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Trasform azioni funzionali. — Remarks on fixed  points, / / .  N o ta (#) 
di S im e o n  R e ic h , presen ta ta  dal Socio G. S a n s o n e .

R iassunto . ■— Questa Nota, che fa seguito ad una precedente, contiene nuovi risultati 
sulle trasformazioni non espansive negli spazi di Banach. Si segnalano i Teoremi 1.1, 2.6 
e 2.7.

I ntroduction

This Note is a sequel to [19]. It contains new results on non-expansive 
m appings in Banach spaces. T he m ain propositions are Theorem s 1.1, 2.6 
and 2.7.

I . Itera tio n s

Let D be a non-em pty subset of a real Banach space E and let G m ap D 
into E. We shall denote by R (G ) the range of G, by cl(D) the closure of D, 
and by I the identity  m apping (on D). A  m apping T  : D E will be called 
non-expansive if || T x  —  T y  || < \ \ x  — y  || for all # and y  in D. Let N denote 
the set of all non-negative integers, and let {cn \ n £ N } be a sequence of real 
num bers which satisfy

(1.1) o < * v < i  f ora l i  n e  N;
00

(1.2) ' 2  ct  diverges.
1 = 0

n

In  the sequel we shall denote by an . Let x Q belong to C, a closed
*=* 0 ■

convex subset of E, and let T  be a non-expansive self-m apping of C. Dehne 
a sequence { x n : n e N} by

(1.3) x n+1 =■ (1 —  cn) x n +  cn T x n , n e N .

The behavior of { x n } has been studied in [14], [19] and [20]. Here we 
intend to use a recent idea of Bruck [4] in order to im prove [20,Theorem  2.10].

W e shall say th a t C is a non-expansive re tract of E  if there is a retraction 
P : E - ^ C  which is non-expansive. If, in addition, E(x) =  v implies tha t 
P(z/ f i  t ( x  —  vj) =  v for all x  e E  and t  >  o, then C will be called a sunny 
non-expansive retract. (We prefer this term  to those used by B ruck in [2] 
and [4] because suns already  occur in approxim ation theory).

If  y  e E and r  >  o, then the set { x  e E : \\x — y  || <  r  } will be denoted 
by B ( j / , r) while S ( y  , r) will stand for { x  e E : \ \ x  — y\\  =  r  }. Recall 
th a t E  is said to be uniform ly convex in every direction [6] if given £ e S (o  , 1) 
and s >  o, there exists a positive S such th a t — \\x f i  y\\ <  1 —  S for all

(*) Pervenuta all’Accademia il 18 agosto 1972.
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x  and y  in S (o , 1) which, satisfy x  — y  =  tz w ith || t 1| >  s. W e refer to [5] 
for inform ation concerning differentiable norms.

T h eo rem  i . i .  Let  C be a non-empty closed convex subset o f a real Banach 
space E which is uniform ly convex in  every direction. Suppose that the norm  
o f E  is uniform ly Gâteaux differentiable while the norm o f its dua l E* is Fréchet 
differentiable. Assum e fu r th er  that C is the fix e d  poin t set o f a non-expansive 
self-mapping o f E. If  T  : C C is non-expansive and  {xn} is defined by
(1.3), then

(i) o 6 R ( I —- T  ) i f  and only i f  {x n} is bounded fo r  every x 0 in  C and  
every sequence { cn } which satisfies ( i . i )  and  (1.2);

(ii) o € c l ( R ( I — T)) i f  and only i f  lim \\ xn+1\\lan>  o fo r  every x 0
n —> 00

in  C and every sequence { cn } which satisfies ( i . i )  and  (1.2);
(iii) o e cl (R  (I — T)), but o f  R ( I — T) i f  and  only i f  { x n } is 

unbounded and  x„+1ja„ -> o fo r  every x 0 in  C and every sequence 
{ c n } which satisfies ( i . i )  and  (1.2).

Proof. By [2, Theorem  1] (or by [3, Theorem  2]) C is a non-expansive 
re tract of E. Since the norm  of E  is uniform ly G âteaux differentiable its 
duality  m apping is uniform ly continuous on bounded subsets of E from  th e  
strong topology of E to the weak star topo logy 'o f E*. Therefore a slight 
modification of [4, Theorem  2] implies th a t C is in fact a sunny non-expansive 
re tract of E. Now we can apply  Theorem s i . i ,  2.3 and 2.8 of [20] and com ­
plete the proof.

