ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

BANG-YEN CHEN, KENTARO YANO

Special quasi-umbilical hypersurfaces and locus of spheres

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.3-4, p. 255–260.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_3-4_255_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Special quasi-umbilical hypersurfaces and locus of spheres. Nota (*) di Bang-Yen Chen e Kentaro Yano, presentata dal Socio B. Segre.

RIASSUNTO. — Fra le ipersuperficie di uno spazio euclideo (n+1)-dimensionale (n>3) si introducono quelle che – in base a certe proprietà locali – sono da dirsi quasi-ombelicali, totalmente ombelicali, o quasi-ombelicali speciali, e si dimostra che le ultime risultano luoghi di ∞^1 (n-1)-sfere. Si dànno poi condizioni necessarie e sufficienti affinchè un luogo siffatto risulti uno spazio piatto dal punto di vista conforme.

In this paper, we shall introduce and study what we call special quasiumbilical hypersurfaces. In § 1, we give some formulas and definitions which we use later. In § 2, we shall prove that every special quasi-umbilical hypersurface V_n of a euclidean space E_{n+1} is a locus of (n-1)-spheres. In § 3, we shall prove that a locus of (n-1)-spheres in E_{n+1} is a conformally flat space if and only if the unit normal vector field of the hypersurface V_n in E_{n+1} , restricted to the (n-1)-spheres, is parallel with respect to the normal bundle of the (n-1)-sphere in E_{n+1} .

§ 1. PRELIMINARIES

We consider a hypersurface V_n of an (n+1)-dimensional euclidean space E_{n+1} and represent it by

(I)
$$X = X(\xi^1, \xi^2, \dots, \xi^n),$$

where X is the position vector from the origin of E_{n+1} to a point of V_n and $\{\xi^h\}$ is a local coordinate system of V_n . Here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1, 2, \cdots, n\}, n > 3$.

We put

(2)
$$X_i = \partial_i X, \quad \partial_i = \partial/\xi^i,$$

then X_i are n linearly independent vectors tangent to V_n and the components of the fundamental metric tensor of V_n with respect to $\{\xi^h\}$ are given by $g_{ji} = X_j \cdot X_i$, where the dot denotes the inner product in E_{n+1} .

Let C be a unit normal vector field of V_n in E_{n+1} , and let ∇_j denote the operator of covariant differentiation along V_n with respect to the Levi-Civita

^(*) Pervenuta all'Accademia il 14 settembre 1972.

connection. Then the equations of Gauss and Weingarten are respectively written as

$$\nabla_j X_i = h_{ji} C$$

and

$$\nabla_i \mathbf{C} = -h_i^i \mathbf{X}_i,$$

where h_{ji} are the second fundamental tensor and $h_j^i = h_{jt}g^{ti}$, g^{ti} being contravariant components of the first fundamental tensor. If there exist, on the hypersurface V_n , two functions α and β and a unit vector field u_i such that

$$h_{ji} = \alpha g_{ji} + \beta u_j u_i,$$

then V_n is said to be *quasi-umbilical* in E_{n+1} . In particular, if $\beta = 0$ identically, then V_n is said to be *totally umbilical* in E_{n+1} . If $d\alpha \neq 0$ everywhere, then V_n is called a *special quasi-umbilical hypersurface* of E_{n+1} .

The equations of Gauss and Codazzi for V_n are given respectively by

(6)
$$K_{kji}^{\ h} = h_k^{\ h} h_{ji} - h_j^{\ h} j_{ki}$$

and

$$\nabla_k h_{ji} - \nabla_j h_{ki} = 0,$$

where $K_{kji}^{\ \ \ \ \ \ }$ is the Riemann–Christoffel curvature tensor of V_n . Denoting by $K_{ji} = K_{lji}^{\ \ \ \ \ \ \ }$ and $K = g^{ji}K_{ji}$ the Ricci tensor field and the scalar curvature respectively, we define a tensor field L_{ji} of type (0,2) by

(8)
$$L_{ji} = -\frac{K_{ji}}{n-2} + \frac{Kg_{ji}}{2(n-1)(n-2)}.$$

(9)
$$C_{kji}^{\ \ h} = K_{kji}^{\ \ h} + \delta_k^h L_{ji} - \delta_j^h L_{ki} + L_k^{\ h} g_{ji} - L_j^{\ h} g_{ki}$$

where δ_k^h are the Kronecker deltas and $L_k^h = L_{kt} g^{th}$. A Riemannian manifold V_n is called a conformally flat space if $C_{kji}^h = 0$ for n > 3. It is well-known that if V_n is conformally flat, then we have

$$\nabla_k \mathbf{L}_{ji} - \nabla_j \mathbf{L}_{ki} = \mathbf{0} .$$

§ 2. SPECIAL QUASI-UMBILICAL HYPERSURFACES

The main purpose of this section is to prove the following

Theorem 1. A special quasi-umbilical hypersurface V_n (n > 3) of a euclidean space E_{n+1} is a locus of (n-1)-spheres where an (n-1)-sphere means a hypersphere or a hyperplane of a euclidean n-space.

