Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Lucian Bădescu, Mihnea Moroianu

Algebraic Contractions and Complete Intersections

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 52 (1972), n.6, p. 884-892.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1972_8_52_6_884_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - Algebraic Contractions and Complete Intersections. Nota di Lucian Badescu e Mihnea Moroianu, presentata (*) dal Socio B. Segre.

Riassunto. - Si studiano dilatazioni e contrazioni di varietà algebriche, con particolare riguardo. al caso in cui queste siano delle intersezioni complete.

In the following K will denote a commutative, algebraically closed field of arbitrary characteristic. We shall consider only irreducible algebraic varieties over K.

Let X^{\prime} be a projective algebraic variety embedded in the projective space P_{n}, such that it is a complete intersection in P_{n}, i.e. its homogeneous ideal $\mathrm{I}\left(\mathrm{X}^{\prime}\right)$ is generated by $n-\operatorname{dim} \mathrm{X}^{\prime}$ independent elements (which are even homogeneous forms) of $K\left[T_{0}, \cdots, T_{n}\right] . \mathrm{O}_{\mathrm{x}^{\prime}}(\mathrm{I})$ stands for the inverse image of $\mathrm{O}_{\mathrm{P}_{n}}(\mathrm{I})$ by this embedding, while $\mathrm{S}\left(\mathrm{X}^{\prime}\right)$ represents the homogeneous coordinates ring of X^{\prime}, i.e. $\mathrm{K}\left[\mathrm{T}_{0}, \cdots, \mathrm{~T}_{n}\right] / \mathrm{I}\left(\mathrm{X}^{\prime}\right)$.

We shall need the following results:
(A) $\left[\mathrm{FAC}, \S 78\right.$, Proposition 5]. - If X^{\prime} is a complete intersection in P_{n} defined by the equations $f_{i}=\mathrm{o}, \quad i=\mathrm{I}, \cdots, n-\operatorname{dim} \mathrm{X}^{\prime}$, of degrees m_{i}, then:
a) The canonical homomorphism of graded algebras:

$$
\alpha: S\left(\mathrm{X}^{\prime}\right) \longrightarrow \underset{s \in \mathrm{Z}}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{X}^{\prime}}(s)\right)
$$

is an isomorphism;
b) $\mathrm{H}^{q}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{X}^{\prime}}(s)\right)=\mathrm{o}$ for every s and $\mathrm{o}<q<\operatorname{dim} \mathrm{X}^{\prime}$;
c) The vector space $\mathrm{H}^{d}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right.$) (with $d=\operatorname{dim} \mathrm{X}^{\prime}$) is isomorphic with the dual of $\mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{X}^{\prime}}(\mathrm{N}-s)\right)$, where $\mathrm{N}=\sum_{i=1}^{n-d} m_{i}-n-\mathrm{I}$.
(B) [SGA-1962, Corollaire (3.7)]. - Let X^{\prime} be an algebraic variety of dimension ≥ 3, which is embedded in P_{n} as a complete intersection. Then Pic X^{\prime} (the group equivalence classes of isomorphic invertible sheaves) is cyclic and generated by the class of $\mathrm{O}_{\mathrm{x}^{\prime}}(\mathrm{I})$.

Remarks. - I) If $\operatorname{dim} \mathrm{X}^{\prime}=2$, and if X^{\prime} is a complete intersection in P_{n}, Pic X^{\prime} is finitely generated by a result of Hartshorne [6], but not in general cyclic. For instance $X^{\prime}=P_{1} \times P_{1}$ is the quadric $T_{0} T_{1}-T_{2} T_{3}=o$ in P_{3} and Pic $\mathrm{X}^{\prime}=\mathrm{Z} \times \mathrm{Z}$, hence (B) does not hold in this case.
2) If $\operatorname{dim} X^{\prime}=1$, e.g. if X^{\prime} is an elliptic curve, Pic X^{\prime} has not a finite number of generators, though it is a plane curve.

Let Y be an algebraic variety, $y \in \mathrm{Y}$ a (closed) point, $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ the blowing-up of Y at $y, \mathrm{X}^{\prime}=\varphi^{-1}(y)$ the exceptional locus, such that we have the cartesian diagram:

j and i being the corresponding closed immersions given by the ideals J and $\mathrm{I}=\mathrm{O}_{\mathrm{x}}(\mathrm{I})$ respectively. We assume that the following conditions are fulfilled:
a) There exists an embedding of $\mathrm{X}!$ in a projective space P_{n}, such that X^{\prime} is complete intersection in P_{n};
b) The conormal sheaf $i^{*} \mathrm{I}=\mathrm{I} / \mathrm{I}^{2}$ of X^{\prime} in X is isomorphic to a strictly positive tensor power of $\mathrm{O}_{\mathrm{X}^{\prime}}(\mathrm{I})$, i.e. $i^{*} \mathrm{I}=\mathrm{O}_{\mathrm{X}^{\prime}}(s)$ with $s>0$.