Theorem  i . i  is applicable in particular to all B anach spaces E such th a t 
both E  and E* are uniform ly convex. Zizler has shown th a t every reflexive 
separable B anach space E has an equivalent uniform ly G âteaux differentiable 
norm  which induces a Fréchet differentiable norm  in E*. W ith Zizler’s norm  
E is uniform ly convex in every direction [21, p. 201]. E very  non-em pty 
closed convex subset of a two-dim ensional Banach space E  is a sunny non- 
expansive re tract of E  [10, Theorem  1] and [4, Theorem  5]. 2

2. C h e b y s h e v  c e n t e r s

L et D be a non-em pty subset of a real Banach space E. If  Y =  {y„:  n e  N} 
is a bounded subset of D, we pu t rm (D ,Y) =  in f { r  : {y„ : n  >  m  } C B ( x  , r )  
for some x  e D } and R  =  r  (D ,Y) — lim rm (D ,Y). W e shall call R  the

m —> OO
asym ptotic radius of Y. If  D is convex and boundedly weakly compact, 
then there exists a t least one point z  in D such th a t lim sup || z — y n \\.==z R.

n —>- 0 0

W e shall calf z- an asym ptotic center of Y with respect to D (cf. [12] and [7]). If  
E is uniform ly convex in every direction, then the asym ptotic center is unique.

I f  x  e D we denote the set { z  e E  : z  =  x  +  t ( y  — x) for some t  > 0  
and y e  D } by Id(^).  T he interior and boundary of D will be denoted by 
in t (D) and bdy(D ) respectively. Note th a t if D is a closed convex subset
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of a B anach space, then every point in bdy(D) is a bounding point (cf. [19, 
Section 2]).

PROPOSITION 2 .1 . L e t C  be a non-empty convex boundedly weakly compact 
subset o f a Banach space E  which is un iform ly convex in every direction^ 
and let T  : C -> E be non-expansive. Suppose that a bounded sequence 
Y =  { ) / , : ^ e N } C C  satisfies y n —  T yn -> o. Then each o f the fo llow ing  two 
conditions implies that T  has a fix e d  p o in t.

(2-0  T x  e Ic(x) fo r  each x  € C ;

(2.2) r ( C , Y )  = r ( E , Y ) .

Proof. Let z  € C be the asym ptotic center of Y with respect to C. 
If  z  =4= Tz, then r  (C ,Y) is positive. If  (2.1) holds, there exists o < t <  1 
such th a t w  — tz +  (1 —  t ) T z  belongs to C. But w  is another asym ptotic 
center for Y. This contradiction dem onstrates th a t z  m ust be fixed under T. 
In  case (2.2) holds, the point — ( z +  Tz)  shows th a t r ( E  ,Y) <  r(C  ,Y), 
a contradiction.

Note th a t if C is a non-expansive re tract of E, then (2.2) indeed holds.

COROLLARY 2 .2 . L et C be a non-empty convex boundedly weakly compact 
subset o f a Banach space which is uniform ly convex in  every direction . L et a 
non-expansive T  : C E -  have a bounded range. I f  T  satisfies (2.1), then it 
has a fix e d  point.

Proof. Com bine [19, Proposition 2.5] with the preceding proposition. 
This corollary m ay also be deduced from [19, Corollary 2.2].

COROLLARY 2.3. L e tC , a closed subset o f a Banach space which is uniform ly  
convex in  every direction , have a non-empty interior. L e t a non-expansive 
T : C ^ E  have a bounded range. A ssum e that fo r  some w e  int(C) T  satisfies

(2-3) T y — w f = m ( y — w) f o r a l i  y  e bdy (C) and m  >  1.

Then each o f the fo llow ing  two conditions implies that T  has a f ix e d  point.
(i) C is convex and  boundedly weakly compact, and r (C , S) =  r ( E , S) 

fo r  a ll bounded sequences S C C ;
(ii) T  is the restriction o f a non-expansive self-mapping o f a reflexive E.