Proof. Suppose that V_n is a special quasi-umbilical hypersurface of E_{n+1} , then there exist, on V_n , two functions α and β and a unit vector field u_j such that

$$(II) h_{ij} = \alpha g_{ii} + \beta u_i u_i$$

and

(12)
$$d\alpha \neq 0$$
 everywhere.

From (6) and (11), we obtain

(13)
$$K_{ii} = [(n-1)\alpha^2 + \alpha\beta]g_{ii} + (n-2)\alpha\beta u_i u_i$$

and

(14)
$$K = n(n-1)\alpha^2 + 2(n-1)\alpha\beta.$$

Therefore, we have from (8)

$$L_{ji} = -\frac{\alpha^2}{2}g_{ji} - \alpha\beta u_j u_i.$$

From (11) and (15), we have

(16)
$$\alpha h_{ji} + \mathcal{L}_{ji} = \frac{\alpha^2}{2} g_{ji}.$$

By taking covariant derivative of (16) and applying (7) and (10), we obtain

$$(17) \qquad \alpha_k h_{ji} - \alpha_j h_{ki} = \alpha (\alpha_k g_{ji} - \alpha_j g_{ki}),$$

where $\alpha_k = \nabla_k \alpha$.

Substituting (11) into (17), we find

$$\beta (\alpha_k u_i - \alpha_i u_k) = 0.$$

Put $U = \{ p \in V_n ; \beta \neq 0 \text{ at } p \}$. Then by (12), we obtain from (18),

$$(19) u_i = f\alpha_i$$

on U, where f is a function on U. Consequently we find that

$$(20) h_{ii} = \alpha g_{ii} + \gamma \alpha_i \alpha_i$$

on V_n , where γ is a function on V_n .

Substituting (20) into (7), we find

(21)
$$\alpha_k g_{ji} - \alpha_j g_{ki} + \gamma_k \alpha_j \alpha_i - \gamma_j \alpha_k \alpha_i + \gamma \alpha_j (\nabla_k \alpha_i) - \gamma \alpha_k (\nabla_j \alpha_i) = 0,$$

where $\gamma_k = \nabla_k \gamma$, from which, by transvecting α^k , we obtain

(22)
$$(\alpha_{t} \alpha^{t}) g_{ji} + (\gamma_{t} \alpha^{t} - 1) \alpha_{j} \alpha_{i} - (\alpha_{t} \alpha^{t}) \gamma_{j} \alpha_{i} + \gamma \alpha_{j} (\alpha^{t} \nabla_{t} \alpha)$$
$$- \gamma (\alpha_{t} \alpha^{t}) \nabla_{i} \alpha_{i} = 0.$$

Equation (22) shows that $\gamma \nabla_j \alpha_i$ is of the form

(23)
$$\gamma \nabla_j \alpha_i = g_{ji} + q_j \alpha_i + q_i \alpha_j + \frac{\gamma_t \alpha^t - 1}{\alpha_t \alpha^t} \alpha_j \alpha_i,$$

 q_j being a 1-form on V_n .

Now, since $\alpha_i = \nabla_i \alpha$ and $\alpha_i \alpha^i \neq 0$, $\alpha = \text{constant defines a family of hypersurfaces in } V_n$. We represent one of them V_{n-1} by

$$\xi^h = \xi^h(\eta^a)$$

and put

$$B_b{}^h = \partial_b \xi^h, \qquad \partial_b = \partial/\partial \eta^b,$$
 $N^h = \alpha^h/\sqrt{\alpha_t \alpha^t}, \qquad \alpha^h = \alpha_t g^{th},$
 $g_{cb} = g_{ji} B_c^j B_b^i$

and

$$\nabla_{c} B_{b}^{h} = K_{cb} N^{h},$$

 $\nabla_{c} B_{b}^{h}$ denoting the van der Waerden-Bortolotti covariant derivative of B_{b}^{h} along V_{n-1} and K_{cb} the second fundamental tensor of V_{n-1} . Here and in the sequel, the indices a, b, c, \cdots run over the range $\{I, 2, \cdots, n-I\}$. From

