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Analisi funzionale. — Oz the growth of the meromorphic solutions
of certain functional-differential equations . Nota @ di FrREDp Gross

e CHUNG-CHUN YANG, presentata dal Socio G. SANSONE.

RIASSUNTO. — Si considera 1’accrescimento di una funzione meromorfa, soluzione del-
I’equazione
P (u(ry2), 1 (g2) oo, u(,2) = 5 (@ (2)
dove 7 & un intiero > o.
P(w, (z) ,-++,,(2)) ¢ un polinomio delle funzioni w, (2) ,- - -, w,(2) e delle loro derivate
avente come coefficienti polinomi in 2, # ¢ una data funzione meromorfa d’ordine zero e 2,
i=1,2,---,/ sono costanti in valore assoluto > I.

Let g (2) denote a non-constant meromorphic function. Then, as usual,
the Nevanlinna characteristic function T (», ¢) is used to measure the growth
rate of ¢ and which has many properties in analogy with the logarithm of the
maximum modulus function of an entire function. In particular, T(r, g)
is a real-valued, continuous non-decreasing and unbounded function defined
for » >7y >o0." The order p, and lower order #, of g are defined as

~— log T(r,g)

e, = lim
£ s 00 log »

log T(r,g)

and @, = lim Tog 7

7—>00

In this paper we are primarily interested in the investigation of the growth
rate of the meromorphic functions #(z) which are solutions of the equation
of the form:

(1) Ple(Mz), u(gs), -, u(h2) = h(u™ (2)),

where P (wy(2) ,wy(2), -+, w,;(2)) denotes a polynomial in / functions
wy(2) ,- -+, w,;(2) and their derivatives with polynomials in z as ‘the coeffi-

cients, /4 is a given meromorphic function, 7 = 0 or any positive integer
(4O (5) = u(2)), and A, are constants with |2;| > 1. ‘

Our study of the above equation is motivated by the following equation
which is a special case of equation (1)

(2) u(hg) = 2 (u(2)).

Equation (2) is called Poincaré equation and has been investigated by
many authors. We here refer the reader to a book of Kuczma’s [8, p. 141]
for references.

(*¥) The content is based on a talk delivered by the second author at the Conference on
Ordinary Differential Equations at Oberwolfach, Federal Republic of Germany, March 23, 1972.
(**) Pervenuta all’Accademia il 3 luglio 1972.
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Before proceeding further we would like to point out that for certain
functions %, there exist solutions to equation (2). For example, when % (z) = ¢*,
a solution #(z) can be exhibited for appropriate constants ¢. Baker [1] showed
that for a constant ¢ with |¢| > 1, there exists an entire function f satisfying
the equation:

Flez) = expf(2).

With A= ¢, % =fis a solution of (2). It is pointed out [1] that the
growth of f(z) is faster than that of any exp,(z) (the 7—th iterate of exp (2)).

As a second example let 4(z) =22, A = 2. In this case u(2) = ¢ is a
solution of equation (2). ‘

It is easily seen, by virtue of a result of Edrei and Fuchs [6] that when /
is a meromorphic function of positive order then every transcendental entire
solution of equation (2) has infinite order. Therefore we shall only treat the
case when the given meromorphic function % is of zero order.

In the sequel, we shall show that when % is transcendental, then any
entire solution #(z) of equation (2) is of infinite lower order. We shall also
derive a more precise estimate for the growth of a meromorphic solution
#(z) when %4 is a rational function. Actually, we have

THEOREM 1. Let h(2) be a given non-rational meromorphic function of
zero order. Then any entire function u(2) which satisfies equation (1), has lower
ovder equal to infinity.

THEOREM 2. Let h(z) be a rational function of weight n(n=>2). Suppose
that w(z) is a meromorphic function of order o(0 < p < -+ o0) which satisfies
equation (2) with |\| > 1. Then o must be finite and equal to log nflog [7].
Moreover, u is of regular growth i.c. the lower order of u(2) is equal to the order
of u(z).

Remark. Theorem 2 is an extension of a special case of a result of
Valiron [9, p. 46].

2. PRELIMINARY LLEMMAS

Our theorems will readily follow from the following four Lemmas.

