respect to the form ation of denu
m erable intersections, is the kernel o f a hom om orphism  of C(T , F) into F 
where F  is any complete discretely valued field and T  =  F  endowed with 
discrete topology.

THEOREM  3. I f  Y is a complete discretely valued field  whose residue class 
fie ld  has nonmeasurable cardinal, then the regular 7nonotone a—smooth o —  1
measures on ipe Baire sets of F  are concentrated at points.

!
Proof. W e note th a t the hom om orphism s of C ( F , F )  are concentrated 

at points by the previous exam ple while the cr-smooth measures are in 1 ■— 1 
correspondence with the hom om orphism s by (Theorem 1).
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4. T h e  N o n a r c h im e d e a n  S t o n e - C e c h  C o m p a c t i f i c a t i o n  o f  T

In  this section we approach an analog of the classical Stone-C ech com pac
tification from a m easure theoretic point of view. W e denote by  M 0(T) the 
collection of all m onotone o —  i measures on S, M 0(T) the cr-smooth measures 
in Mo(T), and M^(T) the m easures concentrated at points of T . W ith an 
appropriate topology on M 0(T) we show th a t M /T )  is hom eom orphic to 
T ( M /T )  considered as a subspace of M 0(T)), th a t M0(T) is a Hausdorfif 
o—dim ensional com pactification of T, and th a t any  bounded continuous func
tion tak ing  (T) into a local field can be extended to a continuous function 
tak ing  Mo(T) into th a t field. Thus Mo (T) is the nonarchim edean analog of 
the Stone— Cech compactification of T. (M oreover M g(T) is the Banaschewski 
com pactification o f T .)

D e f i n i t i o n  5. L et X =  { o  , 1 }8 where § =  { S a | a e  A } . A  typical 
elem ent of X is denoted by (aa).

If  X carries the product topology, a net ((a£)) {(aj)  if and only if for
any  index a there exists yn such th a t for all Y >  v„ , a ! =  a .u * ü 1 ~  10 ’ oc0 <x0

D e f i n i t i o n  6. Consider the subsets of M 0(T) defined by

V ([A0 ; Scx1 , • • * , Sa J  =  { y L M0 (T) | [X (Sa?.) =  [̂ 0 (Sa.) , i =  I

These sets form a base for a topology on Mo(T) which is referred to as the 
weak clop en topology.

D e f i n i t i o n  7. T he injective m appings <p and ^ are defined as follows

<p : T  M 0(T)

^ : M 0 (T) -> X

1 ^ 0  (S«))

where p , denotes the m easure concentrated a t t  e  T .

W e should like to consider X w ith a stronger topology th an  the  product 
topology. W e refer to the topology generated by neighborhoods of (aa) of 
the form

V  ( ( ^ a )  > ) * * ’ t &-n  ) '  * ’ )  { ( p t x )  J 1—  t Z —  1 ,  2  • • • j -

as the denumerable box topology. With subsets of X X X of the form

{((««) , (4Ó) I =  V  > * =  L 2 . • • •)
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considered, we see th a t these are entourages for a uniform  structure gene
ra ting  the denum erable box topology and th a t X is a complete uniform  space 
w ith respect to this uniform  structure. C arrying both the uniform  structure 
and the denum erable box topology back to Mo(T) th rough the m ap ip in the 
usual way, we say th a t M o(T) carries the denum erable box topology as well. 
W e see th a t under these circum stances, the m apping ^ is uniform ly conti
nuous.

P r o p o s i t i o n  10. (a) I f  T  carries its original topology and  Mo(T) the
weak clopen topology, then 9 is a homeomorphism.

(b) I f  M 0 (T) carries the weak clopen topology, and  X carries the product 
topology, then ^ is a homeomorphism.

Proof. (a) W e note th a t if / e S a , then a net (tf) converges to t  e T  if
and only if the net is eventually  in Sa . If  t& Sa , then (ty) converges to t  if and 
only if (tf) is eventually  in CSa. In  either case we see th a t fx^(Sa) is eventually  
equal to tq(Sa) and therefore Hence the m ap 9 is continuous.
The continuity  of 9“ 1 follows in the same way.

(b) The bicontinuity  of ^ is clearly a consequence of the definitions 
of the various topologies.

P r o p o s i t i o n  i i .  The closure of (T)) in  X {endowed with product 
topology) is ^(M o(T)).

Proof. We begin by showing th a t M^(T) is dense in Mo(T) (weak clopen 
topology) so th a t clearly it will follow th a t ^(M ^(T)) is dense in ^ (M 0 (T)). 
W e take any  (x e Mo(T) and let H denote the indexing set for the clopen sets 
Sa such th a t fx(Sa) =  1. W e order H by oq ^  a 2 if and only if Sa2 C Sa i. 
Since fx (Sai n  Sa2) =  1, we see th a t H is a directed set. For each oc e H we 
choose /a 6 Sa and contend th a t the net Vt -> fx.