$$\alpha_i B_b^i = 0$$

we have, by covariant differentiation along V_{n-1} ,

$$g_{cb} = \gamma \sqrt{\alpha_t \alpha^t} K_{cb}$$
,

by virtue of (23), which shows that γ never vanishes and

(24)
$$K_{cb} = \frac{1}{\gamma \sqrt{\alpha_{x} \alpha^{t}}} g_{cb}.$$

Thus we have, by (3), (20) and (24),

$$\begin{split} \nabla_{c} \mathbf{X}_{b} &= \nabla_{c} (\mathbf{B}_{b}^{i} \mathbf{X}_{i}) = \mathbf{K}_{cb} \mathbf{N}^{i} \mathbf{X}_{i} + \mathbf{B}_{c}^{j} \mathbf{B}_{b}^{i} (\nabla_{j} \mathbf{X}_{i}) \\ &= \alpha g_{cb} \mathbf{C} + \frac{\mathbf{I}}{\gamma \sqrt{\alpha_{c} \alpha^{t}}} g_{cb} \mathbf{D} , \end{split}$$

where $D = N^i X_i$. This shows that V_{n-1} is totally umbilical in E_{n+1} and hence V_n is a locus of (n-1)-spheres. This completes the proof of the theorem.

§ 3. CONFORMALLY FLAT SPACE

In this section, we shall study the problem converse to that of § 2. Let V_n (n > 3) be a locus of (n - 1)-spheres V_{n-1} in a euclidean (n+1)-space E_{n+1} and V_{n-1} be given by

$$\xi^h = \xi^h (\eta^a)$$
.

Let C denote the unit normal vector field of V_n in E_{n+1} and also denote by C the restriction of C on V_{n-1} . Let N^h denote the unit normal vector field of V_{n-1} in V_n and put

$$egin{aligned} \mathbf{B}_b^{\ h} &= \partial_b \boldsymbol{\xi}^h \,, \qquad \partial_b &= \partial/\partial \boldsymbol{\eta}^b \,, \ \mathbf{X}_b &= \mathbf{B}_b^{\ i} \, \mathbf{X}_i \end{aligned}$$

and

$$\nabla_{c} B_{b}^{h} = K_{cb} N^{h}, \qquad \nabla_{c} C = -K_{c}^{a} B_{a}^{h},$$

where $K_{c}^{a} = K_{cb} g^{ba}$. Then we have

$$\nabla_{\epsilon} X_b = \nabla_{\epsilon} (B_b^i X_i) = K_{\epsilon b} N^i X_i + B_{\epsilon}^j B_b^i (\nabla_i X_i)$$

that is,

(25)
$$\nabla_{c} X_{b} = H_{cb} C + K_{cb} D,$$

where $D = N^i X_i$ and

from which

(27)
$$B_{c}^{j}h_{i}^{i} = H_{c}^{a}B_{a}^{i} + H_{c}N^{i},$$

H_c and H_c being given respectively by

$$\mathbf{H}_{\epsilon}^{a} = \mathbf{H}_{\epsilon b} g^{ba}$$
 and $\mathbf{H}_{\epsilon} = h_{ji} \mathbf{B}_{\epsilon}^{j} \mathbf{N}^{i}$, $\nabla_{\epsilon} \mathbf{C} = \mathbf{B}_{\epsilon}^{j} \nabla_{j} \mathbf{C} = \mathbf{B}_{\epsilon}^{j} (-h_{j}^{i} \mathbf{X}_{i})$,

that is

(28)
$$\nabla_{c} C = -H_{c}^{a} X_{a} - H_{c} D$$

by virtue of (27), and

$$\nabla_c D = \nabla_c (N^i X_i) = -K_c^a B_a^i X_i + B_c^j N^i (\nabla_c X_i)$$

that is

(29)
$$\nabla_{c} D = -K_{c}^{a} X_{a} + H_{c} C.$$

(25) are equations of Gauss and (28) and (29) are equations of Weingarten for V_{n-1} in E_{n+1} .

Since V_{n-1} is a sphere, we have

Thus, from (26) and (30), we have

(31)
$$h_{ii} = \lambda g_{ii} + (\mu_i N_i + \mu_i N_i) + \nu N_i N_i,$$

where

$$\mu_i = h_{ii} N^i$$

and v is a function.

Now V_n is conformally flat if and only if h_{ji} is of the form [I]

$$(33) h_{ji} = \alpha g_{ji} + \beta u_j u_i.$$

From (31) and (33), we see that V_n is conformally flat if and only if μ_j is proportional to N_j . Thus from (32) we see that V_n is conformally flat if and only if

$$H_c = h_{ji} B_c^j N^i = o.$$

Thus we have, from (28),

Theorem 2. A locus of (n-1)-spheres in E_{n+1} is a conformally flat space if and only if the unit normal vector field of the hypersurface V_n in E_{n+1} , restricted to the (n-1)-spheres is parallel with respect to the normal bundle of the (n-1)-sphere in E_{n+1} .

BIBLIOGRAPHY

[1] BANG-YEN CHEN and KENTARO YANO, Special conformally flat spaces and canal hypersurfaces, to appear.