ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

EDWARD BECKENSTEIN, GEORGE BACHMAN, LAWRENCE
NARICI

Function Algebras over Valued Fields and Measures

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 53 (1972), n.5, p. 349-358.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_5_349_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1972_8_53_5_349_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1972.



[241] E. BECKENSTEIN ed ALTRI, Function Algebras over Valued Fields, ecc. ' 349

Algebra topologica. — Function Algebras over Valued Fields and
Measures. Nota IV O di EbpwaArRD BECKENSTEIN, GEORGE BACHMAN
e LAWrReNcE Narici, presentata dal Corrisp. G. ZaPPpa.

RIASSUNTO. — Vedi la Nota I11, dallo stesso titolo, di cui la presente & il completamento.

3. THE HomoMorpPHISMS OF C(T, F) iNTO F

In this section we show in our principal result that if F is a complete
discretely valued field such that the residue class field V/P of F has nonmeasu-
rable cardinal, then the kernels of the nontrivial homomorphisms of C(T,F)
into F are in 1-—1 correspondence with the regular s—smooth monotone
0—1 measures on the Baire sets of T or equivalently, the maximal ideals
M* such that Z(M") is closed under the formation of denumerable intersec-
tions. We note that all known cardinals are nonmeasurable and indeed the
nonmeasurable cardinals are a large collection [2, p. 161].

Example 1 below demonstrates that a complete discretely valued field F
can be constructed having a residue class field of arbitrarily large cardinality.
Using this we show that the principal result of this section is true for all com-
plete discretely valued fields if and only if all cardinals are nonmeasurable.

Example 1. Let K be a field carrying the trivial valuation and consider
the power series field F = K [[«x]] = Z a, x”}an €K, NeZ
: N

in F is taken componentwise and multiplication is taken to be the Cauchy
product. We define a valuation | | on F by choosing a real number 7 such

where addition

that 0 <7 <1 and, assuming ay=Fo, we take Z @, x" l =N, Clearly the

residue class field of F is K itself.
By [6, p. 41], there exist fields K of arbitrarily large cardinality.

THEOREM 1. Let F be a complete discretely valued field whose residue class
Jield has nommeasurable cardinal and p. a regular monotone s—smooth o — 1
measuré on 8. Then M" is the kernel of a homomorphism of C(T, F) into F.

Proof.  Suppose f€C(T ,F) and fe M*. We wish to demonstrate the
existence of a scalar @ € F such that z(f— akr) =/f"'(a) €Z(M"). LetV

*) Pervenuta all’Accademia il 5 luglio 1972.
(**) Subsequent investigations (Repletions of Ultraregular spaces, by the authors and
S. Warner, to appear) have shown that some of the results obtained here are true in more

general cases. In Theorems 1-3 and Prop. 15, for example, ““ discretely valued” can be
removed. )
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be the valuation ring of F and P the maximal ideal of nonunits. We may write
V= U (a + P) where the scalars @, come from a set of representatives S

for the distinct cosets of the residue class field V/P. Choosing = € F such
that | 7| < I is a generator of the value group of F, we see that F = U 'V
and T= U S7H (V). Thus as p is o—smooth, there exists 7, such that
b (V) = 1

We note that n%V = U (n%a,+ noP). We also observe that for
a, €S

any set L C S, the set A = U (n’oa + % P) is a clopen subset of F and

therefore y.(f_l(A)) may be con51dered Defining pL(L) = u(f1A), we
see that we have defined a o-smooth monotone 0-—1 measure on the
collection of all subsets of S. Since we have assumed that the residue class
field has nonmeasurable cardinal, there exists @, €S such that {i(a,) =
= f Y(x¥a, 4 n2P)) = 1. We repeat the same argument using the set
(ma,,+ 7 P) in place of n»V and we find g, such that e(f(nia,, +
+ mhtlg, + w1 P)) = 1. Continuing in this way we construct a nest
A, of clopen subsets of the field F whose diameters tend towards o and such

that u(f7'(A,)) = 1. As F is complete, N A = {a}. As p is c-smooth,
w(f @) =1.