I f  (x(S) .== I, then S =  Sa for some a and therefore by the preceeding, 
it follows th a t [x,a (S) is eventually  equal to 1. A  similar argum ent holds 
if fx(S) =  o.

To show th a t tJ>M^(T) is c[;Mo(T) we need only show th a t 4 Mo(T) js 
closed in X. Let {a f  be the lim it in the product topology of a net (([xY(Sa))) 
where [xy e Mo(T) for every y. W e define (x(Sa) =  aa and observe th a t fx 
is readily  shown to be a monotone o — 1 m easure on S.

P ro p Ó S IT IO N  12. Let T  carry its original topology and  (T) the denu
merable box topology. The mapping is a homeomorphism i f  and only i f  all 
Cs sets are open in  T.

Proof.

fHi*(EM>(T)|^(sI.) = (ifo(S,i.)î= i,2 ,...}  = [ n sa.jn [ n c s h •
VoG Sa2- /  Vo € Sâ. /

Clearly these sets âre open in T  if and only if all Cs sets are open.
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PROPOSITION 13. The completion of M^(T) when M^(T) carries the denu
merable box topology and its associated uniform structure is M 0(T).

Proof. We show th a t the closure of ^M ^(T) is <pM0(T) in the complete 
space X (carrying the denum erable box topology).

To prove th a t ^M ^(T) is dense in ^M 0(T) we let fx denote any  m ono
tone cr-smooth o — 1 m easure on § and use the fact th a t fx can be extended 
to the Baire sets cB. W e consider the collection of C8 sets

l °°
H „ =  n  S?| j i ( H ß ) =  I

( I =1

Once again as in (Proposition 11) we show th a t the indexing set for this collec
tion is a directed set and choosing tß e H 3 we can prove in a sim ilar way tha t 

->[x in the denum erable box topology.
To show th a t ^ M 0(T) is closed in X we take  a net (|xy (Sa)) (af ,  

define |x(Sa) =  aa, and observe th a t [x is a monotone o — 1 cr-smooth m easure 
on S.

COROLLARY i. M ^(T) =  M 0(T) i f  and only i f iA p(Y) is a complete uniform  
space when it carries the denumerable box topology and its associated uniform  
structure.

T h e o r e m  4 . Let F  be a local field  and suppose Mo(T) carries the weak 
clopen topology. Then a bounded continuous function f :  M^(T)~>F can be extended 
to a continuous function f  : Mo (T) -> F

Proof. Let (p/y) be a net from M^(T) converging to [x e Mo (T). As (/([x* )) 
is a bounded net of points in the local field F, there m ust be a subnet 

fJ P ty(£)) a ^or some a e L. Letting f  (jx) = ' a, we should like to show th a t 
f  is the desired extension of f .

To begip we show th a t f  ([x/y) - > /  (fx). If  not, then for some s >  0 and 
So = f ~ ' 1({b € F  I I b —  a | '<  s}) , [x/y is not eventually  in So . I t then 
follows th a t jx(CSo) =  1 or equivalently tha t is eventually  in CSo. But 
this contradicts the fact th a t the subnet f ( ^ i Y(k)) converges to a.

We show th a t f f  [x) =  a is well defined. To do this suppose tha t 
another net R/§ ->(x and /  ([x/g) -> ^ .  If  we suppose th a t a=fib,  then 
tak ing  £ > o  such th a t \a  —  b\ >  s, we see th a t p/y is eventually  in 
So = f ~ 1({c € FJ I c —  a I <  s}), while (x  ̂ is eventually in CSo. In  order for 
both nets to converge to [x, it m ust follow th a t fx/y(S0) and |x, (S0) are both 
eventually  equal to x̂ (So). But this cannot be true as a consequence 
of the preceeding conclusions. Thus it follows th a t a — b and /  is well 
defined.

(*) This argum ent holds for arb itra ry  fields F and function f e  C (T, F) such tha t the 
range of f  is relatively compact.



