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Geometria. — Algebraic Contractions and Complete Intersections. 
N ota di L u c ia n  B a d e s c u  e M i h n e a  M o r o i a n u , p re se n ta ta 0  dal 
Socio B . S e g r e .

RIASSUNTO. — Si studiano dilatazioni e contrazioni di varietà algebriche, con parti
colare riguardo al caso in cui queste siano delle intersezioni complete.

In the following K will denote a com m utative, algebraically closed field 
of arb itra ry  characteristic. We shall consider only irreducible algebraic varie
ties over K.

Let X ' be a projective algebraic variety  em bedded in the projective space 
P«, such th a t it is a com plete intersection in Pn, i.e. its homogeneous idéal 
I (X ') is generated by  n  — d im X 7 independent elements (which are even hom o
geneous forms) of K [T0 , • • •, T n]. 0 X'( i )  stands for the inverse im age of 
Opw(i) by this embedding, while S (X ') represents the homogeneous coordi
nates ring of X ', i.e. K [T0 , T„]/I (X 7).

W e shall need the following results:

(A) [FAC, § 78, Proposition 5]. -  I f  X 7 is a complete intersection in 
Pn defined by the equations f -  =  o, i =  1, • • - , n - dim X 7, of degrees m it them

a) The canonical homomorphism o f graded algebras'.

a : S ( X 7) ---- ► © H ° (X 7 ,O x,(t))
sQrL

is an isomorphism]
b) P L (X 7, O x'OO) =  o fo r  every s and o < q <  dim X 7 ;
c) The vector space H ^(X 7, Ox / (s)) (with d  ~  dim X 7) is isomorphic

n—d

w ith the dua l o f H °(X 7, 0 X'( N — s)), where N =  m i —  n — 1.
i -1

(B) [SGA-1962, Corollaire (3.7)]. -  Let X 7 be an algebraic variety o f 
dimension  >  3, which is embedded in  P n as a complete intersection. Then P ic  X 7 
(the group equivalence classes o f isomorphic invertible sheaves') is cyclic and  
generated by the class o f Ox /(i) .

Rem arks. -  1) If  dim  X 7 =  2, and if X 7 is a complete intersection in Pn , 
Pic X 7 is finitely generated by a result of H artshorne [6], but not in general 
cyclic. For instance X 7 =  P iX P i is the quadric T 0T i — T2T 3 =  o in P3 
and Pic X 7 =  Z XZ, hence (B) does not hold in this case.

2) If  dim  X 7 =  I,  e.g. if X 7 is an elliptic curve, Pic X 7 has not a finite 
num ber of generators, though it is a plane curve. (*)

(*) Nella seduta del 16 giugno 1972,
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Let Y be an algebraic variety, y  € Y a (closed) point, 9 : X -> Y the 
blowing-up of Y at y ,  X ' .= <p-1 (y) the exceptional locus, such th a t we have 
the cartesian diagram :

X ' -------?------>. X

9'
I

Spec K =  y j

9

Y

j  and i  being the corresponding closed immersions given by the ideals J and 
I =  Ox (i) respectively. W e assum e th a t the following conditions are fulfilled:

a) T here exists an em bedding of X ' in a projective space Pn , such 
tha t X ' is complete intersection in Pn ;

b) T he conorm al sheaf P I  == I / I3 of X ' in X is isom orphic to a strictly 
positive tensor power of 0 X/(r), i.e. z*I =  0 X/ (.$•)■ with s >  o.

Rem ark. — If  dim  Y > 4 ,  it follows from (B) tha t b) is a consequence 
of a) because i* I is am ple on X '.

PROPOSITION i .  L et Y  be an algebraic variety , y e  Y a norm al pointy 
9 * X -> Y the blowing-up o f Y at y , X ' — 9~1(5/). Assum e that the conditions 
a) and  b) are fu lfilled . Them.

i) 9^ (F ) =  o i f  q >  o, q =j= dim  Y — 1, and n >  o ;
ii) i f  further, R19 )f(F ) =  o fo r  nP> 1, then the canonical homomor

phism

a : © T -----► 0  ? * r
n> 0 n>  0

is an isomorphism.

