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Analisi matematica. — On a class of Kobmogorov n—width
problems. Nota ® di Les AnprRew KarrLoviTz, presentata dal Socio
Straniero A. WEINSTEIN.

RIASSUNTO. — Si caratterizzano 1 sottospazi estremali di una classe di problemi di
Kolmogorov 7z-larghezza. La non unicita della soluzione viene sottolineata e legata alla teoria
max-min degli autovalori.

1. INTRODUCTION

Our main concern is with the characterization of extremal subspaces
for a class of Kolmogorov #z—width problems. In the course of this we empha-
size the nonuniqueness of the extremal subspaces for most of the problems,
and the possible applications thereof. The nonuniqueness was first announced
by us in [1], and seems to be a matter which is generally not well understood.
In all of the discussions known to us, either the uniqueness of the “ classical ”
extremal subspace is érroneously claimed or the question is avoided altogether.
In particular, Kolmogorov in [2], wherein he introduced the notion of the
n-width, overlooked 'the existence of non-classical extremal subspaces for
certain of the problems he considered. The same oversight has also sub-
sequently been made by others. We give an example herein.

Among other things, we state a new approximation-theoretic criterion
(Theorem 1, second part) for locating extremal subspaces. By this criterion, an
n—-dimensional subspace is extremal if it has a basis which satisfies an ortho-
normality condition and which approximates, term by term, the natural basis
of the #—dimensional ““classical” extremal subspace within a specified bound.

We also complete a circle of ideas by showing (Paragraph 3) the relation
“of the results to the maximum-minimum theory of eigenvalues. In particular,
the nonuniqueness of the extremal subspace is related to the nonuniqueness
of the subspace which yields the eigenvalue in the maximum-minimum theory.
The latter nonuniqueness was first discussed by Weinstein [5], [6], wherein
he characterized all of the subspaces which yield the eigenvalue.

We do not state our results in their most general form. A more complete
version and all of the proofs will be published elsewhere.

2. »—WIDTHS

Let X be a Hilbert space with inner product (-,-) and norm [|-||.
Let ¢;,7 €1, be an orthonormal basis for X, where the index set I is either
the set of positive integers or, if X has finite dimension, I = {1 ,.--, dim X}.

(*) Pervenuta all’Accademia il 2 ottobre 1972.
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Let A;,7€l, be positive increasing reals, ie, o<2; and %, < Aiy1, for
7,74+ 1€l. Let

(1) K = §x:,~2€?&0" (x, e < s

The degree to which all points of K can be approximated by a single
n—dimensional linear subspace of X is measured by the constant

w, (K) = 1nf sup 1nf ]|x—~—y|]

€g, x€K

where ¢, is the family of all n—d1mens1onal linear subspaces of X. The constant

w, (K) is called the n—width of K. It was first defined (for general Banach .
spaces X and arbltrary subsets K) by Kolmogorov [2]. A subspace S, is said
to be extremal for K if

w, (K) = sup_inf [z —y]|.
x€K y€S§,
The first part of the following theorem characterizes the extremal sub-
spaces of K, and the second part states an approximation-theoretic criterion

which is sufficient for a subspace to be extremal. This criterion will be seen
to be natural and easily applicable (Remark 3 and Example 1, below).

THEOREM 1. Let X be a Hilbert space and K be defined by (1). Then for
each positive integer n, with n < dimension of X,

2, (K) = 1/hy1.

Moreover, the n—dimensional subspace spanned by vy, ,- -
Jving the orthonormalization

(2) %‘4173<yk)ei> <yj’gi>=8é,jy é,jzl:""”r

-, ¥, € K satis-

is extremal for K of and only if

(3) <yk’en+1>=0’ ézl:"':”’
and
@ <xn+1uxu>2sr~§ ;ellx ) e

fbr cach x € K with (x ,y,y =0, k=1, -+, n and (x, eup1) = 0.
In particular, of y,,---,, satisfy (2), (3) and

. LoD (M2 A 2 (g2)— (gn)? )
(53 llye—ealall < 5 min 1 (2, (24 Pyl

then they also satisfy (&), and hence span an extremal subspace.

Remark 1. The last part of the theorem states that it is sufficient for
¥, to be close to ¢;/A;, #=1,---,%.  The bound (5) is not a necessary one.
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Neither is it best possible. Better bounds for ||y, — e;/2;]| can be found which,
together with (2) and (3), are sufficient to insure that y;,- - -, y, span an extre-
mal subspace. We state the following improved bounds for a specialized case.
Suppose y1,- -+, ¥, € K satisfy (2) and (3) and (y,, ¢,) (¥, , ;) = o0 whenever

k=7, k=1, nm i=1 y2, o, and (W, e, =0, =1, -+, m—1.
Suppose ’
<6> “J’k“%ﬁ‘k”ﬁe/)\k: ,é:],---’h,

where ¢ satisfies

i) + @O Qufhagn) + 28 + P < T — Qgrfhs )

and ¢ = min {(ekv, Yolik=1,--,n}. Then y;,---, 9, also satisfy (4),
and "hence span an extremal subspace.
It follows from Theorem 1 that ¢;,---, ¢, span an extremal subspace

for K. For each 7, we refer to this as the “ classical”’ choice. It also follows
from Theorem 1 that, in almost all cases, non- classmal choices can be made.
We express this in the following corollary.

