ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

S. P. SINGH, M. I. RIGGIO

On a theorem of J. B. Diaz and F. T. Metcalf

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.3-4, p. 246–249.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_3-4_246_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On a theorem of J. B. Diaz and F. T. Metcalf. Nota (*) di S. P. Singh (*) e M. I. Riggio, presentata dal Corrisp. G. Fichera.

RIASSUNTO. — La Nota è dedicata al teorema del punto unito, del quale viene ora fornita una versione che migliora taluni risultati dati in precedenza da altri Autori.

Diaz and Metcalf have proved a theorem on the convergence of a sequence of iterates. In this Note we want to prove a similar result under less restricted conditions.

Let $T: X \to X$ be a continuous mapping defined on a metric space (X, d). We will need the following preliminaries:

DEFINITION 1. (C. Kuratowskii [7]). Let $A \subset X$ be a bounded set. The measure of noncompactness of A, denoted by $\alpha(A)$, is defined to be the infinium of $\varepsilon > 0$ such that A admits a finite covering consisting of subsets with diameter less than ε .

It is easy to see that:

- (a) $0 \le \alpha(A) \le \delta(A)$, where $\delta(A)$ is the diameter of the set $A \subset X$;
- (b) $\alpha(A) = 0 \iff A \text{ is precompact};$
- (c) $\alpha(A \cup B) = \max \{ \alpha(A), \alpha(B) \};$
- (d) $\alpha(A+B) \leq \alpha(A) + \alpha(B)$, where A and B are subsets of X.

Definition 2. Let $T: X \to X$ be a continuous mapping such that

$$\alpha(TA) \le k\alpha(A),$$

for any bounded subset $A \subset X$.

- (a) If k < 1 the mapping T is called a k-set-contraction (see G. Darbo [2]);
- (b) If k = 1 then T is said to be a 1-set-contraction;
- (c) In the case where $\alpha(TA) < \alpha(A)$ for $\alpha(A) > 0$, the mapping T is called densifying (see [5]).

Obviously, if the mapping T is such that

$$d\left(\operatorname{T}x,\operatorname{T}y\right)\leq kd\left(x,y\right)$$

for all x, y in X, $0 \le k < 1$, then T satisfies (1).

^(*) Pervenuta all'Accademia il 16 settembre 1972.

^(**) This work was partially supported by NRC grant No. A-3097.

It is worth remarking that all contraction mappings and completely continuous mappings are densifying, as well as the sum of these two types of mappings in Banach spaces. Nonexpansive mappings are 1-set-contractions (see [6]).

We will need the following two theorems:

THEOREM A. (see [6]). Let $T:C\to C$ be a densifying mapping defined on a closed bounded convex subset C of a Banach space X. Then T has at least one fixed point.

THEOREM B. (see [3]). Let $T: X \to X$ be a continuous mapping of a metric space X into itself. Suppose

- (i) F(T) is nonempty, where F(T) is the set of fixed points of T;
- (ii) for each $y \in X$, with $y \notin F(T)$, and each $u \in F(T)$, one has d(Ty, u) < d(y, u).

Let $x \in X$. Then, either $\{T^n x\}_{n=0}^{\infty}$ contains no convergent subsequence, or $\lim_{n\to\infty} T^n x$ exists and belongs to F(T).

We prove the following theorem.

THEOREM 1. Let $T:C\to C$ be a densifying mapping defined on a closed bounded convex subset C of a strictly convex Banach space X. Let T satisfy the following condition

$$||Tx - Ty|| \le a ||x - y|| + b (||Tx - x|| + ||Ty - y||),$$

for all x, y in C, where $a + 2b \le 1$.

Then for each x in C, the Picard sequence starting from x and generated by the transformation T_{λ} :

(4)
$$T_{\lambda}x = \lambda Tx + (\mathbf{I} - \lambda)x, \quad 0 < \lambda < \mathbf{I},$$

converges to a fixed point of T.

Proof. It is clear that T_{λ} is defined on C and $T_{\lambda}C\subset C$, as C is convex. T_{λ} is densifying: Indeed, let A be a bounded non-precompact subset of C. Then $T_{\lambda}A = \lambda TA + (I - \lambda)A$, and hence

$$\begin{split} \alpha(T_{\lambda}A) &\leq \lambda\alpha(TA) + (\mathbf{1} - \lambda) \, \alpha(A) \\ &< \lambda\alpha(A) + (\mathbf{1} - \lambda) \, \alpha(A) \\ &= \alpha(A) \, . \end{split}$$

Moreover, F(T) and $F(T_{\lambda})$ coincide for every λ ; and by Theorem A, F(T) (and therefore $F(T_{\lambda})$) is nonempty.

For
$$x \in \mathbb{C}$$
, let $A = \bigcup_{n=0}^{\infty} T_{\lambda}^{n} x$; we have $T_{\lambda} A = \bigcup_{n=1}^{\infty} T_{\lambda}^{n} x$.

Then A is an invariant set; $A = \{x\} \cup T_{\lambda}A$.

Denote by \bar{A} the closure of A. \bar{A} is also invariant; indeed, from the continuity of T_{λ} , it follows:

$$T_{\lambda}\bar{A}\subset \overline{T_{\lambda}A}\subset \bar{A}$$
.