Remark. - If $\operatorname{dim} \mathrm{Y} \geq 4$, it follows from (B) that b) is a consequence of a) because $i^{*} \mathrm{I}$ is ample on X^{\prime}.

Proposition I. Let Y be an algebraic variety, $y \in \mathrm{Y}$ a normal point, $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ the blowing-up of Y at $y, \mathrm{X}^{\prime}=\varphi^{-1}(y)$. Assume that the conditions a) and b) are fulfilled. Then:
i) $\mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n}\right)=0$ if $q>0, q \neq \operatorname{dim} \mathrm{Y}-\mathrm{I}$, and $n \geq 0$;
ii) if further, $\mathrm{R}^{1} \varphi_{*}\left(\mathrm{I}^{n}\right)=0$ for $n \geq \mathrm{I}$, then the canonical homomorphism

$$
\alpha: \underset{n \geq 0}{\oplus} \mathrm{~J}^{n} \longrightarrow \underset{n \geq 0}{\oplus} \varphi_{*} \mathrm{I}^{n}
$$

is an isomorphism.
Proof. - The case $q>\operatorname{dim} \mathrm{Y}$ - I is a consequence of EGA III (4.4.2), therefore we can assume that $\mathrm{o}<q<\operatorname{dim} \mathrm{Y}$ - I. Since $\mathrm{I}=\mathrm{O}_{\mathrm{X}}(\mathrm{I})$ is φ-very ample and φ is a proper morphism, we have $\mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n}\right)=0$ for $n \gg 0$. On the other hand, from b) we deduce the exact sequence:

$$
\begin{equation*}
\mathrm{o} \longrightarrow \mathrm{I}^{n+1} \longrightarrow \mathrm{I}^{n} \longrightarrow i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s n) \longrightarrow \mathrm{o}, \tag{I}
\end{equation*}
$$

which gives rise to the exact sequence:

$$
\begin{equation*}
\mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n+1}\right) \longrightarrow \mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n}\right) \longrightarrow \mathrm{R}^{q} \varphi_{*}\left(i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s n)\right) . \tag{2}
\end{equation*}
$$

But $\mathrm{R}^{q} \varphi_{*}\left(i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s n)\right)=j_{*} \mathrm{R}^{q} \varphi_{*}^{\prime} \mathrm{O}_{\mathrm{x}^{\prime}}(s n)=\mathrm{H}^{q}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s n)\right)=0 \quad[\mathrm{by}(\mathrm{A})]$, consequently the canonical homomorphism:

$$
\mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n+1}\right) \longrightarrow \mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n}\right)
$$

is surjective and the required property follows by descending induction on n.

In order to prove ii) we remark that from the normality of y on Y it follows $\varphi_{*}\left(\mathrm{O}_{\mathrm{x}}\right)=\mathrm{O}_{\mathrm{y}}$. In fact, consider Stein's factorisation

where $\varphi_{*}\left(\mathrm{O}_{\mathrm{x}}\right)$ is a coherent O_{Y}-algebra and, therefore, φ_{1} is a finite morphism [EGA III (3.2.1) and II (6.I.3)]; we conclude remarking that φ_{1}, in view of Zariski Main's Theorem, is an isomorphism, since it establishes an isomorphism between $Y_{1}-\varphi_{1}^{-1}(y)$ and $\mathrm{Y}-y$.

Next we prove that $\varphi_{*} \mathrm{I}=\mathrm{J}$; this follows from the commutative diagram
(4)

in which the first vertical arrow is the isomorphism established above, $\mathrm{Y}^{\prime}=y$, the second one is the isomorphism which follows from $\varphi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}=i_{*} \varphi_{*}^{\prime} \mathrm{O}_{\mathrm{x}^{\prime}}=$ $=j_{*} \mathrm{O}_{\mathrm{Y}^{\prime}}$ and the kernels of the horizontal arrows are J and $\varphi_{*}(\mathrm{I})$ respectively.