COROLLARY 1. - If F is a complete discretely valued field, whose residue
class field has nommeasurable cardinal, then there is a 1 — 1 correspondence
between the regular monotone c—smooth measures on S and the homomorphisms

of C(T, F) into F.

COROLLARY 2. With hypothesis as in Corollary 1, a maximal ideal M"
of C(T,F) is the kernel of a homomorphism if and only if 7 (M") és closed under
the formation of demumerable intersections.

PROPOSITION 10. If B is a nonmeasurable cardinal, PR is a nonmeasurable
cardinal.

Proof. Let F be a field such that the cardinality of the residue class
field of F is greater than or equal to B and F is discretely valued. Endow
F with discrete topology and denote F with this topology as T. Let w be a
o-smooth monotone 0 — I measure on 8. By the result of Theorem 1, for
cvery f€C(T,F) there exists a scalar @ € F such that wie (f — akr)) = 1.
If we choose f to be a bijection between T and F we conclude that there is

a point @ € F such that p(2) =1. Thus the cardinal associated with T = F
is nonmeasurable and so is B¥o.

COROLLARY. T7he cardinal ¢ = 280 is nonmeasurable.

THEOREM 2. Let F be any complete discretely valued field. The nontrivial
homomorphisms of C(T,F) are in 1—1 corvespondence with the regular
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monotone c—smooth 0 —1 measures on B if and only if all cardinals are
nonmeasurable.

Proof. Let B be an arbitrary cardinal and F a complete discretely valued
field whose residue class field has cardinality greater than or egual to B. Assu-
ming the homomorphisms of C(T,F) into F are in 1 —'1 correspondence
with the regular monotone c—smooth 0 — 1 measures for any space T, we
take T = F endowed with discrete topology and by an argument similar to
that of Proposition 10 we conclude that the c—smooth measures on T are
concentrated at points.” Thus the cardinal of V/P and therefore B is non-
measurable.

The converse is trivial.

Example 2. Let F be any complete nonarchimedean nontrivially valued
field. Let X be a subalgebra of C(T,F) which is “closed under inverses ”
(if x€X and x1€C(T,F), then e X). We apply Michael’s proof
[4, p. 51] and observe that if conditions (1) and (2) below are satisfied, then
the homomorphisms of X into F are generated by the points of T.

(1) For any 7 elements xy,---,x,€X such that N z(x,) =g, there
”n 7=1
exists ¥;,---, %, € X such that inyi = Ar.
=1
(2) There ex1sts Xy, -+, x,€X such that for any «;, --,,€F

ﬂ g(x; — o, 1) is compact.

We note that if X = C(T,F), then X satisfies (1) (Prop. 4). We
observe that if there exists a bijection x € C(T,F), then C(T ,F) will satisfy
(2). Thus if we choose T = F and endow T with any topology finer than the
topology induced by the valuation (with the restriction that T remains a
o-dimensional Hausdorff space), then C(T,F) will satisfy both (1) and (2).
Thus, in particular, any complete nonarchlmedean nontrivially valued field F
is an F—Q space [1].

We may now reduce the question of the existence of nonmeasurable
cardinals to the following statement. ;

Every cardinal is nonmeasurable if and only if each maximal ideal
M C C(T, F) such that Z(M) is closed with respect to the formation of denu-
merable intersections, is the kernel of a homomorphism of C(T , F) into F
where F is any complete discretely valued field and T = F endowed with
discrete topology.

"'THEOREM 3. If F is a c'omplete discretely valued field whose residue class
Sreld has nonmeasurable cardinal, then the regular monotone c—smooth 0 — I
measures on the Baire sets of F are concentrated at points.