Now, we shall prove \bar{A} is compact. It is sufficient to show $\alpha(A) = 0$, since in a complete metric space (and therefore in a Banach space) the precompact sets are also relatively compact. Suppose $\alpha(A) > 0$, $A = T_{\lambda}A \cup \{x\}$; then

$$\begin{split} \alpha(A) &= \max \left\{ \alpha(T_{\lambda}A) \text{ , } \alpha(x) \right\} \\ &= \max \left\{ \alpha(T_{\lambda}A) \text{ , o } \right\} = \alpha\left(T_{\lambda}A\right). \end{split}$$

But this contradicts T_{λ} densifying; hence $\alpha(A) = 0$. \bar{A} is compact. Hence the sequence of iterates has a convergent subsequence. Also X strictly convex and condition (3) imply condition (ii) of Theorem B (see [1] for details). Hence by Theorem B, $\{T_{\lambda}^{n}x\}$ converges to a fixed point of T.

The following theorem due to Barbuti and Guerra [I] follows as a corollary from Theorem I.

Theorem 2. If C is a closed convex subset of a strictly convex Banach space X and $T:C\to C$ is a continuous transformation which satisfies condition (3) and if T(C) is contained in a compact subset K of C then, for every x in C, the Picard sequence starting from x and generated by the transformation T_{λ} defined by (4) converges to a fixed point of T.

Proof. As in Theorem 1, $F(T) = F(T_{\lambda})$; and by Schauder's Theorem [10], $F(T) \neq \emptyset$, then $F(T_{\lambda}) \neq \emptyset$. Now T(C) is contained in K, a compact subset of C, therefore $\alpha(TC) = 0$; i.e. T is completely continuous and hence trivially densifying.

Then, for every $y \in C \longrightarrow F(T)$ and $u \in F(T)$ we have

$$|| T_{\lambda} y - u || < || y - u ||.$$

This follows from the fact that T satisfies condition (3) on X and X is strictly convex.

The following theorem of J. B. Diaz and F. T. Metcalf [3] can be derived from Theorem 1 as a corollary.

COROLLARY I. Let X be a strictly convex Banach space and C a closed convex set in X. Let $T: C \to C$ be a nonexpansive mapping defined in C such that T(C) is a relatively compact set contained in C. Let $T_{\lambda} = \lambda I + (I - \lambda)T$, $0 < \lambda < I$. Then for each x_0 in C, the sequence $\{T_{\lambda}^n x_0\}$ converges to a fixed point of T.

Remark. In case $\lambda = 1/2$, we have the result of Edelstein [4].

COROLLARY 2. (W. V. Petryshyn [8]). Let X be a strictly convex Banach space, C a closed bounded convex subset of X, and $T: C \to C$ a densifying and nonexpansive mapping. For each λ , with $0 < \lambda < 1$, let $T_{\lambda} = \lambda T + (1 - \lambda)I$.

Then for each x_0 in C, the sequence $\{x_{n+1}\} = \{T_{\lambda}^n x_0\}$ determined by the iteration method $x_{n+1} = \lambda T x_n + (I - \lambda) x_n$, n = 0, I, 2, \cdots ; $x_0 \in C$, converges to a fixed point of T in C.

Proof. T is nonexpansive and hence condition (3) is satisfied with a = 1, b = 0. Since T_{λ} is nonexpansive and X strictly convex, it follows that

$$||T_{\lambda}y - u|| < ||y - u||, \quad u \in F(T) \text{ and } y \in C - F(T).$$

COROLLARY 3. (J. Reinermann [9]). If C is a closed bounded convex subset of a strictly convex Banach space X and T:C \rightarrow C is nonexpansive and completely continuous, then, for each λ , $0 < \lambda < 1$, and $x_0 \in C$, the sequence of iterates $\{x_{n+1}\} = \{T_n^{\lambda}x_0\}$ converges to a fixed point of T.

BIBLIOGRAPHY

- [I] BARBUTI U. and GUERRA S., On an extension of a theorem due to J. B. Diaz and F. T. Metcalf, «Rend. Accad. Naz. Lincei», 51, 29-31 (1971).
- [2] DARBO G., Punti uniti in trasformazioni a codominio noncompatto, « Rend. Sem. Mat. Padova », 24, 84-92 (1955).
- [3] DIAZ J. B. and METCALF F.T., On the set of subsequential limit points, etc., «Trans. Amer. Math. Soc. », 135, 459-485 (1969).
- [4] EDELSTEIN M., A remark on a theorem of M. A. Krasnoselskii, «Amer. Math. Monthly», 73, 509-510 (1966).
- [5] FURI M. and VIGNOLI A., A fixed point theorem in complete metric spaces, «Boll. Unione Matematica Italiana», 4, 505-509 (1969).
- [6] FURI M. and VIGNOLI A., On α-nonexpansive mappings and fixed points, « Rend. Accad. Naz. Lincei », 48, 195–198 (1970).
- [7] KURATOWSKII C., Topologie, «Monografie Matematiczne», 20. Warszawa, 1958.
- [8] Petryshyn W. V., Structure of fixed point sets of k-setcontractions, «Arch. Rat. Mech. Annal.», 40, 312-318 (1971).
- [9] REINERMANN J., On a fixed point theorem of Banach type, «Ann. Polon. Math.», 23, 105-107 (1970-71).
- [10] SCHAUDER J., Fixpunktsatz in Funktional räumen, «Studia Math.», 2, 7-9 (1930)