ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Adrian Corduneanu

A note on the minimum property of $\overline{R(A)}$ for a monotone mapping in a real Hilbert space

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.1-2, p. 56–59. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_1-2_56_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — A note on the minimum property of $\overline{R(A)}$ for a monotone mapping in a real Hilbert space. Nota (*) di Adrian Corduneanu, presentata dal Socio G. Sansone.

RIASSUNTO. — Lo scopo di questa Nota è di dare una generalizzazione di un risultato di Pazy relativo all'asintotico comportamento di una contrazione in uno spazio di Hilbert e di fare qualche osservazione circa il semigruppo di contrazione generato da una certa monotona trasformazione.

I. Introduction

Let H be a real Hilbert space with the scalar product (\cdot,\cdot) and the identity operator I and let A be a subset of $H\times H$. For such a subset "the domain of definition" is given by $D(A)=\{x\,;\,[x\,,\,y]\in A \text{ for some }y\in H\}$ and "the range" is given by $R(A)=\{y\,;\,[x\,,\,y]\in A \text{ for some }x\in H\}$. A subset $A\subset H\times H$ may be considered as a multivalued mapping defined on $D(A)\subset H$ with the values in $R(A)\subset H$, defining $Ax=\{y\,;\,[x\,,y]\in A\}$ for $x\in D(A)$. For a real λ , we define $\lambda A=\{[x\,,\lambda y]\,;\,[x\,,y]\in A\}$, and for A, $B\subset H\times H$ we define $A+B=\{[x\,,y+z]\,;\,[x\,,y]\in A \text{ and }[x\,,z]\in B\}$.

We say that A is monotone if for every $[x_i, y_i] \in A$, i = 1, 2, we have $(y_1 - y_2, x_1 - x_2) \ge 0$. A is said to be maximal monotone if it is monotone and there is no monotone set \tilde{A} such that $A \subset \tilde{A}$, $A \ne \tilde{A}$.

A subset $A \subset H \times H$ is said to be closed if $[x_n, y_n] \in A$, $x_n \to x$ and $y_n \to y$ imply that $[x, y] \in A$.

Following A. Pazy [5], we say that a closed set $K \subset H$ has the minimum property if the element of minimum norm in $\overline{\operatorname{conv} K}$ belongs to K. (Here, $\overline{\operatorname{conv} K}$ denotes the closure of the convex hull of K).

We shall use the following well known:

LEMMA I [5]. Let $C \subset H$ be a closed convex set and let v be the minimal element of C. If $u_n \in C$ and $|u_n| \to |v|$, then $u_n \to v$.

Another result employed in this paper is an extension of a theorem due to H. Brézis and A. Pazy [1], namely:

LEMMA 2. Let $A \subset H \times H$ be a closed monotone set. If

$$R(I + \lambda A) \supset \overline{conv D(A)}$$
 for every $\lambda > 0$

then

- a) $\overline{D(A)}$ is convex;
- b) For every $x \in D(A)$, Ax has an element of minimum norm denoted by A^0x .
- c) $-A^0$ is the generator of a semigroup of contractions on $\overline{D(A)}$.
- d) A has a unique extension to a maximal monotone set \tilde{A} satisfying $D(\tilde{A}) = D(A)$ and $\tilde{A}^0 = A^0$.
- (*) Pervenuta all'Accademia il 5 luglio 1972.

We shall also use the following result due to M. G. Crandall (unpublished; see H. Brézis [2]).

LEMMA 3. Let $A \subset H \times H$ be a maximal monotone set. Let be $f_{\infty} \in H$ and f(t) such that $f(t) - f_{\infty} \in L^1$ (0, $+\infty$; H). Then for every weak solution u of the equation $du/dt + Au \ni f$, we have $\lim_{t \to \infty} u(t)/t = -v$, where v is the minimal element in $\overline{R(A)} - f$.

2. Theorem 1. Let $A \subset H \times H$ be a closed monotone set and

$$R(I + \lambda A) \supset \overline{\operatorname{conv} D(A)}$$
 for every $\lambda > 0$.

Then $\overline{R(A)}$ has the minimum property.

Proof. By the Lemma 2 quoted above, A has a maximal extension \tilde{A} satisfying D $(\tilde{A}) = D(A)$ and $\tilde{A}^0 = A^0$; on the other hand it is well known that $\overline{R(\tilde{A})}$ is a convex set. Thus $\overline{R(\tilde{A})} = \overline{\operatorname{conv} R(\tilde{A})} \supset \overline{\operatorname{conv} R(A)} \supset \overline{R(A)}$. Let v be the minimal element in $\overline{R(A)}$; thus, there is $x_n \in D(A)$ and $v_n \in Ax_n$, $n = 1, 2, 3, \cdots$, such that $v_n \to v$. Because $|v_n| \ge |\tilde{A}^0 x_n| = |A^0 x_n| \ge |v|$ follows that $|A^0 x_n| \to |v|$ and by the Lemma 1 we obtain $A^0 x_n \to v$, i.e. $v \in \overline{R(A)}$. Obviously v is the minimal element in $\overline{\operatorname{conv} R(A)}$, thereby the theorem is proved.