Progof. We note that the homomorphisms of C(F,F) are concentrated
at points by the previous example while the s—smooth measures are in 1 — 1
correspondence with the homomorphisms by (Theorem I).
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4. THE NONARCHIMEDEAN STONE-CECH COMPACTIFICATION OF T

In this section we approach an analog of the classical Stone-Cech compac-
tification from a measure theoretic point of view. We denote by Mp (T) the
collection of all monotone 0 — 1 measures on 8, M, (T) the c—smooth measures
in Mo(T), and M,(T) the measures concentrated at points of T. With an
appropriate topology on Mo(T) we show that M,(T) is homeomorphic to
T(M,(T) considered as a subspace of Mo(T)), that Mo(T) is a Hausdorff
o—dimensional compactification of T, and that any bounded continuous func-
tion taking M, (T) into a local field can be extended to a continuous function
taking Mo (T) into that field. Thus Mo(T) is the nonarchimedean analog of
the Stone-Cech compactification of T. (Moreover M, (T) is the Banaschewski
compactification of T.)

DEFINITION 5. Let X = {0, 1}® where § = {S,|x€A}. A typical
element of X is denoted by (a,).

If X carries the product topology, a net (@) = ((a,)) if and only if for
any index o there exists y, such that for all y> Yo @y = a,.

DEFINITION 6. Consider the subsets of Mo (T) defined by

V(HO N Sal,' Ty San) = {y. eMo(T> , H(Sa) = ‘L()(S(lz.) y 7= »I yt 7’2}.

These sets form a base for a topology on Mo(T) which is referred to as e
weak clopen topology.

DEFINITION 7. The injective mappings ¢ and ¢ are defined as follows
©: T —Mo(T)
>y
¢ :Mo(T) - X
A CICH)

whete p, denotes the measure concentrated at z€T.
We should like to consider X with a stronger topology than the product

topology. We refer to the topology generated by neighborhoods of (a,) of
the form

V(<aa> y Lyttt %yy e ) = {<ba) I b“z’= A, i=1,2-- }
as the denumerable box topology. With subsets of X X X of the form
{<(aﬂ) ) (éa)> l docz- = éai’ 7= I’ 2, '}
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considered, we see that these are entourages for a uniform structure gene-
rating the denumerable box topology and that X is a complete uniform space
with respect to this uniform structure. Carrying both the uniform structure
and the denumerable box topology back to Mg (T) through the map ¢ in the
usual way, we say that Mo (T) carries the denumerable box topology as well.
We see that under these circumstances, the mapping ¢ is uniformly conti-
nuous.

PROPOSITION 10. (a) If T carries its original topology and Mo (T) the
weak clopen topology, then @ is a homeomorphism.

(b) If My(T) carries the weak clopen topology, and X carries the product
topology, then { is a homeomorphism.

Proof. (a) We note that if € S,, then a net (#,) converges to #€T if
and only if the net is eventually in S,. If z¢ S,, then (#,) converges to ¢ if and
only if () is eventually in CS,. In either case we see that te, (Sy) is eventually
equal to 1, (S,) and therefore i, — ;. Hence the map ¢ is continuous.
The continuity of ¢! follows in the same way.

(6) The bicontinuity of ¢ is clearly a consequence of the definitions
of the various topologies.

PROPOSITION 11. 7%e closure of Y(M,(T)) in X (endowed with product
topology) is Y (Mo(T)).

Progf. We begin by showing that M,(T) is dense in Mo (T) (weak clopen
topology) so that clearly it will follow that ¢(M,(T)) is dense in ¢ (Mo (T)).
We take any u € Mo(T) and let H denote the indexing set for the clopen sets
Sy such that u(S,) = 1. We order H by o« < oy if and only if S,, C Sa, -
Since @ (Sy, N Sa,) = 1, we see that H is a directed set. For each a € H we
choose #, €S, and contend that the net e, = W

If u(S)=1, then S =S, for some « and therefore by the preceeding,
it follows that e, (S) is eventually equal to 1. A similar argument holds
if w(S)=o.