It remains to be proved that α_{n} is an isomorphism for $n \geq 2$. From the commutative diagram
(5)

we deduce that α_{n} is injective. From the exact sequence (I), and since $\mathrm{R}^{1} \varphi_{*} \mathrm{I}^{n+1}=\mathrm{o}$, one can obtain the exact sequence:

$$
\begin{equation*}
0 \longrightarrow \varphi_{*} \mathrm{I}^{n+1} \longrightarrow \varphi_{*} \mathrm{I}^{n} \longrightarrow \varphi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(n s) \longrightarrow 0 \tag{6}
\end{equation*}
$$

Therefore $\varphi_{*} I^{n} / \varphi_{*} I^{n+1} \cong \varphi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(n s)=j_{*} \varphi_{*}^{\prime} \mathrm{O}_{\mathrm{x}^{\prime}}(n s)$; we get the commutative diagram

in which α_{n}^{\prime} is the canonical homomorphism [EGA II (3.3.2)] and all the involved sheaves are concentrated in y. But $\bar{\alpha}_{1}$ is a surjection, since α_{1} is an
isomorphism; hence α_{n}^{\prime} is a surjection too, and therefore α_{n} is surjective for every $n \geq$ I [because of (A) which implies that the graded algebra $\underset{n \geq 0}{\oplus} \varphi_{*}^{\prime}\left(\mathrm{O}_{\mathrm{X}^{\prime}}(n s)\right)$ is generated by its component of degree one]. In this way, $\bar{\alpha}_{n}$ is an isomorphism and then α_{n} is an isomorphism too, using the fact that this is true for $n \gg 0$ [EGA III (2.3.1)].

It is useful to remark that the additional hypothesis $\mathrm{R}^{1} \varphi_{*} \mathrm{I}^{n}=\mathrm{o}$ is always fulfilled if $\operatorname{dim} Y \geq 3$ [by (i)].

Corollary. - In the above conditions we have:
(i) The canonical homomorphism

$$
\alpha^{\prime}: \underset{n \geq 0}{\oplus} \mathrm{~J}^{n} / \mathrm{J}^{n+1} \longrightarrow \underset{n \geq 0}{\oplus} \varphi_{*}^{\prime}\left(\mathrm{O}_{\mathrm{x}^{\prime}}(n s)\right)
$$

is an isomorphism;
(ii) There is a canonical isomorphism

$$
\alpha^{\prime \prime}: \underset{n \geq 0}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{J}^{n} / \mathrm{J}^{n+1}\right) \longrightarrow \mathrm{S}\left(\mathrm{X}^{\prime}\right)^{(s)}
$$

where $\mathrm{S}\left(\mathrm{X}^{\prime}\right)$ is the graded K -algebra such that $\left(\mathrm{S}\left(\mathrm{X}^{\prime}\right)^{(s)}\right)_{n}=\mathrm{S}\left(\mathrm{X}^{\prime}\right)_{n s}$ [see EGA II].

Proof. - (i) follows considering again the commutative diagram (7) in which $\bar{\alpha}_{n}$ is this time an isomorphism, since this is true for α_{n}; (ii) follows from (i) and from (A).

Remark. - Using the same notations as in Proposition I, if O_{y} is the local ring of y on Y and m_{y} its maximal ideal, the above corollary points out the existence of a canonical isomorphism

$$
\alpha^{\prime \prime}: \underset{n \geq 0}{\oplus} m_{y}^{n} / m_{y}^{n+1} \longrightarrow \mathrm{~S}\left(\mathrm{X}^{\prime}\right)^{(s)}
$$

In particular, the dimension of Zariski's tangent space of Y at y is exactly $\operatorname{dim}_{K} \mathrm{~S}\left(\mathrm{X}^{\prime}\right)_{s}$. [the dimension of the s-th component of the graded algebra $\left.S\left(X^{\prime}\right)\right]$.

If $\mathrm{X}^{\prime}=\mathrm{P}_{r-1}$, then $\mathrm{S}\left(\mathrm{X}^{\prime}\right)=\mathrm{K}\left[\mathrm{T}_{1}, \cdots, \mathrm{~T}_{r}\right]$ and $\operatorname{dim} m_{y}^{n} / m_{y}^{n+1}=\binom{n s+r-\mathrm{I}}{r-\mathrm{I}}$, while the multiplicity of the local ring O_{y} is s^{r-1} (see [3]).