Proof. Combine [9, Corollary 2.3] with Proposition 2.1. (We have not 
shown th a t (ii) implies th a t T  m ust have a fixed point in C).

Remark. W hen T  is a generalized contraction in the sense of K irk [13] 
(that is, for each * € C there is ol(x ) <  1 such th a t || T x  —  T y  || <  oc(x) \\x — y  || 
for all y  in C), the uniform  convexity assum ption can be om itted in Propo­
sition 2.1 (in fact, in this case { y n } converges to the fixed point of T) and 
in Corollaries 2.2 and 2.3. (In  Corollary 2.2 we need no longer assume that 
T  has a bounded range). It follows th a t Corollaries 3 and 4 in [15] can 
be im proved. (By the w ay we observe th a t C orollary 1 there is a direct
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consequence of [1.7, Proposition 3.10] while Corollary 2 is included in 
[16, Corollary 4]).

Recall th a t a m apping A  : C -> E is said to be accretive if for each posi­
tive r , \\x +  r A x — y  —  rA y\\ ^ \ \ x — y\\  for all x  and 4/ in C. If  T  is 
non-expansive, then I —  T  is accretive.

COROLLARY 2.4. L et C, a closed bounded subset o f a reflexive Banach space 
E which is uniform ly convex in every direction , have a non-empty interior. 
Suppose that T, a L ipschitzian self-m apping o f E, satisfies (2.3) on C . I f  I —  T 
zs accretive, then T  has a fix e d  point.

Proof. Choose a positive r  so th a t t  T  m ay be a strict contraction where 
t — rj(r + 1 ) .  B =  [I +  r ( L — T )]“ 1 is single-valued and non-expansive 
on E. Its restriction to the im age of C under I f i r  ( I — T) satisfies (2.3). 
Corollary 2.3 yields a fixed point for B which is also fixed under T.

This result partia lly  extends [8, Theorem  2] where it is assumed that 
both E and E* are uniform ly convex. Its proof is inspired by  the proof of 
Theorem  1 in [8].

L et (C (E) , H) denote the space of all non-em pty com pact subsets of 
a Banach space E, equipped with the H ausdorff metric. Let S C E be 
non-em pty. A function F : S - > C ( E )  is said to be non-expansive if 
H (F^r , Fy) < \ \ x — y  || for all ^  and y  in S. Com bining an extension of 
Proposition 2.1 to set-valued m appings with [1, Theorem  1] we obtain the 
following result.

T h e o r e m  2 .5 . L et C be a non-empty convex weakly compact subset o f a 
Banach space E which is un iform ly convex in  every direction, and let F  :C-> C (E) 
be non-expansive. I f  Fy CC  fo r  a ll y  in  bdy(C), then F  has a fix ed  point.

THEOREM 2.6. L et C, a convex boundedly weakly compact subset o f a 
Banach space, possess norm al structure. L et T  : C - > C  be non-expansive, and  
let the sequence S =  { x n : n e  N} be defined by (1.3). I f  S is bounded\ then T  
has a f ix e d  point.

Proof. L et A (C  , S) denote the set of all the asym ptotic centers of S 
with respect to C. This set is weakly compact, convex and invarian t under T. 
T he result follows by [ 11 ].

This theorem , which can be extended to more general Toeplitz iterative 
processes, solves a problem  we raised in [20, Section 1]. It shows th a t “ is 
uniform ly convex in every direction ” can be replaced by “ has norm al struc­
ture ” in Theorem  1.1.

THEOREM 2.7. Let T  be a non-expansive self-mapping o f a reflexive Banach  
space F which has norm al structure. L et a bounded and closed C C E  have a 
non-empty inißrior. I f  T  satisfies (2.3) on C, then it has a fix e d  point.

Proof. C contains a sequence Y =  { y n : ne. N} which satisfies y n —-Tyn->o. 
A (E  ,Y) is weakly compact, Convex and invariant under T. Again an appeal 
to [ 11 ] completes the proof.
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This assertion, which has a bearing on Corollary 2.4, partia lly  answers 
a question we posed in [18].

Rem ark. A  weakly com pact convex subset C of a Banach space has the 
fixed point property  for non-expansive m appings if A  (D , S) =j= D for all 
sequences S in closed convex subsets D C G  which are not singletons.
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