To show that ¢M,(T) is ¢Mo(T) we need only show that ¢Mg(T) is
closed in X. Let (a,) be the limit in the product topology of a net (i, (S,)))
where w, € Mo(T) for every y. We define u(S,) = @, and observe that u
is readily shown to be a monotone 0 — 1 measure on 8.

PROPOSITION 12. Let T carry its original topology and M,(T) the denu-

merable box topology. The mapping { is a homeomorphism if and only if all
Cs sets are open in T.

Proof.
@—l{u,eMp<T>|u,<sa,.>=u,0<sa,.>z'=r,z,---}=( 0 sa,.)n( N cs;,)-

tO € Sozz- tO (] Sai

Clearly these sets are open in T if and only if all Cy sets are open.
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PROPOSITION 13. 7he completion of M,(T) when M,(T) carries the denu-
merable box. topology and its associated uniform structure is My(T).

Proof. We show that the closure of ¢M,(T) is ¢M4(T) in the complete
spacz X (carrying the denumerable box topology).

To prove that ¢M,(T) is dense in YM,(T) we let w denote any mono-
tone o—smooth 0 — 1 measure on 8 and use the fact that . can be extended
to the Baire sets #. We consider the collection of Cj sets

Hp = 0 ST i(Hy) =1

Once again as in (Proposition 11) we show that the indexing set for this collec-
tion is a directed set and choosing #3 € Hg we can prove in a similar way that
s = @ in the denumerable box topology.

To show that ¢My(T) is closed in X we take a net (&, (S,) — (@),
define u(S,) = a,, and observe that p is a monotone 0 — 1 6—smooth measure
on §.

COROLLARY 1. M,(T) = M (T) éf and only if M,(T) is a complete uniform
space when it carries the denumerable box topology and its associated uniform
Structure.

THEOREM 4. Let F be a local field and suppose Mo(T) carries the weak
clopen topology. Then a bounded continuous function f: M,(T)—F can be extended
to a continuous function f: Mo(T) —F &,

Proof. Let (1) be a net from M, (T) converging to € Mo(T). As (f (¥ )
is a bounded net of points in the local field F, there must be a subnet
f(%‘xwg)) —a for some a € F. Letting f(y.) = a, we should like to show that
S is the desired extension of f.

To begin we show that f(p., ) —>f (w). If not, then for some ¢ >0 and

f‘l({&eF“b———a[ <e}), @, is not eventually in Sp. It then
follows that w(CSp) =1 or equ1valently that ¥, is eventually in CSp. But
this contradicts the fact that the subnet f(pL,Y(k) converges to a.

We show that f(uw)=a is well defined. To do this suppose that
anothér net Wy and f(wy)—6. If we suppose that a==4, then
takmg e>o0 such that |(z—b| >¢g, we see that they is eventually in
So=f"1({ceF ' |c—a| <<c}), while sy is eventually in CSo. In order for
both nets to converge to W, it must follow that w, (So) and ey (So) are both -
eventually equal to ©(Sg). But this cannot be true as a consequence

of the preceeding conclusions. Thus it follows that @ = 4 and # is well
defined.

(*) This argument holds for arbitrary fields F and function fe C (T, F) such that the
range of f is relatively compact.
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To show that f is continuous suppose @, —u and Vi () == F(w).
Then for some. &>o0, the net (f (wy)) is not ‘eventually in the set
{a€F ‘ |a—F(w)] <e}. As F is a local field and the function f is boun-
ded, we can construct a finite partition S;. of clopen subsets of M, (T)

such that the diameter of f(S;.) is less than e. As M,(T) = U S;., it is
' i=1

clear that for some 7, 11(S,,,c) = I, while for all other 7, u(S,) =o0. (Here,
for the moment, we are identifying the spaces M,(T) and T). Thus, for
sufficiently large vy, w@,(Si) =0 for 7==4,, while p (S;,.) = 1. For each
Y we may construct a net . —>h, as well as a net gy, — . It is clear that
each of these nets must ultimately be in S, . if, at this point, we make
the assumption that y is so large that p.,(S;,) = 1. Since F gy —F )
and f (teg) = f(w), the facts that P (v) and p,, are eventually located in S,
and the diameter of #(S; . is less than e, preclude the possibility that
]f(y.y) —f ()| is frequently greater than c. Thus it is clear that fA(y.Y) —>f(p.)