On the other hand, if X^{\prime} satisfies a) and b) with $s=\mathrm{I}$, then $g r_{\mathrm{O}_{y}}\left(m_{y}\right)$ is isomorphic to $\mathrm{S}\left(\mathrm{X}^{\prime}\right)$; in other words, the dimension of Zariski's tangent space of Y at y and the multiplicity of O_{y} respectively coincide with the dimension of Zariski's tangent space of the affine cone defined by $S\left(X^{\prime}\right)$ at its vertex and the multiplicity of the local ring corresponding to the vertex of this cone.

Next we make some remarks concerning the blowing-up of an algebraic surface Y at a normal point, y, whose exceptional locus is an elliptic curve. In this case the condition a) fulfilled because X^{\prime} is a plane curve of degree 3 and the condition b) can be stated in the form:
$\left.b^{\prime}\right) \quad \operatorname{deg} i(\mathrm{I})=3 s$ with s an integer, $s>0$.

In fact it is sufficient to observe that $\operatorname{deg} \mathrm{O}_{\mathrm{x}^{\prime}}(\mathrm{I})=3$ on an elliptic curve; conversely, every invertible sheaf of degree 3 is very ample and gives 1 ise to an imbedding of X^{\prime} in the projective plane (straightforward consequence of Riemann-Roch's theorem).

Proposition 2. - Let Y be an algebraic surface, $y \in \mathrm{Y}$ a normal point, $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ the blowing-up of Y at y. Assume that the exceptional locus is an elliptic curve and that $\operatorname{deg} i^{*} \mathrm{I}=3$ s with s a strictly positive integer. Then the canonical homomorphism

$$
\alpha: \underset{n \geq 0}{\oplus} \mathrm{~J}^{n} \longrightarrow \underset{n \geq 0}{\oplus} \varphi_{*}\left(\mathrm{I}^{n}\right)
$$

is an isomorphism, and $\mathrm{R}^{q} \varphi_{*}\left(\mathrm{I}^{n}\right)=\mathrm{o}$ for $q \geq 2$ or for $q=\mathrm{I}$ and $n \geq \mathrm{I}$. Furthermore, $\operatorname{dim} \mathrm{R}^{1} \varphi_{*} \mathrm{O}_{\mathrm{x}}=\mathrm{I}$.

Proof. - By Proposition I and the remark made above, we have only to prove that $\mathrm{R}^{1} \varphi_{*} \mathrm{I}^{n}=\mathrm{o}$ if $n \geq \mathrm{I}$; but we are sure that $\mathrm{R}^{1} \varphi_{*} \mathrm{I}^{n}=\mathrm{o}$ for $n \gg 0$. From the exact sequence

$$
\mathrm{o} \longrightarrow \mathrm{I}^{n+1} \longrightarrow \mathrm{I}^{n} \longrightarrow i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(n s) \longrightarrow \mathrm{o},
$$

we deduce the exact sequence

$$
\mathrm{R}^{1} \varphi_{*}\left(\mathrm{I}^{n+1}\right) \longrightarrow \mathrm{R}^{1} \varphi_{*}\left(\mathrm{I}^{n}\right) \longrightarrow \mathrm{R}^{1} \varphi_{*}\left(i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(n s)\right)=\mathrm{H}^{1}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(n s)\right) .
$$

In view of (A) (in which we take $d=\mathrm{I}, m_{1}=3, \mathrm{~N}=0$), $\mathrm{H}^{1}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(n s)\right.$) is the dual of the vector space $\mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(-n s)\right)$, which is zero if $n>0$ and isomorphic with K if $n=0$. This proves our proposition.

We wish to investigate now the following problem: let X^{\prime} be a projective variety, $i: \mathrm{X}^{\prime} C \rightarrow \mathrm{X}$ a closed immersion given by an invertible ideal, I , such that the conditions a) and b) are fulfilled; when does exist an algebraic variety Y with a proper morphism $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ such that X coincides with the blowingup of Y at some normal point y and X^{\prime} with the exceptional locus of φ ? When such a variety exists we say that X is contractible along X^{\prime} and Y will be referred to the contraction of X along X^{\prime}. It follows immediately that this contraction is unique up to an isomorphism, if it exists.

Proposition 3. - Let X^{\prime} be a projective variety, $i: \mathrm{X}^{\prime} \subset \mathrm{X}$ a closed immersion given by an invertible sheaf of ideals I , such that X is normal in every point of X^{\prime}. Assume that $\mathrm{R}^{1} \psi_{*}\left(\mathrm{I}^{2}\right)=\mathrm{o}$, where $\psi: \mathrm{X} \rightarrow \mathrm{T}$ is the canonical continuous map into the quotient space T obtained by identifying the points of X^{\prime}. Then, if the conditions a) and b) are fulfilled, X is contractable along X^{\prime}.