As a corollary we obtain a theorem of Pazy [5] about the asymptotic behaviour of contractions. A function T defined on D(T)CH with the values in H is called a contraction if $|Tx-Ty| \le |x-y|$, $\forall x, y \in D$ (T). The function A = I - T defined on D(A) = D(T) is obviously monotone and if D(A) is closed A is also closed. All the conditions required in the Theorem I are satisfied if T: C \rightarrow C is a contraction, where C is convex and closed. On the other hand, $\{S(t)\}$, $t \ge 0$ being the semigroup of contractions generated by -A, it is known ([I], Lemma 3.2) the inequality $|S(n)x-T^nx| \le \sqrt{n}|Ax|$, $\forall x \in D(A)$ and $n=1,2,3,\cdots$. Since $S(n)x/n \rightarrow -v$ when $n \rightarrow \infty$, where v is the minimal element in $\overline{R(I-T)}$, we obtain that $T^nx/n \rightarrow -v$ when $n \rightarrow \infty$, $\forall x \in C$ and so it was proved the following result established by A. Pazy ([5], Theorem 2 and Lemma 5):

COROLLARY I. Let $C \subset H$ be a closed convex set and let $T : C \to C$ be a contraction. Then $T^n x | n \to -v$ when $n \to \infty$, $\forall x \in C$, where v is the minimal element in $\overline{R(I-T)}$.

Corollary 2. Suppose that the conditions of Theorem 1 are satisfied and D (A) is bounded and weakly closed. Then $o \in R$ (A).

Proof. Inasmuch as D(A) is bounded, it follows that $|S(t)x| \leq M_x$ for $t \geq 0$, $\forall x \in D(A)$, where $\{S(t)\}$, $t \geq 0$ is the semigroup of contractions on $\overline{D(A)}$ generated by A. Thus $S(t)x/t \to 0$ when $t \to \infty$ and consequently $0 \in \overline{R(A)}$ i.e. there is $x_n \in D(A)$ and $y_n \in Ax_n$, $n = 1, 2, 3, \cdots$, such

that $y_n \to 0$. We may assume $x_n \to \xi \in D(A)$, the arrow \to denoting the weak convergence in H. Because $(y_n - y, x_n - x) \ge 0$, $\forall [x, y] \in A$ and $n = 1, 2, 3, \cdots$, it follows $(y, \xi - x) \le 0$, $\forall [x, y] \in A$. Taking x_0 the unique solution of the equation $\xi \in (I + \lambda A) x_0$, $\lambda > 0$ being fixed, and $y_0 \in Ax_0$ such that $\xi = x_0 + \lambda y_0$, we obtain $(y_0, \lambda y_0) \le 0$ which implies $y_0 = 0$, i.e. $0 \in R(A)$.

COROLLARY 3 (Browder's fixed point theorem). Let $C \subset H$ be closed, convex and bounded. If $T: C \to C$ is a contraction, then T has a fixed point in C.

Proof. It suffices to take A = I - T. By the Corollary 2, $o \in R(A)$ i.e. $\exists x_0 \in C$ such that $x_0 = Tx_0$.

3. In this section we study the behaviour of the semigroup $\{S(t)\}$, $t \ge 0$ generated by the closed monotone set A, possessing the property required in the Lemma 2.

Theorem 2. Suppose that the conditions of the Theorem 1 are satisfied. Then

- a) $o \in R(A) \iff |S(t)x|$ is bounded for $t \ge o$, $\forall x \in D(A)$.
- b) $o \in \overline{R(A)} R(A) \iff |S(t)x|$ is unbounded for $t \ge o$, $\forall x \in D(A)$ and $\lim_{t \to \infty} |S(t)x|/t = o$, $\forall x \in D(A)$.
- c) $o \notin \overline{\mathbb{R}(A)} \iff \lim_{t \to \infty} |S(t)x|/t = \alpha > 0, \forall x \in D(A).$

Proof. a) If $o \in Ax_0$, $S(t)x_0 \equiv x_0$ for $t \geq o$. Let $x \in D(A)$; then $|S(t)x| \leq |S(t)x_0| + |S(t)x - S(t)x_0| \leq |x_0| + |x - x_0|$, $\forall t \geq o$. Conversely, let |S(t)x| be bounded for $t \geq o$, $\forall x \in D(A)$. $\{S(t)\}$, $t \geq o$ may be considered as a bounded contraction semigroup on the convex set $\overline{D(A)}$ and then follows from ([3], Corollary 5.1) that $o \in R(A)$. (In fact, $o \in R(A^0)$).

