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Geometria. — Algebraic Contractions and Complete Intersections.
Nota di Lucian Bipescu e Miunea Moroianu, presentata @ dal
Socio B. SEGRE.

RIASSUNTO. — Si studiano dilatazioni e contrazioni di varietd algebriche, con parti-
colare riguardo. al caso in cui queste siano delle intersezioni complete.

In the following K will denote a commutative, algebraically closed field
of arbitrary characteristic. We shall consider only irreducible algebraic varie-
ties over K.

Let X’ be a projective algebraic variety embedded in the projective space
P,, such that it is a complete intersection in P,, i.e. its homogeneous ideal
I(X") is generated by 7—dim X’ independent elements (which are even homo-
geneous forms) of K[T,,---,T,]. Oy (1) stands for the inverse image of

- Op, (1) by this embedding, while S(X') represents the homogeneous coordi-
nates ring of X', ie. K[To, -, T,]/T (X").
We shall need the following results:
(A) [FAC, § 78, Proposition 5]. — If X' is a complete intersection in
P, defined by the equations f; = o, i=1,---,n—dim X', of degrees m;, then:
a) The canonical homomorphism of graded algebras:
a: S (X)) — @ HY (X', O (5)
s€Z
is an isomorphism;
b) HY(X', Ox/(s)) =0 for every s and o< g< dim X';
) The vector space H* (X', Oy (8) (with d =dim X') 7s isomorphic
n—d
with the dual of H®(X',Ox (N —y5)), where N = dym,—n— 1.
7=1 .
(B) [SGA-1962, Corollaire (3.7)]. — Let X' be an algebraic variety of
dimension > 3, which is embedded in P, as a complete intersection. Then Pic X'

(the group equivalence classes of isomorphic imvertible sheaves) is cyclic and
generated by the class of Oy (1).

Remarks. — 1) If dim X' = 2, and if X’ is a complete intersection in P,
Pic X' is finitely generated by a result of Hartshorne [6], but not in general
cyclic. For instance X' = P1XP; is the quadric ToTi— TeTs =0 in P3
and Pic X' = ZXZ, hence (B) does not hold in this case.

2) If dim X’ = 1, e.g. if X' is an elliptic curve, Pic X’ has not a finite
number of generators, though it is a plane curve,

(*) Nella seduta del 16 giugno 1972,
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Let Y be an algebraic variety, y € Y a (closed) point, ¢ : X — Y the
blowing-up of Y at y, X’ = ¢~1(y) the exceptional locus, such that we have
the cartesian diagram:

Xt X

’

@

¢

v ; v
Spec K=y —————>Y

J and 7 being the corresponding closed immersions given by the ideals ] and
I = O4(1) respectively. We assume that the following conditions are fulfilled:
@) There exists an embedding of X! in a projective space P,, such
that X’ is complete intersection in P,;
6) The conormal sheaf :*1 = I/I® of X’ in X is isomorphic to a strictly
positive tensor power of Ox: (1), ie. 7*l = Ox (s) with s >o.

Remark. — If dim Y = 4, it follows from (B) that 4) is a consequence
of @) because ¢* I is ample on X'.

PROPOSITION 1.© Let Y be an algebraic variety, y € Y a normal point,

9 : X =Y the blowing-up of Y at y, X' = ¢=L(y). Assume that the conditions
a) and b) are fulfilled. Then:

i) Rlg,(I"Y=o0 if ¢g>0, ¢=dimY —1, and n>o;

i) if further, Rio, (1) = 0 for n>>1, then the canonical homomor-
phism

%:@®J — @ oI
n=0 n=0

is an isomorphism.

Proof. — The case ¢ > dim Y — 1 is a consequence of EGA III (4.4.2),
therefore we can assume that 0<¢ < dim Y — 1. Since I = Oy (1) is p—very
ample and ¢ is a proper morphism, we have R’q, (I") = o for # > 0. On the
other hand, from 4) we deduce the exact sequence:

(1) o ! " i, Oy (s1n) —— 0,
which gives rise to the exact sequence:
(2) Rig (I") — Rq,(I) — R%, (3,04 () .