First of all we prove the following:
Lemma. - In the hypotheses stated above, there exists an open neighbourhood U of X^{\prime} in X such that the following conditions are fulfilled:
i) The homomorphism of restriction

$$
\mathrm{H}^{0}(\mathrm{U}, \mathrm{I}) \longrightarrow \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)
$$

is surjective;
ii) $p \mathrm{O}_{\mathrm{x}}=\mathrm{I}$, where $p=\mathrm{H}^{0}(\mathrm{U}, \mathrm{I})$.

Proof. - Consider the commutative diagram (in the category of topological spaces):

and the exact sequence

$$
\mathrm{o} \longrightarrow \mathrm{I}^{2} \longrightarrow \mathrm{I} \longrightarrow i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s) \longrightarrow \mathrm{o}
$$

which gives rise to the exact sequence

$$
\psi_{*}(\mathrm{I}) \longrightarrow \psi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s) \longrightarrow \mathrm{R}^{1} \psi_{*}\left(\mathrm{I}^{2}\right)=0 .
$$

In particular, we get the surjection

$$
\begin{equation*}
\left(\psi_{*}(\mathrm{I})\right)_{y} \longrightarrow\left(\psi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)_{y^{\prime}} \tag{*}
\end{equation*}
$$

On the other hand, $\left(\psi_{*}(\mathrm{I})\right)_{y}=\underset{\mathrm{V} \exists y}{\lim } \mathrm{H}^{0}\left(\mathrm{~V}, \psi_{*}(\mathrm{I})\right)=\underset{\mathrm{U} \supset \mathrm{X}^{\prime}}{\lim } \mathrm{H}^{0}(\mathrm{U}, \mathrm{I})$ and $\left(\psi_{*} i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)_{y}=\left(j_{*}^{\prime} \varphi_{*}^{\prime} \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)_{y}=\mathrm{H}^{0}\left(\{y\}, \varphi_{*}^{\prime} \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)=\mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)$.

Since $\mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)$ is a finite dimensional vector space over K , the surjectivity of (*) and the definition of the direct limit show the existence of a neighbourhood U satisfying i).

In order to prove ii), we remark that this assertion is equivalent to the one that the invertible sheaf I is generated by its sections on U, i.e. $\mathrm{U}=\cup_{f} \mathrm{U}_{f}\left(f \in \mathrm{H}^{0}(\mathrm{U}, \mathrm{I})\right)$, where $\mathrm{U}_{f}=\{x \in \mathrm{U} / f(x) \neq \mathrm{o}\}$. But since $i^{*} \mathrm{I}=\mathrm{O}_{\mathrm{x}^{\prime}}(s)$, we have $\mathrm{X}^{\prime}=\cup_{f^{\prime}} \mathrm{X}_{f^{\prime}}^{\prime}\left[f^{\prime} \in \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right)\right]$. Let $x \in \mathrm{X}^{\prime}$ be a point and $f^{\prime} \in \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}}(s)\right)$ a section such that $x \in \mathrm{X}_{f^{\prime}}^{\prime} ;$ by i$)$, there exists a section $f \in \mathrm{H}^{0}(\mathrm{X}, \mathrm{I})$ such that $f^{\prime}=i^{*}(f)$. Then $x \in \mathrm{X}_{f}$, which implies that X_{f} contains a whole neighbourhood U_{x} of x. We finish the proof of ii) by taking for U the union of U_{x} with $x \in \mathrm{X}^{\prime}$.

Proof of Proposition 3. - We can now assume that the conditions of the lemma are fulfilled for X , replacing, if necessary, X by U , since the problem is local along X^{\prime}. Consider the commutative diagram

where $\mathrm{Y}_{1}=\operatorname{Spec} \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{X}}\right), \varphi_{1}$ corresponds to the identity of $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{x}}\right)$, and the closed immersion j_{1} to the surjective homomorphism $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{x}}\right) \rightarrow \mathrm{K}$
[whose kernel is $p=\mathrm{H}^{0}(\mathrm{X}, \mathrm{I})$]. Let $\pi: \mathrm{X}_{1}=\operatorname{Proj} \underset{n \geq 0}{\oplus} p^{n} \rightarrow \mathrm{Y}_{1}$ be the blowing-up of Y at y. Since $\mathrm{I}=\varphi_{1}^{-1}(p)=p \mathrm{O}_{\mathrm{x}}$ is invertible, by the universal property of the blowing-up, we get a unique Y -morphism $\varepsilon: \mathrm{X} \rightarrow \mathrm{X}_{1}$, which corresponds to the canonical inclusion $\underset{n \geq 0}{\oplus} p^{n} \rightarrow \underset{n \geq 0}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{n}\right)$, such that $\varepsilon^{*} \mathrm{O}_{\mathrm{x}}(\mathrm{I})=\mathrm{I}$. In order to prove the required result, it is sufficient to show that $\varepsilon\left(X^{\prime}\right)=\pi^{-1}(y)$ and that ε is an open immersion in a certain open neighbourhood of X^{\prime}.

