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Analisi funzionale. — O a theorem of /. B. Diaz and F. 7 Metcalf.
Nota @ di S. P. Singu® e M. I. Ricero, presentata dal Corrisp.
G. FicHERA.

RIASSUNTO. — La Nota ¢ dedicata al teorema del punto unito, del quale viene ora for-
nita una versione che migliora taluni risultati dati in precedenza da altri Autori.

Diaz and Metcalf have proved a theorem on the convergence of a
sequence of iterates. In this Note we want to prove a similar result under
less restricted conditions.

Let T : X— X be a continuous mapping defined on a metric space (X , Z).
We will need the following preliminaries:

DEerFINITION 1. (C. Kuratowskii [7]). Zet ACX be a bounded set. The
measure of noncompactness of A, denoted by a(A), is defined to be the infinium
of € > 0 such that A admits a finite covering consisting of subsets with diameter
less than <.

1t is easy to see that:
(@) o <a(A) < 3(A), where S(A) is the diameter of the set AC X;
(b) ®(A) = o= A is precompact ;
() a(AUB)=max {a(A), «(B)};
(d) «(A+B) <a(A) + a(B), where A and B are subsets of X.
DEFINITION 2. Let T:X — X be a continuous mapping such that
(1) a(TA) < Aa(A),
Jor any bounded subser A C X.

(@) If k<1 the mapping T is called a Fk—set-contraction (see
G. Darbo [2]);

(b) If k=1 then T is said to be a 1-set-contraction;

(c) In the case where a(TA) < a(A) for a(A) > o, the mapping T
‘ is called densifying (see [3]).

Obviously, if the mapping T is such that
(2) - d(Tx,Ty) < kd (x, )
for all x,y in X, 0 <4< 1, then T satisfies (1).

(*) Pervenuta all’Accademia il 16 settembre 1972.
(**) This work was partially supported by NRC grant No. A-3097.
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It is worth remarking that all contraction mappings and completely
continuous mappings are densifying, as well as the sum of these two types
of mappings in Banach spaces. Nonexpansive mappings are I-set-contractions
(see [6]). :

We will need the following two theorems:
THEOREM A. (see [6]). Let T:C —C be a densifying mapping defined

on a closed bounded convex subset C of a Banach space X. Then T has at
least one fixed point.

THEOREM B. (see [3]). LZet T:X — X be a continuous mapping of a
metric space. X into itself. Suppose
() F(T) is nonempty, where F(T) is the set of fixed points of T,
(i) for each yeX, with y & F(T), and each u € F(T), ome has
d(Ty,u) <d(y,un).

Let x € X. Then, either {T”x}f:o contains no convergent subsequence,
or lim T"x exists and belongs to F(T).

n—> 00

We prove the following theorem.

THEOREM 1. Let T :C —C be a densifying mapping defined on a closed
bounded convex subset C of a strictly comvex Bamach space X. Let T satisfy
the following condition
(3) ITe =Tyl <allx—y | + 6 Te—x| + I Ty —y),

Jor all x,y in C, where a + 26 < 1.
Then for each x in C, the Picard sequence starting from x and generated
by the transformation T:

(4) Tix=Tx 4+ (G0—Nx, o< A< I,
converges to a fixed point of T.

Proof. It is clear that T, is defined on C and T,CCC, as C is convex.

T is densifying: Indeed, let A be a bounded non-precompact subset of C.
Then T;A =ATA+4 (1—2) A, and hence

a(THA) < A (TA) + (1 —2) a(A)
<Ae(A) + (1 —n) a(A)
=a(A).

Moreover, F(T) and F(T,) coincide for every %; and by Theorem A, F(T)
(and therefore F(T))) is nonempty.

. e8] ©o
For x€C, let A= U Thx; we have ThA = U Tix.
n=0 n=1

Then A is an invariant set; A= {x}UT,A.
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Denote by A the closure of A. A is also invariant; indeed, from the con-
tinuity of T, , it follows:

T,ACT,ACA.

Now, we shall prove A is compact. It is sufficient to show «(A) = o, since
in a complete metric space (and therefore in a Banach space) the precompact
sets are also relatively compact. Suppose a(A)>o0, A =T, AU{x}; then

a(A) = max {«(T,A), a(x)}
= max {«a(THA), 0} = a (THA).

But this contradicts T, densifying; hence «(A) = o. A is compact. Hence
the sequence of iterates has a convergent subsequence. Also X strictly convex
and condition (3) imply condition (ii) of Theorem B (see [1] for details).
Hence by Theorem B, { T5x } converges to a fixed point of T.

The following theorem due to Barbuti and Guerra [1] follows as a corollary
from Theorem 1.

THEOREM 2. [f C is a closed convex subset of a strictly comvex Banach
space X and T : C —C is a continuous transformation whick satisfies condition
(3) and if T (C) is contained in a compact subset K of C then, for every x in C,
the Picard sequence starting from x and gemerated by the. transformation T
defined by (4) converges to a fixed point of T.

Proof. As in Theorem 1, F(T) = F(T,); and by Schauder’s Theorem [10],
F(T)== o, then F(T;)Z=@. Now T(C) is contained in K, a compact subset
of C, therefore «(TC)=o0; ie. T is completely continuous and hence
trivially densifying.

Then, for every y € C— F(T) and « € F(T) we have

| Toy —ull < |y —ull.

This follows from the fact that T satisfies condition (3) on X and X is
strictly convex.

The following theorem of J. B. Diaz and F. T. Metcalf [3] can be derived
from Theorem 1 as a corollary.

COROLLARY 1. Let X be a strictly convex Banach space and C a closed
comvex set in X. Let T :C —C be a nonexpansive mapping defined in C such
that T(C) is a relatively compact set contained in C. Let T) = N + (1 —NT,
o< N< 1. Then for each x, in C, the sequence {Tixy} converges to a fixed
point of T.

Remark. . In case A = 1/2, we have the result of Edelstein [4].

COROLLARY 2. (W. V. Petryshyn [8]). ZLet X be a strictly convex Banach
space, C a closed bounded convex subset of X, and T :C —C a densifying and
nonexpansive mapping. For each N\, with o< A< 1, let T, = T + (1 —N1L
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Then for each xo in C, the sequence {x,,1} = { Toxy} determined by the iteration
method %,.1 = NTx,+ (1—N=x,, n=0,1,2,+;%€C, converges to a
Sixed point of T in C.

Proof. T is nonexpansive and hence condition (3) is satisfied with
a=1, 6 =o0. Since T, is nonexpansive and X strictly convex, it follows
that

[Ty —u| <lly—=|, «eFT) and yeC—FT).

COROLLARY 3. (J. Reinermann [9]). [Zf C is a closed bounded convex
subset of a strictly comvex Banach space X and T :C —C is nonexpansive
and cbmplete/y continuous, then, for each A, o< A< 1, and x, € C, the sequence
of dterates {x,41} = {Tixy} converges to a fixed point of T.
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