ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FRED GROSS, CHUNG-CHUN YANG

On the growth of the meromorphic solutions of certain functional—differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **53** (1972), n.1-2, p. 50–55. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_53_1-2_50_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On the growth of the meromorphic solutions of certain functional—differential equations (*). Nota (**) di Fred Gross e Chung—Chun Yang, presentata dal Socio G. Sansone.

RIASSUNTO. — Si considera l'accrescimento di una funzione meromorfa, soluzione dell'equazione

$$P\left(u\left(\lambda_{1}z\right),u\left(\lambda_{2}z\right),\cdots,u\left(\lambda_{l}z\right)\right)=h\left(u^{(m)}\left(z\right)\right)$$

dove m è un intiero \geq 0.

 $\mathrm{P}\left(w_{1}\left(z\right),\cdots,w_{l}\left(z\right)\right)$ è un polinomio delle funzioni $w_{1}\left(z\right),\cdots,w_{l}\left(z\right)$ e delle loro derivate avente come coefficienti polinomi in z,h è una data funzione meromorfa d'ordine zero e λ_{l} , i=1, 2, \cdots , l sono costanti in valore assoluto > 1.

Let g(z) denote a non-constant meromorphic function. Then, as usual, the Nevanlinna characteristic function T(r,g) is used to measure the growth rate of g and which has many properties in analogy with the logarithm of the maximum modulus function of an entire function. In particular, T(r,g) is a real-valued, continuous non-decreasing and unbounded function defined for $r > r_0 > 0$. The order ρ_g and lower order μ_g of g are defined as

$$\rho_{g} = \overline{\lim}_{r \to \infty} \frac{\log T(r,g)}{\log r} \quad \text{and} \quad \mu_{g} = \underline{\lim}_{r \to \infty} \frac{\log T(r,g)}{\log r}.$$

In this paper we are primarily interested in the investigation of the growth rate of the meromorphic functions u(z) which are solutions of the equation of the form:

(I)
$$P(u(\lambda_1 z), u(\lambda_2 z), \dots, u(\lambda_l z)) = h(u^{(m)}(z)),$$

where $P(w_1(z), w_2(z), \dots, w_l(z))$ denotes a polynomial in l functions $w_1(z), \dots, w_l(z)$ and their derivatives with polynomials in z as the coefficients, h is a given meromorphic function, m = 0 or any positive integer $(u^{(0)}(z) \equiv u(z))$, and λ_i are constants with $|\lambda_i| > 1$.

Our study of the above equation is motivated by the following equation which is a special case of equation (1)

$$u(\lambda z) = h(u(z)).$$

Equation (2) is called Poincaré equation and has been investigated by many authors. We here refer the reader to a book of Kuczma's [8, p. 141] for references.

^(*) The content is based on a talk delivered by the second author at the Conference on Ordinary Differential Equations at Oberwolfach, Federal Republic of Germany, March 23, 1972.

^(**) Pervenuta all'Accademia il 3 luglio 1972.

Before proceeding further we would like to point out that for certain functions h, there exist solutions to equation (2). For example, when $h(z) = e^z$, a solution u(z) can be exhibited for appropriate constants c. Baker [1] showed that for a constant c with |c| > 1, there exists an entire function f satisfying the equation:

$$f(cz) = \exp f(z).$$

With $\lambda = c$, u = f is a solution of (2). It is pointed out [1] that the growth of f(z) is faster than that of any $\exp_n(z)$ (the *n*-th iterate of $\exp(z)$).

As a second example let $h(z) = z^2$, $\lambda = 2$. In this case $u(z) = e^z$ is a solution of equation (2).

It is easily seen, by virtue of a result of Edrei and Fuchs [6] that when h is a meromorphic function of positive order then every transcendental entire solution of equation (2) has infinite order. Therefore we shall only treat the case when the given meromorphic function h is of zero order.

In the sequel, we shall show that when h is transcendental, then any entire solution u(z) of equation (2) is of infinite lower order. We shall also derive a more precise estimate for the growth of a meromorphic solution u(z) when h is a rational function. Actually, we have

THEOREM 1. Let h(z) be a given non-rational meromorphic function of zero order. Then any entire function u(z) which satisfies equation (1), has lower order equal to infinity.

Theorem 2. Let h(z) be a rational function of weight $n(n \ge 2)$. Suppose that u(z) is a meromorphic function of order $\rho(0 \le \rho \le +\infty)$ which satisfies equation (2) with $|\lambda| > 1$. Then ρ must be finite and equal to $\log n|\log |\lambda|$. Moreover, u is of regular growth i.e. the lower order of u(z) is equal to the order of u(z).