The composed homomorphism of graded algebras

$$
\underset{n \geq 0}{\oplus} p^{n} \longrightarrow \underset{n \geq 0}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{n}\right) \longrightarrow \underset{n \geq 0}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s n)\right)
$$

(which corresponds to the morphism $\varepsilon_{\circ} i$) is surjective, since its first component is so [condition i) of the lemma] and the graded algebra $\underset{n \geq 0}{\oplus} \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s n)\right)$ is generated by $\mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{X}^{\prime}}(s)\right)$ [by (A)]. It follows that the morphism $\varepsilon \circ i: \mathrm{X}^{\prime} \rightarrow \mathrm{X}$ is a closed immersion, consequently the inclusion $\varepsilon \circ i\left(\mathrm{X}^{\prime}\right) \subset$ $C \pi^{-1}(y)$ implies $\operatorname{dim} \mathrm{X}-\mathrm{I} \leq \operatorname{dim} \mathrm{X}_{1}-\mathrm{I}$, or $\operatorname{dim} \mathrm{X} \leq \operatorname{dim} \mathrm{X}_{1}$; hence $\operatorname{dim} \mathrm{X}=\operatorname{dim} \mathrm{X}_{1}, \varphi_{1}$ being dominating. From the assumption that X is a birational morphism, therefore ε is birational too.

Since $\varepsilon \circ i$ is an immersion and $\varepsilon^{-1}\left(\pi^{-1}(y)\right)=\varphi_{1}^{-1}(y)=\mathrm{X}^{\prime}$, we have $\varepsilon^{-1}(\varepsilon(x))=\{x\}$ for every $x \in \mathrm{X}^{\prime}$; hence every $x \in \mathrm{X}^{\prime}$ is isolated in its fibre with respect to ε. By Zariski's Main Theorem, there exists an open neighbourhood U_{0} of X^{\prime} in X and an open immersion $\eta: U_{0} \subset \longrightarrow Z$, with Z the normalisation of X , such that the following diagram

is commutative (ξ is the canonical finite morphism). It is easily seen that $\eta\left(\mathrm{X}^{\prime}\right)$ is a connected component of $(\pi \circ \xi)^{-1}(y)$ and, since Y_{1} is normal, Zariski's Connectedness Theorem shows that $\eta\left(\mathrm{X}^{\prime}\right)=(\pi \circ \xi)^{-1}(y)$, i.e. $\pi^{-1}(y)=$ $=\varepsilon\left(\mathrm{X}^{\prime}\right)$. Consequently $\xi / \eta\left(\mathrm{X}^{\prime}\right)$ is a bijection and, since it is a finite morphism, for every $z \in \eta\left(\mathrm{X}^{\prime}\right)$ the homomorphism of local rings

$$
\xi_{z}^{*}: \mathrm{O}_{\mathrm{X}_{1}, \xi(z)} \longrightarrow \mathrm{O}_{\mathrm{z}, z}
$$

is finite; hence, for every $x \in \mathrm{X}^{\prime}$, the homomorphism

$$
\varepsilon_{x}^{*}: \mathrm{O}_{\mathrm{X}_{1}, \varepsilon(x)} \longrightarrow \mathrm{O}_{Z, z}
$$

is finite. Finally, the commutative diagram

in which the lines are exact and the last vertical arrow is surjective, together with the assumption $p \mathrm{O}_{\mathrm{x}}=\mathrm{I}$, show that

$$
m_{\mathrm{X}_{1}, \varepsilon(x)} \mathrm{O}_{\mathrm{X}, x}=m_{\mathrm{X}, x}
$$

Therefore ε_{x}^{*} is an isomorphism, because the local rings $\mathrm{O}_{\mathrm{X}, x}$ and $\mathrm{O}_{\mathrm{X}_{1}, \varepsilon(x)}$ have the same residue fields and one can apply Nakayama's lemma. Hence ε is biregular in every point of X^{\prime}, which completes the proof.