Proof. -  T he case q >  dim  Y —  1 is a consequence of EGA II I  (4.4.2), 
therefore we can assum e th a t o <  q <  dim  Y — 1. Since I =  Ox (1) is 9 -v e ry  
am ple and  9-is a proper m orphism , we have R *9^(F) =  o for n  >  o. On the 
other hand, from  b) we deduce the exact sequence:

(O  o — ». r +1 — -> r  — * * ;o x . (sn) — ». o ,

which gives rise to the exact sequence:

(2) R * ? ,(I"+I) R '?* (l* ) -  R*Ç*(**Ox.(« * )) .

But R %  (*;Ox /(«*)) =  j # R Y O x . (sn) =  H ?(X ', Ox< (sn)) =  o [by (A)],
consequently the canonical homomorphism:

R * ? * ( r+1) -------- > R? ?*(R )

is surjective and the required property  follows by descending induction on n.
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In  order to prove ii) we rem ark th a t from  the norm ality  of y  on Y it 
follows 9# (Ox) =  Oy. In  fact, consider S tein’s factorisation

(3)
~Yi =  Spec cp*(Ox)

9i

where <p# (Ox ) is a coherent O y-algebra and, therefore, f 1 is a finite m orphism  
[EGA I I I  (3.2.1) and II  (6.1.3)]; we conclude rem arking th a t 9 in view of 
Zariski M ain ’s Theorem , is an isomorphism, since it establishes an isom or
phism  between Y1 — <p-x(y) and Y — y .

N ext we prove th a t 9*1 ==J> this follows from the com m utative diagram

(4)

0 Y -------------* À  Oy-

I I
t  V

*P*(Ox) *■ 9# ?#Ox <

in which the first vertical arrow  is the isomorphism established above, Y ' =  y , 
the second one is the isom orphism  which follows from 9 i  O y< =  i  ©' O , =# _ ■ ■)(* *̂* .A. *)(■ T .X. x
=  7* Oy< and the kernels of the horizontal arrows are J and 9* (I) respectively.

It rem ains to be proved th a t a„ is an isom orphism  for n  >  2. From  the 
com m utative diagram

r — —  ? * ( n

(5)

O v — — —  ?*(O x)

we deduce th a t ct„ is injective. From  the exact sequence (1), and since
R1 T«-fl 1 * 19*1 — one can obtain the exact sequence:

(6) o ------> 9* l n+1---> 9 * T  — > 9* z* Ox * (ns) - — >- o .

Therefore 9* F /9 ^ F +1 ^  9^ 0 X' (ns) =  9^ Ox / (ns) ; we get the com m u
tative diagram

W  > ; \  X

in which oC is the canonical hom om orphism  [EGA II (3.3.2)] and all the 
involved sheaves are concentrated in y .  But is a surjection, since oq is an
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isomorphism; hence a„ is a surjection too, and therefore oc„ is surjective for 
every n >  1 [because of (A) which implies that the graded algebra 
©  <P* (Ox'(n s))  is generated by its com ponent of degree onel. In  this w avn>0 J ’

ün is an isom orphism  and then <xn is an isom orphism  too, using the fact th a t 
this is true for n >  o [EGA II I  (2.3.1)].

It is useful to rem ark  th a t the additional hypothesis R^cp^I” =  o is always 
fulfilled if dim  Y >  3 [by (i)].

C o r o l l a r y . -  In  the above conditions we have\
(i) The canonical homomorphism

: © J 7 f +1 ,---------   © <p;(Ox .(™ ))
n >  0 n> 0

is an isomorphism ;
(ii) There is a canonical isomorphism

a"  : © H ° (X ', J7JT+1) -------- * S ( X ' f \
« > 0

where S (X ') is the graded K-algebra such that (S (X ')W)„ =  S (X ') \see
E G A  I I ] .

