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Topologia algebrica. — Cubical polyhedra and homotopy, 177
Nota ® di Joser Brass e Weopzimrierz HoLszryNski, presentata
dal Socio B. SEGRE.

RIASSUNTO. — In questa Nota, che fa seguito ad altre due apparse con lo stesso
titolo in questi Rendiconti [1], vengono discusse proprieta combinatorie di poliedri cubici,
mostrando fra 'altro che ogni poliedro simpliciale risulta omeomorfo ad un poliedro cubico.

§ 1. Throughout this paper I will denote the closed interval [—1,1],
I” denotes the 7-dimensional cube. In particular I° is a one-point space.

(1.1) THEOREM. FEuvery finite simplicial polvhedron is homeomorphic to a
cubical polyhedron.

This theorem can be concluded from the following:

(1.2) LEMMA. There is a homeomorphism of the n—dimensional simplex A*
onto the n—dimensional cube 1" under which the image of the body of any
subcomplex of N is a cubical polyhedron.

Proof. Set Eg = (0,---,0), E1=(1,0,-+-,0)
We define %4’ : A* — [0, 1]* as follows:

P En= <O’Oy”f’0)1>-

S‘ 7' (Eo) = Eo
<I3> ’ X1+
) % <x)=;1ax(xl,~~-,x,,)/ ’

We define %2: A* = 1" as follows:
(1.4) ' h(x)=2-k'(x) —(1,1,--+,1).

The map % is a homeomofphism. We will show that % transforms faces of
A” onto cubical polyhedra. First, let V be a vertex of A”. If V = Ey,

then A(V) =(—1,—1,---,—1). If V=(0,0,+,0,1,0,+-,0), then
/ %-th place
A(V)=(—=1,—1, -, —1,1,—1,--,—1). We have also £(A") = I".
/~th place

Thus the theorem holds for » = 1.

Assume now that our theorem is true for A"™' (2> 1). "Let V be a face
of A" If V.= A" then £(V)=1". Assume that V== A". We can find

*) Pervenuta all’Accademia il 30 agosto 1972.
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an (z — 1)-dimensional face W of A" such that VCW. We have to consider
two cases:

(i) W=Al={xeA";x, =0} for certain x = 1,---, n. We define
it AP A" and j: I"' 1" as follows:

Z.<xl )"')xn—i>= (xl "")xu——lyoyxx)xn-!—ly"'yxn—1>
j(xl""ixn-‘l) = (xl ,"')x%—l‘:'-—'l y vy Xygl n"'yxn—l)-

It is easy to check that the following diagram commutes.

A d - A
Y/ Y/
\ \
In—l . I”

J

Since 7 is simplicial and ; sends faces of I""" onto the faces of I, by induc-
tion, £ (V) is a cubical polyhedron. ‘

(i) W={xeA:x,+ -+ +x,=1}. If V==W then VCAL
for some »x and this case was covered by (i). Assume thus that V = W.
Then 2'(V) =2 (W) ={x€fo,1]": max (%,: ¢ =1,---,#) =1} and
A(V) ={xel":max(x;:7=1,---,m) = 1}. Thus %(V) is a cubical sub-
polyhedron of I”.

(1.4) THEOREM. There is a simplicial map which is not topologically equi-
valent to any map induced by the cubical morphism.

To show this we need the following obvious lemma.

(1.5) LEMMA. Assume that V C 1* is a union of two one-dimensional faces
Vi and Ve such that & 4=V10Ve== V1. Let q be a cubical morphism of
V. into WC M. Then one of the following is true:
@ f V) consists of one point;
() fo(V)) consists of ome point and f, is a homeomorphism on Vi_;
for i=1,2;

(i) f,:V >/, (V) is a homeomorphism.

Proof of the theorem (1.4). Let f be a simplicial map of ([o,1]X{o})U
U ({o}x [0,1]) onto [0, 1] given by

f(x,y) =max(x,9).

If the map f,:V — W induced by a cubical morphism ¢ was topologically
equivalent to f then f, would not satisfy Lemma (1.5).
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(1.6) Example. Mobius strip M admits a simplicial trlangulatlon with
5 vertices A,B,C,D,E.

B D E A

A c B

Thus it is homeomorphic to a cubical polyhedron in I*%

(1.7) Example. Real projective plane admits a simplicial triangulation
with 6 vertices (see [2]). Thus it is homeomorphic to a cubical
polyhedron in I°

§ 2. In this section we discuss cell polyhedra, whose cells are cubes
We study their relation to cubical polyhedra.

(2.1) DEFINITION. A (finite) cell complex is a pair (X, X) consisting of a
set X and a finite set £ of functions 6:1”— X (% = #(s)) such that
the following conditions are satisfied

(i) every ¢ €2X is injective;

(ii) for every ¢:I"—>X in X, every x =1,---,% and e = —+ 1
(60 dyen:]
Z.n,s,n(xl vy X)) = (951 3Ty Heml s €, gl sttty Kye1)s

(iif) for every w:I”—- X and v:I"— X in X either
eI N vI) =@ or :
wt(v(I) and v (u(I™) are faces of I” and I” respectively
and v%ou|p(v(I?): wtv(I") - v (™) is affine ®;

(iv) if (c:I"+X) ¥ and ¢:I" 1" is an affine bijection then
Go € X,

n—1

— X) € Z, where 4,.,: "' 1" is given by

(2.2) DEFINITION. A function f: X— X’ is said to be a cell map of a cell
complex (X, %) into a cell complex (X', X) if for every (o: "> X) € T
there exists (¢':I1”—X’) €X' and a cubical morphism ¢: I* —I"
such that foo=20c"0of,.