Theorem. - Let X^{\prime} be a projective variety, and $i: \mathrm{X}^{\prime} \subset \mathrm{X}$ a closed immersion given by an invertible sheaf of ideals I , such that X is projective and normal at every point of X^{\prime}. Assume that there exists a suitable immersion $h: \mathrm{X}^{\prime} \subset \rightarrow \mathrm{P}_{n}$ such that X^{\prime} is a complete intersection in P_{n} and the Picard group of X^{\prime} is generated by the class of $\mathrm{O}_{\mathrm{x}^{\prime}}(\mathrm{I})=h^{*} \mathrm{O}_{\mathrm{P}_{n}}(\mathrm{I})$. Then X is contractible along X^{\prime} if, and only if, $i^{*} \mathrm{I}$ is ample on X^{\prime} and, in this case, the contraction Y (which is unique) is also projective.

Remarks. - a) The condition that Pic X^{\prime} is generated by the class of $\mathrm{O}_{\mathrm{X}^{\prime}}(\mathrm{I})$ is always fulfilled if $\operatorname{dim} \mathrm{X}^{\prime} \geq 3$ [by (B)], as well as for $\operatorname{dim} \mathrm{X}^{\prime}=2$ or $\operatorname{dim} \mathrm{X}^{\prime}=\mathrm{I}$ if $\mathrm{X}^{\prime}=\mathrm{P}_{2}$ and $\mathrm{X}^{\prime}=\mathrm{P}_{1}$ respectively.
b) In [I] a more general criterion for contractibility is given (and, in particular, a more general criterion for contractibility to a point): but the contraction is there only an algebraic space. On the contrary, the previous theorem gives sufficient conditions in order that the contraction is in fact an algebraic variety.

Proof. - We recall that, in the proof of Proposition 3, the cohomological condition $\mathrm{R}^{1} \psi_{*}\left(\mathrm{I}^{2}\right)=\mathrm{o}$ has been used only for deducing the condition i) of the lemma [from which condition ii) follows restraining again X along X^{\prime}].

On the other hand, it is easy to see that the condition " $i^{*} \mathrm{I}$ is ample on X^{\prime} " can be replaced by " $i^{*} \mathrm{I}=\mathrm{O}_{\mathrm{x}^{\prime}}(s)$ where $s>0$ ".

We shall prove that the condition i) of the lemma is a consequence of the hypothesis of projectivity of X . Let then H be a hyperplane section on X (i.e. a very ample invertible sheaf on X) and therefore $i^{*} \mathrm{H}=\mathrm{O}_{\mathrm{X}^{\prime}}(m)$, where $m>0$, since Pic X^{\prime} is generated by $\mathrm{O}_{\mathrm{x}^{\prime}}(\mathrm{I})$; further we can suppose m a multiple of s, replacing, if necessary, H by H^{s} : hence $m=s t$ with $t \in Z$. For every integer N, we have the exact sequence:

$$
\mathrm{o} \longrightarrow \mathrm{I}^{\mathrm{N}+1} \longrightarrow \mathrm{I}^{n} \longrightarrow i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s \mathrm{~N}) \longrightarrow \mathrm{o}
$$

[because $\imath^{*} \mathrm{I}=\mathrm{O}_{\mathrm{x}^{\prime}}(s)$]. If we choose a positive integer n sufficiently large such that $\mathrm{H}^{1}(\mathrm{X}, \mathrm{I}(n))=0$, where $\mathrm{I}(n)=\mathrm{I} \otimes \mathrm{H}^{\otimes n}$, we get by tensorising with $\mathrm{I}(n)$ the exact sequence:

$$
\mathrm{O} \longrightarrow \mathrm{I}^{\mathrm{N}+2}(n) \longrightarrow \mathrm{I}^{\mathrm{N}+1}(n) \longrightarrow i_{*} \mathrm{O}_{\mathrm{x}^{\prime}}(s(\mathrm{~N}+\mathrm{I}+t n)) \longrightarrow 0
$$

which gives rise to the exact sequence of cohomology:

$$
\mathrm{H}^{1}\left(\mathrm{X}, \mathrm{I}^{\mathrm{N}+2}(n)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{X}, \mathrm{I}^{\mathrm{N}+1}(n)\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s(\mathrm{~N}+\mathrm{I}+t n))\right.
$$

64. - RENDICONTI 1972, Vol. LII, fasc. 6.