Thus we see that Mgo(T) with the weak clopen topology is the nonarchi-
medean analog of the Stone-Cech compactification' of T. We refer to this
space as B4 (T). '

The classical Gelfand—Kolmogoroff theorem [2, p. 210] is proved for the
case in which the field of coefficients is the real numbers. We now show that

an analog of this theorem is true for all complete nonarchimedean valued
fields.

THEOREM 5 (Gelfand-Kolmogoroff). 7he maximal ideal M* of C(T , F)
satisfies the relationship

M* = {f€C(T ,F) pecly , 2(/)}-
This establishes a 1 — 1 correspondence between tée points of Bo(T) and the
maximal ideals of C(T , F). '

Proof. Under the correspondence of Proposition 6, there is a 1—1
correspondence between the points of B,(T) and the maximal ideals of C(T, F)
where the relationship

M* = {feC(T, F)

@z (f) =1}

Identifying, for the purposes of this proof, the spaces T and M, (T) we wish
to show that p€clgmz(f) for each f€M". Once again we note that
H={axe€ AW(S@) =1} is a directed set and since w(S, N z(f)) =1 for
each « € H, we may choose ,€2(f) N S, for each « € H. 'We show that p, —u
as follows. Consider any neighborhood V (u; Sa;,- -, Sa,) of u in the vague
topology. Suppose that p(S,) =1 for 7=1,---,7 while u(S,)=o0 for
i>j. If 1<7¢<j, a;€H and therefore #, €S, for sufficiently large indices
o and all 7 such that 1< /<7 If7>; u(CS,) =1 and therefore for suffi-
ciently large « € H ¢4, €S,, for all #>j. Thus, ultimately, u(Sq,) = ., (Sa,)
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for all 7 such that 1 <7 < #» and therefore for sufﬁc:lently large o, w, €V (u;
Say -+ +y Say)-

We now show that if wecl, (r)z(f) for some fe€C(T,F), then feM".
To do this we need only show that j 1 (z(f)) = 1. If we assume that {.(z(f)) = o,
then there exists ¢ € C(T,F) such that 2(f)N2(¢) =2 and n(z(g) = 1.
By Proposition 3 there exists a clopen set S€ 8 such that 2(g) CS while
#(f) CCS. It then follows that 2(/)NV(4;S) =2 and pe clgry 2 ()-

5. (O-SPACES

In this ‘section we consider a nonarchimedean analog of realcompact
spaces (Q-spaces) and realcompactifications of a space.

DEFINITION 8. T is a Qg-space, if and only if M, (T) = M,(T). That
is, T is a Q,-space if and only if the monotone 0 — 1 6-smooth measures are
concentrated at points of T. ,

By preceeding results (Proposition 8, Theorems 1 and 3) the following
statements are all true.

PROPOSITION 14. 7 is a Qy-space if and only if the z—ultrafilters Z closed
with respect to the formation of denumerable intersections, are fixed (NZ==2).

PROPOSITION 15. Let F be a discretely valued field whose residue class
Jeeld has nonmeasurable cardinal. Then T is a Qy-space if and only if the non-
trivial homomorphisms of C(T ,F) into F are evaluation maps.

PROPOSITION 16. If F s a discretely valued field whose residue class Jreld
has nonmeasurable cardinal, then F is a Qy-space.

PROPOSITION 17. A closed subspace of a Qy—space is a Qp—space.