- b) Taking into account a) and the Lemma 3, the Proof is immediate.
- c) Taking into account a), b) and the Lemma 3, the proof is very easy.

COROLLARY 1. Let $C \subset H$ be a closed convex set and let $T:C \to C$ be a contraction. Consider the equation

(E)
$$du/dt + (I - T) u = 0 , u(0) = x \in C.$$

Then

- a) All solution of equations (E) are bounded \iff $|T^nx|$ is bounded, $\forall x \in \mathbb{C}$.
- b) All solutions of equation (E) are unbounded and $\lim_{t\to\infty} |u(t)|/t = 0$, $\forall x \in \mathbb{C} \iff |\mathbb{T}^n x|$ is unbounded and $\lim_{n\to\infty} |\mathbb{T}^n x|/n = 0$, $\forall x \in \mathbb{C}$.
- c) All solutions of equation (E) satisfy the condition

$$\lim_{t\to\infty} |u(t)|/t = \alpha > 0 \Longleftrightarrow \lim_{n\to\infty} |\mathrm{T}^n x|/n = \alpha, \qquad \forall x \in \mathrm{C}.$$

Proof. It is immediate if we take into account the Theorem 2 and a result of Pazy ([5], Corollary 6) concerning the behaviour of the sequence $|T^nx|/n$.

4. In this section, we give a theorem of asymptotic stability analogous to that of R. H. Martin ([4], Theorem 1).

Theorem 3. Assume that $A:D(A) \rightarrow H$ is a function such that:

- (i) The conditions of Theorem I are satisfied.
- (ii) $(Ax Ay, x y) \ge \rho(r) |x y|^2$ if $|x|, |y| \le r$, where $\rho = \rho(r)$ is a positive function defined on $[0, +\infty)$.
 - (iii) There is $x_{\epsilon} \in D(A)$, with $Ax_{\epsilon} = 0$.

Then for every solution u = u(t) of the equation du/dt + Au = 0. $u(0) = x \in D(A)$, it follows $\lim u(t) = x_c$.

Proof. Every solution u(t) = S(t)x of the above equation is bounded: $|S(t)x| \le |S(t)x_{\epsilon}| + |S(t)x - S(t)x_{\epsilon}| \le |x_{\epsilon}| + |x - x_{\epsilon}|$ for $t \ge 0$. If we put $p(t) = |u(t) - u_1(t)|$ for two different solutions of the given equation and we denote by $p'_{+}(t)$ the right derivative of p(t), it follows $p'_{+}(t) = -(Au(t) - Au_1(t), u(t) - u_1(t)) | u(t) - u_1(t)| \le -p(r_0)p(t)$, where r_0 is a positive number such that |u(t)|, $|u_1(t)| \le r_0$ for $t \ge 0$. Thus we have $p(t) \le p(0) \exp(-p(r_0)t)$ for $t \ge 0$. Taking $u_1(t) = S(t)x_{\epsilon} \equiv x_{\epsilon}$ and $r_0 = |x_{\epsilon}| + |x - x_{\epsilon}|$, we finally obtain that

$$|u(t) - x_{\epsilon}| \le |x - x_{\epsilon}| \cdot \exp(-\rho(|x_{\epsilon}| + |x - x_{\epsilon}|)t)$$
 for $t \ge 0$.

Remark. The solutions u(t) = S(t)x of the equation du/dt + Au = 0, u(0) = x considered in this paper are strong solutions, i.e. are continuous and almost everywhere derivable.

REFERENCES

- [1] H. Brézis and A. Pazy, Semigroups of nonlinear contractions on convex sets, « J. Funct. Anal. », 6, 237–281 (1970).
- [2] H. Brézis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert (cours redigée avec la collaboration de Ph. Bénilan), Paris 1971.
- [3] M. G. CRANDALL and A. PAZY, Semigroups of nonlinear contractions and dissipative sets, « J. Funct. Anal. », 3, 376-418 (1969).
- [4] K. H. MARTIN, A theorem on critical points and global asymptotic stability, « J. of Math. Anal. and Appl. », I, 124-130 (1971).
- [5] A. PAZY, Asymptotic behaviour of contractions in Hilbert space, «Israel J. of Math. », 2, 235-240 (1971).