Proof. — (i) follows considering again the com m utative diagram  (7) in 
which S„ is this tim e an isom orphism, since this is true for x„; (ii) follows 
from  (i) and from  (A).

Rem ark. -  U sing the sam e notations as in Proposition 1, if Q , is the local 
ring of y  on Y and m y its m axim al ideal, the above corollary points out the 
existence of a canonical isom orphism

«" : © m v\ m ? x -------- ► S (X ')W .
« > 0

In  particular, the dimension of Z arisk i’s tangent space of Y at y  is exactly 
dim K S (X ') j . [the dimension of the ^-th  component of the graded algebra
S (X Q ].

^  P r - i , then S (X x) =  K [T i, • • • ,Tr] and dim ==-^ls+ r ~^ 1 j ^
while the m ultiplicity  of the local ring is sr~x (see [3]).

On the other hand, if X ' satisfies d) and b) with s == 1, then g rQ (niy) 
is isom orphic to S (X 7); in other words, the dimension of Z arisk i’s tangent 
space of Y a t  y  and the m ultiplicity  of respectively coincide with the dim en
sion of Zariski s tangent space of the affine cone defined by S (X ;) at its vertex 
and the m ultiplicity  of the local ring corresponding to the vertex of this cone.

N ext we m ake some rem arks concerning the blowing-up of an algebraic 
surface Y a t a norm al point, y , whose exceptional locus is an elliptic curve. 
In  this case the condition a) fulfilled because X ' is a plane curve of degree 
3 and the condition b) can be stated  in the form:

b’) deg z (I) =  3 j* w ith an integer, s >  o .
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In  fact it is sufficient to observe th a t deg Ox ' (i) =  3 on an elliptic curve; 
conversely, every invertible sheaf of degree 3 is very am ple and gives lise 
to an im bedding of X ' in the projective plane (straightforw ard consequence 
of R iem an n -R o ch V  theorem ).

PROPOSITION 2. — Let Y be an algebraic surface, y  e Y a norm al pointy 
9  ̂ X ->  Y the blowing-up o f Y  at y . A ssum e that the exceptional locus is an 
elliptic curve and that deg 1* I — 3  ̂ w ith s a strictly positive integer. Then 
the canonical homomorphism

a : © Y
n >  0

© <P*T)
n >  0

is an isomorphism, and  R*<p^(F) =  o  fo r  q >  2 or fo r  q =  1 and n >  1. 
Furthermore, dim R 19^ Ox =  1.

Proof. — By Proposition 1 and the rem ark m ade above, we have only 
to prove th a t R 19 ^ . F = o  if n >  I ; but we are sure th a t R 19^ F  =  o for 
n  >  o. From  the exact sequence

o ----->. I”+ 1 -----^ F ------ > i ^Ox f n s )  -----> 0 ,

we deduce the exact sequence

R 1cP#( r +1) — ► r V T )  R 1?» (* * o X'f>M)) =  h V x ' . c v  (**)).

In  view of (A) (in which we take d  =  1, m i = 3 ,  N =  o), H 1 (X ', Ox ' (ns)) 
is th e  dual of the vector space H° (X ', Ox '( — ns)), which is zero if n >  o and 
isom orphic with K if n — o. This proves our proposition.

We wish to investigate now the following problem: let X x be a projective 
variety, i  : X A c-^  X a closed immersion given by an invertible ideal, I, such 
th a t the conditions a) and b) are fulfilled; when does exist an algebraic variety  
Y with a proper m orphism  9 : X ->  Y such th a t X coincides with the blowing- 
up of Y at some norm al p o in ty  and X ' with the exceptional locus of 9? W hen 
such a variety  exists we say th a t X is contractible along X'- and Y will be 
referred to the contraction of X along Xb It follows im m ediately th a t this 
contraction is unique up to an isomorphism, if it exists.