Remark. Theorem 2 is an extension of a special case of a result of Valiron [9, p. 46].

2. PRELIMINARY LEMMAS

Our theorems will readily follow from the following four Lemmas.

LEMMA 1. Let g be transcendental entire function. Then

$$\lim_{r\to\infty}\frac{\mathrm{T}(r,f(g))}{\mathrm{T}(r,g)}=\infty\,,$$

for any transcendental meromorphic function f (see e.g. [2]);

$$\lim_{r \to \infty} \frac{\mathrm{T}(r, \mathrm{R}(g))}{\mathrm{T}(r, g)} = n$$

for any rational function R(z) of weight n (see e.g. [7]).

Lemma 2 will involve the notion of Polya peaks which we introduce first. Let G(t) be a real valued, non-negative and unbounded function defined for $t \ge t_0 > 0$, and define the order and lower order of G respectively by

$$\rho = \overline{\lim}_{t \to \infty} \frac{\log G(t)}{\log t} \quad , \quad \mu = \underline{\lim}_{t \to \infty} \frac{\log G(t)}{\log t} \cdot$$

Definition [3, 4, 5]. An increasing positive sequence $r_1, r_2, \dots, r_m, \dots$ is said to be a sequence of Polya peaks of order η for G(t) ($0 \le \eta < \infty$) if it is possible to find a pair of associated sequences $\{a_m\}_{m=1}^{\infty}$, $\{A_m\}_{m=1}^{\infty}$ such that

$$\lim_{m \to \infty} a_m = \lim_{m \to \infty} A_m / r_m = + \infty \quad ; \quad \lim_{m \to \infty} r_m / a_m = \infty$$

and such that

$$G(t) \le (I + O(I)) (t/r_m)^{\eta} G(r_m) (m \to \infty, a_m \le t \le A_m).$$

LEMMA 2. (Existence theorem for Polya peaks [4, 5]). Let G(t) be a real valued non-negative non-decreasing and unbounded function defined for $t \ge t_0 > 0$, having finite lower order μ . Then for each finite η satisfying $\mu \le \eta \le \rho$ there exists a sequence $\{r_m\}$ of Polya peaks, order η , of G(t).

Lemma 3. Let f be a non-constant meromorphic function. Suppose that there exists a constant $\alpha > 1$ such that the following estimate holds:

(3)
$$\lim_{r \to \infty} \frac{T(\alpha r, f)}{T(r, f)} = \infty.$$

Then the lower order of f must be infinite.

Proof. Suppose that $\mu_f < \infty$. Then there exists a sequence $\{r_m\}$ of Polya peaks of order μ_f for T(r, f).

Hence, we would have

(4)
$$\lim_{m \to \infty} \frac{\mathrm{T}(\alpha r_m, f)}{\mathrm{T}(r_m, f)} \le (\mathrm{I} + \mathrm{O}(\mathrm{I})) \alpha^{\mu_f} < +\infty.$$

This contradicts assumption (3), and Lemma 3 is thus proved.

LEMMA 4 [10, p. 25]. Let f be a non-constant meromorphic function and β be any constant > 1. Then for $r>r_0$

(a)
$$T(r, f') < K_1 T(\beta r, f)$$

and

(b)
$$T(r,f) < K_2 T(\beta r,f'),$$

where K₁ and K₂ are two positive constants.

3. Proof of Theorem 1.

We assume that m=0. Suppose that u is a transcendental entire function satisfying equation (1). Then according to inequality (a) of Lemma 4, it is easy to show that there exist positive constants K and $\alpha>1$ such that

(5)
$$T(r, P(u(\lambda z), \dots, u(\lambda_l z))) \leq KT(\alpha r, u)$$

for sufficiently large r.

From this and equation (1) we have

(6)
$$KT(\alpha r, u) \ge T(r, h(u)).$$

Hence, by Lemma 1 part (i)

(7)
$$\lim_{r \to \infty} \frac{T(\alpha r, u)}{T(r, u)} \ge \frac{1}{K} \lim_{r \to \infty} \frac{T(r, h(u))}{T(r, u)} = \infty$$

our assertion follows from this and Lemma 3.

The proof for the case m > 0 is similar and will be omitted.