Proof. Let T be a Qp-space and ECT be a closed subspace of T. Let ©
be a o—smooth measure on the clopen subsets of E. Induce a measure g on
the clopen subsets of T by defining . (S) = (S N E) for any clopen set S C T.
It is clear that {( is a 6—smooth monotone 0 — 1 measure on T and as T is
a Qy—space, 1 is concentrated at 7€ T. We contend that 7€ E. Otherwise
there exists a clopen set SC T such that # €S while SN E = ». However, it
follows that () =1=p( NE)=u(@) which is a contradiction. It fol-
lows from the o-dimensionality of T and the fact that E is closed, that if
HCE, w(H) =1, and H is clopen in E, then #€ H.

PROPOSITION 18. A product of Qy-spaces is a Qy—space.

Proof. Let T = IIT, where each T, is a Q,—space. Let p, denote the
projection of T onto T,. Let p be a monotone 6—smooth 0 — 1 measure on
the clopen subsets of T. Let u, be the monotone s—smooth 0— I measure
on the clopen subsets of T, induced by the relationship ,(S,) = w(p«1(Sy))
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where S, is a clopen subset of T,. AsT, is a Qy—space, p, is concentrated at
some point 7, € T. We show that , is concentrated at (2,).

Let o be a clopen subset of T and suppose (4)€ 0. Then (%) € Sy, X
XSy, X - -+ XSy X 1;[ Ty Co. As 7,€S,, for 1Si<n p,(S,) =1 for

o dt‘ .

I=72=n Thus u(p.'(Sy) =1 for 1<7< 7 and as a finite intersection
of sets of measure 1 has measure 1, it follows that w(0) = 1 and therefore
that w is concentrated at (z,).

PROPOSITION 19. Let T = [[ T, where each T, is a Qo—space. Then T

endowed with the ‘ denumerable box topology” is a Q,—space.

Proof. The argument of the previous proposition holds without essential
change, except for using the fact that a denumerable intersection of sets
having p-measure equal to 1, will have measure equal to 1.

COROLLARY. M,(T) with denumerable box topology is a Qp—space.

Proof. Mq(T) is homeomorphic to a closed subspace of the Qp—space
X ={o,1}® (carrying the denumerable box topology).

THEOREM 6. Let B, (T) carry the weak clopen topology. Let F be a local
Jjield. Then every S €C(T,F) can be extended to f € C(Mo(T),F). If ue My(T),
then there exists f € C(My(T), F) which cannot be continuously extended to .

Proof. Let (¢,) be a net such that £, — u € M, (T). If we could show that
for any f € C(T, F), the net (#(#,)) is ultimately bounded, then we could apply
the argument of Theorem 4 to show that f can be continuously extended.

To demonstrate this, we observe that if S, = {#€T 4 | f(#)| < n} where
7 is any positive integer, there must be some # such that S, € Z(M"™).
Otherwise, if CS,€Z(M") for all %, then the z-ultrafilter Z(M") is not closed

with respect to the formation of denumerable intersections as N CS, =g .

Thus, for some 7, u(S,) =1 and as t, = p, it follows that (z,) ins thimately
in S,. The net (f(z,) is therefore ultimately bounded.

We wish to show that if u€¢ M,(T), then there exists €C(T, F) such
that if a net () of points in T converges to y, then | # ()] = o0. As u € My(T),
there exists a descending sequence (S,) of clopen sets such that S, €Z(M"

for all positive integers » while N S, = @. Let « €F be chosen such that

n=1

|| >1. The function f= ;0" kcs,ns,_, Will have the desired properties.
n=1

THEOREM 7. M, (T) with the weak clopen topology is a Qo—space.

Proof. We wish to show that M,M,(T) = M,(T). We observe that
Bo(T) = By (M5 (T)) and by Theorem 6 the algebra C(T , F) can be identified
with C(M,(T), F) in the case where F is a local field. As there is a function
FfecC (Ms(T) , F) which cannot be continuously extended to u for any u¢M,(T),
it follows by the previous theorem that M,(M,(T)) = M4(T).
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