[247] E. B e c k e n s te in  ed ALTRI, Function Algebras over Valued Fields, ecc. 355

To show th a t /  is continuous suppose fxy -> fx and f  ([xy) }—> f  ([x).
T hen for some 4 s >  o, the net (/([x y)) is not eventually  in the set 
{a e F  I I a -—/ (jx) | <  s}. As F  is a local field and the function /  is boun
ded, we can construct a finite partition  S,-,£ of clopen subsets of M ^(T)

n
such th a t the diam eter of / ( S,->e) is less than  e. As M ^(T) =  U S*->£, it is

i = 1
clear th a t for some z0 , (x(S,-0j£) =  1, while for all other 4 , fx(S,->£) =  o. (Here, 
for the m om ent, we are identifying the spaces M ^(T) and T). Thus, for 
sufficiently large y, fxy(S,-,£) =  o for i=fiio,  while (xy(Sz-0j£) =  1. For each 
y we m ay construct a net [x^(yy ->fxy as well as a net [x,ß -> [x. It is clear th a t 
each of these nets m ust u ltim ately  be in S,-0>£ if, a t this point, we m ake 
the assum ption th a t y is so large th a t fxY(S*0>£) =  1. Since /  (y)) ~>f (f^T)
a n d / ((x/p) - > / ([x), the facts th a t [x^(y) and are eventually  located in S,*0>£
and the diam eter of / ( S*0>£) is less than  s, preclude the possibility tha t 
I/  ((xy) — /  (fx) ] is frequently  g reater than  s. Thus it is clear th a t /  (fxy) - > / (fx).

Thus we see th a t Mo(T) w ith the weak clopen topology is the nonarchi- 
m edean analog of the S tone-C ech compactification of T. W e refer to this 
space as ß0(T).

T he classical G elfand-K olm ogoroff theorem  [2, p. 210] is proved for the 
case in which the field of coefficients is the real num bers. We now show th a t 
an analog of this theorem  is true  for all complete nonarchim edean valued 
fields.

T h eo rem  5 (Gelfand-K olm ogoroff). The maximal ideal M f of C(T , F) 
satisfies the relationship

=  { /  e C (T , F) I (a e c l^ (T) z ( f ) }  .

This establishes a 1 — 1 correspondence between the points of ß0(T) and the 
m axim al ideals of C ( T ,  F).

Proof'. U nder the correspondence of Proposition 6, there is a 1 —  1 
correspondence between the points of ß0(T) and the m axim al ideals of C (T , F) 
where the relationship

M * = = { / e C ( T , F ) |  £ ( * ( / ) )  =  I}.

Identifying, for the purposes of this proof, the spaces T  and M^(T) we wish 
to show th a t [x e clß0(T) ^(Z ) for each / e M A  Once again we note th a t 
H =  {oc 6 A j[x(Sa) = ' i }  is a directed set and since (x(Sa O # ( / ) )  =  1 for 
each a 6 H, we m ay choose ta € # ( / )  O Sa for each a e H. We show th a t [x/flt-> [x 
as follows. Consider any  neighborhood V  (|x ; Sai , • • •, $an) of (x in the vague 
topology. Suppose th a t [x(Saf) =  I for i =  I, - • - , j  while fx(Saj.) =  o for 
i > j .  If  I t i  i  ^  j , a,-.e H and therefore 4  e S a . for sufficiently large indices 
a and all i such th a t I ^  ^  j-  If  i > y  fx(CSaj.) =  I and therefore for suffi
ciently large a e H 4  € Sa. for all i > j .  Thus, ultim ately, fx(Saj.) =  [x/a(Sa#.)
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for all 2 such that i -ÿ* i n  and therefore for sufficiently large a, \i.ta e V  (\j. ;
Sai > * * * t Saw).

We now show that if fi. e c l ^  z  ( / )  for some / e C ( T ,  F), then /  O f .  
To do this we need only show that ß (z(f))  =  i . If we assume that û (z(f ))  =  o, 
then there exists ^ e C ( T , F )  such that z ( f ) n z ( g )  =  0  and ß{z(J)) =  i. 
By Proposition 3 there exists a dopen set S e S  such that z(g)  C S  while 
2 i f )  c  CS- It then follows that z ( f )  O V(p. ; S) =  0  and p€ clWT) z  ( / ) .

5. Q - s p a c e s

In  this section we consider a nonarchim edean analog of realcom pact 
spaces (Q—spaces) and realcom pactifications of a space.

D e f i n i t i o n  8. T  is a Q0-space, if and only if M 0(T) =  M /T ) .  T hat 
is, T  is a Q0-space if  and only if the m onotone o — 1 c-sm ooth  measures are 
concentrated at points of T.

By preceeding results (Proposition 8, Theorem s I and 3) the following 
statem ents are all true.

PROPOSITION 14. T  is a Q^-space i f  and only i f  the z—ultrafilters Z closed 
with respect to the formation of denumerable intersections, are fixed  ( n  Z 0 s).

P r o p o s i t i o n  15. Let F be a discretely valued fie ld  whose residue class 
fie ld  has nonmeasurable cardinal. Then T  is a Q§~space i f  and only i f  the non
trivial homomorphisms of C ( T , F )  into F  are evaluation maps.

P r o p o s i t i o n  16. I f  F is a discretely valued field  whose residue class field  
has nonmeasurable cardinal, then F is a Q^-space.