But $\mathrm{H}^{1}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(a)\right)=\mathrm{o}$ if $a \geq 0$ since either $\mathrm{X}^{\prime}=\mathrm{P}_{1}$ or, if $\operatorname{dim} \mathrm{X}^{\prime} \geq 2$, one can apply (A); hence $\mathrm{H}^{1}(\mathrm{X}, \mathrm{I}(n))=0$ implies (by taking inductively $\mathrm{N}=-\mathrm{I},-2, \cdots,-t n-\mathrm{I})$ that $\mathrm{H}^{1}\left(\mathrm{X}, \mathrm{I}^{-t n+2}(n)\right)=\mathrm{o}$ and $\mathrm{H}^{1}\left(\mathrm{X}, \mathrm{I}^{-t n+1}(n)\right)=\mathrm{o}$. In other words, the homomorphisms of restriction:

$$
\begin{aligned}
& \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n+1}(n)\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}(s)\right) \\
& \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n}(n)\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{X}^{\prime}, \mathrm{O}_{\mathrm{x}^{\prime}}\right)
\end{aligned}
$$

are surjective. From the second surjection it follows the existence of a section $\alpha \in \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n}(n)\right)$ such that $i^{*}(\alpha)=\mathrm{I}$, and, if D is the Cartier divisor of α, we have $X^{\prime} \cap \operatorname{Supp} D=\varnothing$, i.e., $X^{\prime} \subset U=X-\operatorname{Supp} D$; then D / U is linearly equivalent with the zero divisor and therefore $\mathrm{I}^{-t n+1}(n) / \mathrm{U}=\mathrm{I} / \mathrm{U}$. The first surjection and the commutative diagram

prove the existence of the contraction Y (which is unique).
We have now only to prove that Y is projective. But $\mathrm{I}^{-n t}(n) / \mathrm{X}-\mathrm{X}^{\prime}$ is very ample on $\mathrm{X}-\mathrm{X}^{\prime}$, since $\mathrm{I}^{-t n}(n) / \mathrm{X}-\mathrm{X}^{\prime}=\mathrm{H}^{\otimes n} / \mathrm{X}-\mathrm{X}^{\prime}$.

On the other hand, if α is the section considered above, the canonical rational map $u: \mathrm{X} \rightarrow \mathrm{P}\left(\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n}(n)\right)\right)$ is every where defined and it is an isomorphism between $\mathrm{X}-\mathrm{X}^{\prime}$ and $u\left(\mathrm{X}-\mathrm{X}^{\prime}\right)$, where $\mathrm{P}\left(\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n}(n)\right)\right)$ is the projective space associated to the finite dimensional vector space $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{-t n}(n)\right)$. But $u\left(\mathrm{X}^{\prime}\right)$ is a single point, since, if one chooses a basis $\alpha_{1}=\alpha, \alpha_{2}, \cdots, \alpha_{m}$ of this vector space such that $i^{*}\left(\alpha_{i}\right)=0$ for $i \geq 2$, then $u\left(\mathrm{X}^{\prime}\right)=(\mathrm{I}, \mathrm{o}, \cdots, \mathrm{o})=y^{\prime}$. The projectivity of X implies that $u(\mathrm{X})$ is also projective. One can suppose $u(\mathrm{X})$ normal in y^{\prime}, replacing, if necessary, $u(\mathrm{X})$ by its normalisation (which remains projective). Then the contraction must be isomorphic with $u(\mathrm{X})$, and so Y is projective, which completes the proof of the theorem.

Bibliography

[I] M. Artin, Algebraisation of formal moduli II: Existence of modifications, "Annals Math. », 9I (i), 88-I 36 (1970).
[2] M. Artin, On isolated rational singularities of surfaces, "Amer. J. Math.», 88 (1), 129136 (1966).
[3] L. BĂDESCU, Contractions rationnelles des variêtés algebriques (to appear).
[4] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, I-III (EGA) I.H.E.S. Paris.
[5] A. Grothendieck, Séminaire de Géométrie Algébrique, I.H.E.S., Paris (1962).
[6] R. Hartshorne, Cohomological Dimension of Algebraic Varieties, «Annals Math.», 88, 403-450 (1968).
[7] A. LASCU, Sous-variétés régulièrement contractibles d'une variété algébrique, "Annali Sc. Norm. Sup. Pisa», 23, 675-696 (1969).
[8] J. P. Serre, Faisceaux algébriques cohérents (FAC), "Annals Math.», 6I, 197-278 (1955).