PROPOSITION 3. L et X ' be a projective variety , i  : X / C- > X  a closed 
immersion given by an invertible sheaf o f ideals I, such that X  is normal in  
every p o in t o f X ' . A ssum e that R 3 ^ ( I 2) =  o, where i | / :X - » T  is the canonical 
continuous m ap into the quotient space T  obtained by identifying the points o f 
X b  Then , i f  the conditions a) and  b) are fu lfilled , X  is contractable along X '.

First of all we prove the following:

LEMMA. — In  the hypotheses stated above, there exists an open neighbourhood 
U  of X ' in  X such that the fo llow ing  conditions are fulfilled'.

i) The homomorphism o f restriction

H° (U , I) — > H° ( X ' , Ox >.(s))
is surjective',

ii) p O x =  I, where p  =  H° (U , I ) .
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Proof. -  Consider the com m utative diagram  (in the category of topolo
gical spaces):

X ' c > X

Spec K =  { y J c  

and the exact sequence

o ---- ► r I ■ -> 2* Ox ' (s) ‘  ̂ °

which gives rise to the exact sequence

<!v (ï ) —  ̂  ̂ R l k ( l2) =  o .

In particular, we get the surjection

(*) o k a » ,  — - o m * o x -a ) ) , -

On the other hand, (ij># (l))y =  lim H°(V , <p*(T)) =  lira H °(U , I) and
va  y UoX'

0 M * O X' ( * ) ) ,=  ( A ? ;  (sp , =  H ° ( { y } ,  9;O x , (s)) =  H° (X ', Ox > (s)) .
Since H ( X ' , Ox '(s)) is a finite dimensional vector space over K, the 

surjectiv ity  of (*) and the definition of the direct limit show the existence 
of a neighbourhood U  satisfying i).

In order to prove ii), we rem ark tha t this assertion is equivalent to 
the one th a t the invertible sheaf I is generated by its sections on U, 
i.e. U  =  U U /  ( / e H ° (U , I)), where U / — { x  e U / f ( x )  o }. But since

^ I ' = O x /(j), we have X ' =  U X f  [ f  e H °(X /, Ox > (s))]. Let *  e X 7 b e a

point a n d ■/' e ,H °(X /, Ox '(L)) a section such th a t x  e X}/ ; by i), there exists a 
section f  6 H °(X  , I) such th a t / ' = / * ( / ) .  Then j  6 Xy, which implies th a t 
Xy contains a whole neighbourhood U x of  x.  We finish the proof of ii) by 
tak ing  for U  the union of U x w ith x  e X r.

Proof o f Proposition 3. ~ We can now assume th a t the conditions of the 
lem m a are fulfilled for X, replacing, if necessary, X by U, since the problem  
is local along X 7. Consider the com m utative diagram

X 7 c_ _ 1 ----- -> X

9' 9i

{ y }  c— - — ^  Yi

where Yi = . Spec H °(X  , Ox), 91 corresponds to the identity  of H° (X , Ox), 
and the closed immersion j ± to the surjective hom om orphism  H °(X  , Ox) -> K
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[whose kernel is p  =  H° (X , I)]. L et 7t : Xi =  Proj © p n -> Yi be the
n>0

blowing-up of Y at y . Since I =  f ^ 1(p) — p  Ox is invertible, by the universal 
p roperty  of the blow ing-up, we get a unique Y -m orphism  s :. X -^  X i, which 
corresponds to the canonical inclusion ©_/>” -> © H° (X ,- F ), such tha t

n > 0 n > 0
e*O x (!) ~  I. In  order to prove the required result, it is sufficient to show 
th a t e(X ') == rc^Çy)  and th a t e is an open im mersion in a certain open neigh
bourhood of X '.