COROLLARY 1. ZLet X and K be as a Theorem 1. Let n be a positive
integer. If 2m 1 < dimension of X, then there exists an n—dimensional
subspace S, which is extremal for K and which satisfies

S, N span ey, -, e,} = {o}:

If n + 2 < dimension of X, then there exists an n—dimensional subspace
S, which is extremal for K and which satisfies

Sn:i:‘s‘pan{g] "")gn}'

If n + 1 = dimension of X, then span {er, -+, e,} is the only n-dimen-
stonal subspace which is extremal Jor K.

Remark 2. Kolmogorov [2] was concerned mainly with finding the
n—width of sets of the form M = K + L, where L is a finite dimensional
linear subspace and K is a compact ellipsoid, i.e., a compact linear transform
of the unit ball. This includes K of the form (1). In particular, he considered
X =1%[o, 1] and

(7)) M= z‘x:x,%eLZ [0, 1], x absolutely continuous, H “<I

Based on the geometry of the s1tuat10n he erroneously claimed, for example,
that all of the extremal subspaces of M, given by (7), are unique. (In
Example 1, below, we show that they are nonunique). The claim was based
on the 1dea that if # > m = dimension of L, then an n-dimensional extremal
subspace should be spanned by a basis of L and the % —» largest major
axes of the ellipsoid K, provided that these are uniquely defined. The following
remark is intended to show in geometric terms why this idea is valid only
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in some special finite dimensional situations. For this purpose, we may take
dimension L = o.

Remark 3. For K given by (1) and y € K, one can make the following
geometric observation

(8) sup{llzll:2€e KNU (9} = sup infllx —ay| < sup {|lz]: 2 € KN V(x)},

where U (y) ={x:(x, ) =0} and V (y)= xrglk?@,ei)‘(y,ei):o .

This observation has two consequences. On the one hand, if the dimension
of X =2, i.e, if K is a plane ellipse, then if y == pe;, all u, we readily see
that sup {||z][:2€ KNU} > 1/A;. Since w; (K) = 1/, it follows that there is
a unique 1-dimensional extremal subspace, namely the classical one spanned
by e;. On the other hand, if the dimension of X > 3, i.e., if K is a solid ellip-
soid, then we readily compute that if y € K is chosen so that (y, €g) = 0O
and y is sufficiently close to ¢;/2;, then sup {||z{|: 2€e KNV} = 1/A,. Hence,
by (8), ¥ spans an extremal subspace; and, if y==ue;, all g, it is a non-
classical choice. Thus if the dimension of X > 3, 1-dimensional extremal
subspaces are zof uniquely determined. A similar argument can be made
for » > 2.

Example 1. Let M be given by (7). Then M can be expressed
as M=L+ K, where L =span{x;}, with x;(?) =1, and where

K = 396 ) ({x, V2 cos And) kr <1, (%, x)) = og. Clearly, if # > 2 then
=1

w, (M) =w,_1(K) and the subspace spanned by x,, cos nz,- - -, cos (n — 1) 7z
is extremal for M. This is the classical choice. Moreover, if S,_; is an extremal
subspace for K then L +S,_; is an extremal subspace for M. Thus we can
use Theorem 1 to find a non-classical extremal subspace for M. For example,
let w4, (), uy (#) be piecewise linear, continuous, real-valued functions defined
on [0, 1] with knots at {0, 1/6,5/6,1}. They are defined by: #; (0) =
= w1 (16) =1, 2, (5/6) = 1, (1) = 0, 13 (0) = w3 (1/6) = 0, and s (5/6) =
=23 (1) = 1." It now follows readily that the subspace spanned by #%; and
ug is extremal for M. For #; + uy = x; and (1/Y6) (#, — us) = %, is ortho-
gonal to x; and it satisfies (2), (3) and (5), with X = LN {x: (x, x) = o}, K
as given, and # = 1. Thus y, spans an extremal subspace for K.

In the so-called finite element methods for approximately solving diffe-
rential equations, non-classical choices of extremal subspaces can be impor-
tant. It is often the case that computing the approximate solution in an extre-
mal subspace minimizes the error between the approximate and actual
solutions. In such cases, the nonuniqueness can be used to select an extremal
subspace in some advantageous manner. For example, as indicated by
Example 1, one can expect to gain computational advantage by choosing
an extremal subspace which is spanned by functions having small supports.
The size of the minimal supports in various situations is yet to be investigated.
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3. EIGENVALUES

Let A be a completely continuous, positive definite, symmetric linear
operator on X. We denote by 8;>--->8,>--- and #%;,---,u%,,--- the
eigenvalues and eigenvectors of A. By the maximum-minimum theory

. (Ax,x)
(9) max min -
s,€¢, =15, #%)

=Bn+l) ﬂ=1,2,"‘,
where x | S, means (x, y) = o for each y € S,. The following theorem shows
the straightforward relation to #—width problems.

THEOREM 2. Let X and A be as above. Define an equivalent inner product
(voa (and norm ||-|) by (x,5), =(Ax,9). Then the n—dimensional
subspace S, achieves the maximum in (9) if and only if S, is an extremal
subspace of

K = éx : 21 (/87" G, B )P < 12.

If 8; >Bs1,2=1,2, -, it follows from Theorem 2 and Corollary 2
that non-classical choices exist for the subspaces which achieve the maximum
in (9). The first characterization of all of the subspaces which achieve the
maximum in (9) was given by Weinstein [5], [6]. Our characterizations di-
scussed here are of a different nature from those of Weinstein. Stenger [3]
extended the results of Weinstein to a more general class of operators, and
in [4] gave a similar development for the minimum-maximum theory. For
the work of Weinstein. and Stenger we also refer to [7].
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