In this way the category CELL of cell complexes is defined. To every
cubical polyhedron X CI# (A-finite) a cell complex (X, Ex) is canonically
assigned. ZXx is defined as the collection of all affine bijections of cubes I”
onto faces of X. Every cubical morphism becomes a cell map. We have thus

obtained a forgetful functor from the category of finite cubical polyhedra
QP into CELL.

(1) This affine map is bijective.

19. — RENDICONTTI 1972, Vol. LIII, fasc. 3-4.
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We will be considering every cell complex (X , X) together with the unique
Hausdorff topology on X under which every element of X is continuous. Thus
the topology of a cubical polyhedron X C I* (A-— ﬁmte) coincides with the
topology of (X, 2x).

In general it is much easier to represent a polyhedron as a cell complex
than as a cubical polyhedron. We will show below how to embed a large
family of cell complexes into cubes, so that they become cubical polyhedra.
In general this is impossible. If (X, 2) is a cell complex such that X is a geo-
metric polyhedron in a Euclidean space, we will assume that all the elements
of X are affine. Thus to determine (X, X) it suffices to know the sets o (1")
for all c € Z. We will call sets ¢(I") cells.

(2.3) DEFINITION. A cell map f: X - X’ of (X,X) into (X, %) is said
to be cell embedding if f is injective and for every c€Xfo g€ X'

Obviously the composition of cell embedding is a cell embedding.

(2.4) LEMMA. Let the cell complex 1, be an interval divided into » — 1
subintervals (and w vertices). 1, can be embedded into the cell complex
I" 2ff » < 27

Proof. The condition x < 2” is necessary since I” has only 2” vertices.
We will show that it is sufficient. If » = 1 this is true. Thus let » > 1 and
suppose that the assertion holds for z— 1. Since 2 < » < 2” we can write
% = %+ %, for some natural %, , xy << 2#~1. The cell complex I, can be repre-
sented as a union of subcomplexes I, , I, and of an interval joining one of
the ends v of I, with one of the ends w of I,,. By inductive hypothesis I,
can be embedded into I, _; and I,, into I, ; ®@. We can choose embeddings
so that v is sent into (1, 1,-+-,— 1), and @ into (1,--+, 1, 1). Thus there
is a common extension to an embedding of I, into I”. ‘

(2.5) DEFINITION.  The cell product (X,X)X (X',%) is defined as
(X x X', Z"), where X' consists of all functions of the form
(6X6N)og: I"" » XX X', where ¢ : I""” — """ is an arbitrary affine
bijection, (¢:1" - X)€X and (¢': 1" X") €X',

The above product is the categorical product in the category CELL.

(2.6) LEMMA. If cell complexes X Y can be cell embedded into X'\Y' re-
ispectively, then X XY can be cell embedded into X'XY'..

Since the cell product of cubes is a cube by lemma (2.4) we obtain the

following
(2.7) THEOREM. If a cell polyhedron X can be cell embedded into ..., ) =
= IMl XX Ixr with v, < 2" ({1=1,---, 7) then X can be cell embedded

mto 17Tt

(2) I: ={xel” 3= (o, 0, y,8) e= 1.
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(2.8) Example. n—sphere S” is homeomorphic to a cubical polyhedron
in ",

(2.9) Example. Two-dimensional surface of genus g can be embedded
in IXIaXIgere (I =1Io).

o VA

/-
I
|
1

1

/
] ]
| | |
| | I

Thus it is homeomorphic to a cubical polyhedron in I”, where
{344 if g=2f
e 4+ [lngg] if g=2 for any /.
§ 3. EULER CHARACTERISTIC OF FIBRATIONS. Whenever the product is
involved, the-cubical approach seems to be more convenient than the simplicial
one. As an example we will get an elementary proof of the multiplicative

formula for the Euler characteristic of a twisted product.
To every cell complex X a formal polynomial p(X) is assigned

(3.1) PO = N1,
where 7, is the number of 7—dimensional cells of X.

It is easy to show that

(3.2) DXV =3 D 4L = p(X) - p (Y.

n=0 7>0

More generally, let B, E, F be cell complexes and let f: E— B be a map

such that for every cell ¢:1"— B, f1(c(1") is a cell subcomplex of E
isomorphic to F xI” then

(3-3) pE)=pB)-p(F).
There is a multiplicative homomorphism of the ring of polynomials Z [I]
into Z, given by ’

h(p) = 2 (— 1)L,

Then X(f() = /4(p (X)) is the Euler characteristic of X. Thus we have
obtained an elementary proof of the following

(3.4) THEOREM. 7 (E) = % (B)-%(F) for every twisted cell product f:E e B.
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