P r o p o s i t i o n  17. A  closed subspace of a Q0-space is a Q0-space.

Proof. Let T  be a Q0-space and E C T  be a closed subspace of T. Let (i. 
be a ^-sm ooth  m easure on the dopen  subsets of E. Induce a m easure p on 
the dopen  subsets of T  by defining pL (S) =  p,(S n  E) for any  d open  set S C T. 
It is d e a r  th a t p, is a a-sm ooth  monotone o —  1 m easure on T  and as T  is 
a Qo-space, (1 is concentrated at t e  T. We contend th a t t e  E. O therwise 
there exists a dopen  set S Ç T  such th a t t e  S while S f i E  =  0 .  However, it 
follows th a t [x-(S> =  I =  [Jl(S O E) = > ( 0 )  which is a contradiction. I t fol
lows from  the o-dim ensionality  of T  and the fact th a t E is closed, th a t if 
H C E, 11(H) — I, and H is dopen  in E, then t e  H.

P r o p o s i t i o n  18. A  product of Q^-spaces is a Q0-space.

Proof. L et T  =  IlT a where each Ta is a Q0-space. L et p a denote the 
projection of T  onto T a . Let p. be a m onotone c—smooth o —  1 m easure on 
the d open  subsets of T. Let p a be the monotone a-sm ooth  o - — 1 m easure 
on the d o p en  subsets of T a induced by the relationship fJia (Sa) =  [i*(pi1 (Sa))
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where Sa is a dopen subset of Ta . As Ta is a Q0-space, y.a is concentrated at 
some point /a e T .  We show that fxa is concentrated at (4).

Let o be a dopen subset of T and suppose (4) e o. Then (4) 6 Sai X
x S a2 X • • • x S aj!X J J  T , C o .  As ta.e Sa. for 1 L  i  L  n, y.a.(Sa.) =  1 for

CCt¥<xì
1 ^  z ^  n. Thus (^aT1 (S^.)) =  I for i ^  i ^ n  and as a finite intersection 
o f sets of m easure I has m easure I , it follows th a t jjl (o) == i and therefore 
th a t is concentrated at CO-

PROPOSITION 19. Let T  =  XX Tot where each Ta is a Q0-space. Then T
a ,

endowed with the 11 denumerable box topology ” is a Q^—space.

Proof. The argument of the previous proposition holds without essential 
change, except for using the fact that a denumerable intersection of sets 
having ^.-measure equal to 1, will have measure equal to 1.

COROLLARY. M a(T) with denumerable box topology is a Q0—space.

Proof. M„(T) is homeomorphic to a closed subspace of the Q0-space  
X =  { ° , i } S (carrying the denumerable box topology).

Theorem 6 . Let ß0(T) carry the weak dopen topology. Let F be a local 
field. Then every f e  C (T, F) can be extended to f e  C (M0(T), F). I f  y. € Ma(T), 
then there exists / 6  C(M„(T) , F) which cannot be continuously extended to [x.

Proof. Let (4) be a net such th a t 4  > p, 6 M 0(T). I f  we could show th a t 
for any  f  e C (T  , F) , the net ( /  (4)) is ultim ately bounded, then we could apply  
the argum ent of Theorem  4 to show th a t f  can be continuously extended.

To demonstrate this, we observe that if S„ =  {t e T  \ \ f  (t) \ L  n}  where 
n is any positive integer, there must be some n such that SMe Z ( M ,i). 
Otherwise, if CS„e Z (1VL) for all n, then the ^-ultrafilter Z (M'x) is not closed

with respect to the formation of denumerable intersections as O CS„ =  0 .

Thus, for some n , y (S„) =  1 and as 4  -> 4, it follows that (4) is ultimately 
in S„. The net ( /  (4)) is therefore ultimately bounded.

We wish to show that if 4 6 M0 (T), then there exists /  e C (T , F) such 
that if a net (4) of points in T converges to y., then \ f  {tfi | -> oo. As 4 € M0(T), 
there exists à descending sequence (S„) of dopen sets such that S ,e Z ( M 1*)

OO

for all positive integers n while n  S„ =  0 .  Let a e F be chosen such that
' n — 1

OO

|a  I >  I. T he function f =  2  ^cs^ns^ i will have the desired properties.
n-=l

Theorem 7. M 0(T) with the weak clopen topology is a QQ-space.

Proof. We wish to show that M0M0(T) =  M0(T). We observe that 
ßo (T) =  ßo (Mo (T)) and by Theorem 6 the algebra C(T , F) can be identified 
with C (M 0(T) , F) in the case where F is a local field. As there is a function 
/ e  C (M0(T) , F) which cannot be continuously extended to 4 for any (i€M „(T), 
it follows by the previous theorem that M0(Ma(T)) =  M0(T).
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