T he composed hom om orphism  of graded algebras

© p n ----- »■ © H °(X  , I”) ----- ». 0  H °(X ', O ^ is n ) )
« > 0  « > 0  n >  0

(which corresponds to the m orphism  e o i )  is surjective, since its first com po
nent is so [condition i) of the lemma] and the graded algebra © H °(X /, Ox > (sn))

n >  0

is generated by H° (X© Oxv (s)) [by (A)]. It follows th a t the m orphism  
£ o L  X ©  X is a closed immersion, consequently the inclusion £0 i ÇX') C 
C tt“ 1 (y)  implies dim  X —  1 <  dim Xi —  1, of dim  X <  dim  Xi ; hence 
dim  X — dim  Xi , cp1' being dom inating. From  the assum ption th a t X is 
a birational m orphism , therefore s is birational too.

Since -s o i  is an im mersion and s“ 1 (tu- 1  (y))  =  <p̂ x(y)  =  X ;, we have 
e~x (e (x)) — { x  } for every x  € X '; hence every x  e X ' is isolated in its fibre 
w ith respect to e. By Z arisk i’s M ain Theorem , there exists an open neigh
bourhood Uo of X ' in X and an open immersion 73 : Uo c—> Z, w ith Z the 
norm alisation of X, such th a t the following diagram

U0 c---- 5 z
n

I

X ------- ?-------»- X

is com m utative (E, is the canonical finite morphism). It is easily seen th a t 
73 (X ') is a connected com ponent of (n o Ç)“ 1 (y)  and, since Yi is norm al, 
Z ariski’s Connectedness Theorem  shows th a t 73 (X ;) =  (tto^)“ 1 (j/), i.e. 7c“1 (y)  =  
== e (X '). Consequently £ / t3( X ' )  is a bijection and, since it is a finite m or- 
phisrfi, for every z € r i ( X f) the hom om orphism  of local rings

\ z  o  x u ^ z ) ------- * O z , z

is finite; hence, for every r e X ' ,  the hom om orphism

' O x 15£(x)------- * O  Z, z

is finite. F inally, the com m utative diagram

O > P Q x x,z(x) 7̂  d x 1)£(Æ) > O z(x)  ̂ O

O ----------- * l x ---------------> Ox,*    ► O x ' , a -------- ——̂  O
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in which the lines are exact and the last vertical arrow is surjective, together 
with the assum ption p Ox =  I, show th a t

m„ , . Ov = .  m ^X , , z(x) X , x  X , x

Therefore s* is an isomorphism, because the local rings Ox,* and 
Ox1)S(i) have the same residue fields and one can apply  N akayam a’s lemma. 
Hence e is biregular in every point of X ', which completes the proof.

T h e o r e m .  — L et X' be a projective variety, and i  : X 'C->X a closed im m er
sion given by an invertible sheaf o f ideals I , such that X is projective and normal 
at every po in t o f X \  A ssum e that there exists a suitable immersion h  : X ' c-> P w 
such that X' is a complete intersection in  Pn and the P icard group o f X' is gene
rated by the class o f Ox '( i )  =  h Op^(i). Then X is contractible along X' if, 
a nd  only if, i* I is ample on X ' and, in  this case, the contraction Y (which is 
unique) is also projective.

Remarks. -  a) The condition th a t Pic X ' is generated by the class of 
0 X'( i)  is always fulfilled if dim  X '>  3 [by (B)], as well as for dim  X ' =  2 
or dim  X ' =  1 if X ' =  P2 and X ' =  Pi respectively.

b) In  [1] a more general criterion for contractibility is given (and, 
in particular, a more general criterion for contractibility to a point): but the 
contraction is there only an algebraic space. On the contrary, the previous 
theorem  gives sufficient conditions in order th a t the contraction is in fact 
an algebraic variety.