Proof of Theorem 2. Suppose that u is a transcendental meromorphic function satisfying equation (2) with h being a rational function of weight $n(n \ge 2)$. Then giving $\varepsilon > 0$ according to assertion (ii) of Lemma 1 we have (for $r > r_0 \ge 1$)

(8)
$$T(|\lambda|r, u) = T(r, h(u)) \le n(1+\varepsilon)T(r, u).$$

Thus

(9)
$$T(|\lambda|^{m} r, u) \leq n^{m} (1 + \varepsilon)^{m} T(r, u).$$

Now fix $r \ge r_0 \ge 1$. Then

(IO)
$$T(|\lambda|^m r_0, u) \leq n^m (I + \varepsilon)^m T(r_0, u).$$

Assume now that the order of $u(=\rho_u)=\rho$. Then there exists a sequence $\{r_n\}$ such that

$$\lim_{n\to\infty} \frac{\log T(r_n, u)}{\log r_n} = \rho.$$

On the other hand if we choose for $i = 1, 2 \cdots$

$$m_i = \frac{\log r_i}{\log |\lambda|} + 1$$

(where [x] = greatest integer not exceeding x), then

$$|\lambda|^{m_i} r_0 > r_i.$$

It follows from inequalities (13), (10), equality (12), and the fact that T(r, u) is an increasing function of r, that

(14)
$$\rho = \overline{\lim}_{i \to \infty} \frac{\log T(r_{i}, u)}{\log r_{i}} \le \overline{\lim}_{i \to \infty} \frac{\log T(|\lambda|^{m_{i}} r_{0}, u)}{\log r_{i}}$$

$$\le \overline{\lim}_{i \to \infty} \frac{m_{i} \log n(1 + \varepsilon) + \log T(r_{0}, u)}{\log r_{i}}$$

$$= \overline{\lim}_{i \to \infty} \frac{m_{i} \log n(1 + \varepsilon)}{\log r_{i}}$$

$$= \frac{\log n(1 + \varepsilon)}{\log |\lambda|}.$$

As ε can be chosen arbitrarily small, we have

$$\rho = u_{\rho} \leq \frac{\log n}{\log |\lambda|}$$

a finite number. Now we can apply Lemma 2 to the function T(r, u) by choosing $\eta = \mu_u$ (the lower order of u). We have, for a sequence $\{r_m\}$, that

$$n\left(\mathbf{I}+\mathbf{o}\left(\mathbf{I}\right)\right) = \frac{T\left(\left|\lambda\right|r_{m},u\right)}{T\left(r_{m},u\right)} \leq \left(\mathbf{I}+\mathbf{o}\left(\mathbf{I}\right)\right)\left|\lambda\right|^{u_{u}}$$

for sufficiently large m.

By letting $m \to \infty$, we have

$$n \leq |\lambda|^{\mu_u}$$
.

Hence

$$\mu_u \ge \frac{\log n}{\log |\lambda|}$$
.

Our theorem follows from this and the fact that $\mu_{u} \leq \rho_{u}.$

4. CONCLUDING REMARK

In conclusion we mention that the argument used in the proof of Theorem I can be adopted to the study of the growth of the entire solutions for functional-differential of the form:

$$P(u(\lambda_1+z), u(\lambda_2+z), \dots, u(\lambda_l+z)) = h(u^{(m)}(z))$$
 with $\lambda_i (i=1, 2\dots)$

being arbitrary constants, and for this equation a conclusion similar to that of Theorem 1 can be drawn.

REFERENCES

- [1] I. N. BAKER, Problems and solutions, «The Amer. Math. monthly», 563 (1964).
- [2] J. CLUNIE, The composition of entire and meromorphic functions, «Mathematical essays dedicated to A. T. MacIntyre», Ohio Univ. Press, 78 (1970).
- [3] A. EDREI, The deficiencies of meromorphic functions of finite lower order, « Duke Math. Jour. », 31, 1-22 (1964).
- [4] A. Edrei, Sums of deficiencies of meromorphic functions, «J. d'Analyse Math.», 14, 79–107 (1965).
- [5] A. Edrei, A local form of the Phragmen-Lindelöf indicator, «Mathematika », 17, 149–172 (1970).
- [6] A. EDREI and W. H. J. FUCHS, On the zeros of f(g(z)) when f and g are entire functions, « Jour. Analyse Math. », 12, 243–255 (1964).
- [7] R. GOLDSTEIN, On deficient values of meromorphic functions satisfying a certain functional equation, «AEQ. Math.», 5, 76 (1970).
- [8] M. Kuczma, Functional equations in a single variable, « Polska Akademia Nauk », Monografie Matematyezne, Tom 46, Warszawa, 1968.
- [9] G. VALIRON, Lectures on the general theory of integral functions, Toulouse, 64 (1923).
- [10] H. WITTICH, Neure untersuchungen über eindentige analytische Funktionen, Springer-Verlag Berlin, Heidelberg, New York 1968.