LEMMA 1. Let g be transcendental entire function. Then

. . T (@,
@ lim S — oo

Sor any transcendental meromorphic function f (see e.g. [2]);

.. . T{,R(g)
7 lim — =28 — 5
@) resoo L7, 8)

Sfor any rational function R (2) of weight n (see e.g. [7D-
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Lemma 2 will involve the notion of Polya peaks which we introduce
first. Let G (¢) be a real valued, non-negative and unbounded function defined
for £ >4y > o, and define the order and lower order of G respectively by
log G (#)

= lim GO
#—>00 ’ Py log ¢

Definition [3, 4, 5]. An increasing positive SEQUENCE 771,79 4+ = *y ¥y yo *
is said to be a sequence of Polya peaks of order 7 for G(¢) (o< 7 < o)
if it is possible to find a pair of associated sequences {a,}_ ,{A }7  such
that

lim @, = lim A, /r, =400 ; lim7,la, = co
m—> 0 m—>00 | m—>00

and such that

GOSa+o)r)"G@,) (m—o0,a,<t<A,).

LEMMA 2. (Existence theorem for Polya peaks [4, 5]). Let G(¢) be a real
valued non-negative non-decreasing and unbounded function defined for t=>ty> o,
having finite lower order w. Then for each finite v satisfying u <n < p there
exists a sequence {r,} of Polya peaks, order 1, of G(2).

LEMMA 3. Let S be a non-constant meromorphic function. Suppose that
there exists a constant « > 1 such that the following estimate holds:

. T(or,f)

7—>00

Then the lower order of f must be infinite.

Progf. Suppose that pt; < co. Then there exists a sequence {7,,} of Polya
peaks of order p, for T (r,f).
Hence, we would have

T (ar,,

(4) lim T@:’]—{)—)g(r 4+ 0(1) &/ <4 oo.

m—» 00

This contradicts assumption (3), and Lemma 3 is thus proved.

LEMMA 4 [10, p. 25]. Let f be a non-constant meromorphic function and
B be any constant > 1. Then for » >r,

(@) T, /) <KiT@r,[ )
and
) T, /) <KeT(@r, /D,

where Ky and Ko are two positive constants.
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3. PROOF OF THEOREM 1.

We assume that 7z = o. Suppose that « is a transcendental entire function
satisfying equation (1). Then according to inequality () of Lemma 4, it is
easy to show that there exist positive constants K and « > 1 such that

(5) T, P@e), -, u(2)) < KT (ar, u)

for sufficiently large 7.
From this and equation (1) we have

(6) KT (ar, 1) =T (r, /& (x).
Hence, by Lemma 1 part (7)

. T .
@) lim T?: :)) K lim -

r—>00 7-> 00

(r, /z(u))
T(r )

i\/

our assertion follows from this and Lemma 3.
The proof for the case 7 > o is similar and will be omitted.

Proof of Theorem 2. Suppose that « is a transcendental meromorphic
function satisfying equation (2) with /% being a rational function of weight
n(n = 2). Then giving € > 0 according to assertion (77) of Lemma 1 we have
(for r >7g = 1)

(8) T(M7,u) =T@, k@) <n(1+e)T(r,u).
Thus
(9) T(M"7r,0) <n”"(1+)"T(r,u).

Now fix » >7»y > 1. Then
(10) TN 7o, 2) <n" (1 + )" T(ry, u).

Assume now that the order of #(= p,) = p. Then there exists a sequence

{r,} such that

(11) lim log TOw,w) _

7n—>00 log 7

On the other hand if we choose for 7 =1,2-.-

_ log 7
(12) i = g AT + 1

(where [x] = greatest integer not exceeding x), then

(13) A7 >7; .



54 Lincei — Rend. Sc. fis. mat. e nat. — Vol. LIIT — Ferie 1972 [54]

It follows from inequalities (13), (10), equality (12), and the fact that T (r, )
is an increasing function of 7, that

5= log T(r;,u) = log T (IM"iry, u)
(14) p= lim —BT < lim B P —

i—>00 i—>00

< fim 2 log n(142) 4 log T (ry, )
T i log 7;

_ lim 74 log 7 (1 + ¢)

—>00 log 7
__log n(1+4¢) .
— log [

As ¢ can be chosen arbitrarily small, we have

. log 7
P = g 1l

a finite number. Now we can apply Lemma 2 to the function T@, w
by choosing n = p, (the lower order of %). We have, for a sequence {7,,},
that

(15) 7 (140 (n) = gl < (14 o (1) [A[™

for sufficiently large .

By letting 7 — oo, we have
n < ||
Hence

log n
> 87,
Hu log [ 2]

Our theorem follows from this and the fact that u, < g,.

4. CONCLUDING REMARK

In conclusion we mention. that the argument used in the proof of
Theorem 1 can be adopted to the study of the growth of the entire solutions
for functional-differential of the form:

Pluiy —l—z)l, ug+2), -, u(h+ 2)) = /z(zp(”;)(z)) with ,¢G=1,2--+)

being arbitrary constants, and for this equation a conclusion similar to that
of Theorem 1 can be drawn.
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