Proof. -  W e recall that, in the proof of Proposition 3, the cohomological 
condition R 1^ ( I 2) =  o has been used only for deducing the condition i) of 
the lem m a [from which condition ii) follows restraining again X along X '].

On the other hand, it is easy to see th a t the condition “ z* I is ample 
on X ' ” can be replaced by “ 2* I =  Ox ' (s) where s >  o

W e shall prove th a t the condition i) of the lemma is a consequence of 
the hypothesis of projectivity  of X. Let then H be a hyperplane section on 
X (i.e. a very am ple invertible sheaf on X) and therefore z*H — Ox ' (ni), 
where m  >  0, since Pic X ' is generated by Ox '( i) ;  further we can suppose m  
a m ultiple of .s*, replacing, if necessary, H by HL hence m =  st with t e  Z. 
For every integer N, we have the exact sequence:

o — ► i N+1 •— ► r  —  ̂ ? ;o x -(jN) — ► o

[because z*I =  Ox '(^)]. If  we choose a positive integer ?z sufficiently large 
such th a t PI1 (X , I (nj) =  o, where l (n )  =  I® H ® n, we get by tensorising 
w ith I (n) the exact sequence:

o IN + \ n )  -----► IN+1(«)  > *#Ox/( j ( N + i  + f n ) )  —-> o ,

which gives rise to the exact sequence of cohomology:

H V x  , IN+2<») —-> H x( X , IN+10 ) )

64. — RENDICONTI 1972, Voi. Ltl, fase. 6.

> H 1(X ,,O x '( j ( N + I  + ^ ) ) -
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But H 1(X ', Ox '(æ)) =  o if a >  o since either X '=  Pi or, if dim  X ' >  2, 

one can apply  (A) ; hence H 1 (X , I (nj) =  o implies (by taking in
ductively . N =  —  I , — 2 , • • - , — tn —  1) th a t H 1(X , I ~fM+2(n)) =  o and 
H 1 (X , I in+1 (nj) =  o. In  other words, the hom om orphisms of restriction:

H °(X  , l~ tn+l(n)) ------- -> H ° (X ',O xV(.r))

H °(X  , I “ * * (« ))---------- ► H °(X ', Ox 0

are surjective. From  the second surjection it follows the existence of a section 
oc e H° (X , I tn (nj) such th a t 2* (a) =  i, and, if D is the Cartier divisor 
of a, we have X 'n S u p p D  =  0 ,  i.e., X 'C U  =  X — Supp D; then D /U  is 
linearly equivalent w ith the zero divisor and therefore l ~tn+1 (n)l~U =  I/U . 
The first surjection and the com m utative diagram

H ° (X ,W * +1( ^ ) ) _ V

res^ H °(X ', Ox ' (s))

H °(U  , I) ------- ------^

prove the existence of the contraction Y (which is unique).
W e have now only to prove th a t Y is projective. But Y~n (^)/X  —  X ' 

is very am ple on X — X ', since r " ( « ) / X - X '  =  H®7 X - X ' .
On the other hand, if a is the section considered above, the canonical 

rational m ap u  : X -> P (H °(X  , \ ~ tn(njj) is every where defined and it is 
an isom orphism  between X —  X ' and u ( X  —: X '), where P (H °(X  , Y~tn(n))) 
is the projective space associated to the finite dim ensional vector space 
H °(X  , I ~tn(nj). But u(yi ' )  is a single point, since, if one chooses a basis 
oq =  a , a 2 , • • •, ctm of this vector space such th a t 2*(oq) =  o for i  >  2, then 
u ( X f) =  (1 , o , • • • , o) =  y ' . T he projectivity of X implies th a t u ( X)  is 
also projective. One can suppose u  (X) norm al in y r, replacing, if necessary, 
u(X.) by its norm alisation (which rem ains projective). T hen the contraction 
m ust oe isom orphic w ith u ( X ) f and so Y is projective, which completes the 
proof of the theorem .
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