But R’q, (7,0 (sn)) = j, R?p. Oy (sn) = H/(X’,O4 (s7)) = o [by (A)],
consequently the canonical homomorphism:

R7q, (I"") ——— R7p, (I")

is surjective and the required property follows by descending induction on 7.
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In order to prove ii) we remark that from the normality of y on Y it
follows ¢, (Ox) = Oy. In fact, consider Stein’s factorisation

X —*i» Y1 = Spec ¢, (Oy)
) \cp\ /ﬁ
Y

where ¢, (Oy) is a coherent Oy-algebra and, therefore, @, is a finite morphism
[EGATII (3.2.1) and II (6.1.3)]; we conclude remarking that ®,, in view of
Zariski Main’s Theorem, is an isomorphism, since it establishes an isomor-
phism between Y, — ¢ (y) and Y —y. ‘

Next we prove that ¢, I =]; this follows from the commutative diagram

Oy —— 74 Owr
(4) 1 2
v v
0, (Oy) —— ¢, 7,04/

in which the first vertical arrow is the isomorphism established above, Y’ — ¥,
the second one is the isomorphism which follows from 0y % Oy =7, 9, Oys =
= J,x Oy’ and the kernels of the horizontal arrows are | and o, (I) respectively.

It remains to be proved that a, is an isomorphism for 7 > 2. From the
commutative diagram

Oy

J'h——— e, (I
(s

o

v . ¥
Oy ——— ¢, (0y)

we deduce that «, is injective. From the exact sequence (1), and since
R',I""' =0, one can obtain the exact sequence:

In+1

6) 0 —— o, —> ¢, I" — o, 7, Oy (25) —> 0.

Therefore ¢, 1"/p 0"
tative diagram

> o, 7, Ox (ns) = 7, ¢, Ox (ns); we get the commu-

P =2 g, (e, (1Y
N
@) a,,\ //z
759, Oy (n5)

in which o, is the canonical homomorphism [EGA II (3.3.2)] and all the
involved sheaves are concentrated in y. But &; is a surjection, since o, is an
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isomorphism; hence «, is a surjection too, and therefore o, is surjective for
every 7 =1 [because of (A) which implies that the graded algebra
@ 9x (Ox (ns)) is generated by its component of degree one]. In this way,
7>0 '

%, is an isomorphism and then «, is an isomorphism too, using the fact that
this is true for z » o [EGA III (2.3.1)].

It is useful to remark that the additional hypothesis R! 0, 1" = o is always
fulfilled if dim Y>3 [by (i)].

COROLLARY. — [n the above conditions we have:

(D) The canonical homomorphism

o« ® I s @ Oy (ns))
n>0 n>0

is an isomorphism;

(i) There is a canonical isomorphism
o 1@ HO(X, I —— s S(XN©,
n>0

where S(X') is the graded K-algebra such that (S (XH), =S (XNs [see
EGA I7].

Proof. — (i) follows considering again the commutative diagram (7) in
which @, is this time an isomorphism, since this is true for «,; (i) follows
from (i) and from (A).

Remark. — Using the same notations as in Proposition 1, if O, is the local

ring of ¥ on'Y and s, its maximal ideal, the above corollary points out the
existence of a canonical isomorphism

D m_’,f/mf,“ _— S(X’)(‘) .
n>0

In particular, the dimension of Zariski’s tangent space of Y at ¥ is exactly
dimg S (X'), [the dimension of the s-th component of the graded algebra
S (XN].

If X'=P,_y, then S(X")=K[T1,---,T,] and dim nfm "' = (”“‘j_’_‘l'“l) ,
while the multiplicity of the local ring O, is s~ (see [3]).

On the other hand, if X' satisfies ) and 6) with s = 1, then 80, (m,)
is isomorphic to S (X'); in other words, the dimension of Zariski’s tangent
space of 'Y at y and the multiplicity of O, respectively coincide with the dimen-
sion of Zariski’s tangent space of the affine cone defined by S(X') at its vertex
and the multiplicity of the local ring corresponding to the vertex of this cone.

Next we make some remarks concerning the blowing-up of an algebraic
surface Y at a normal point, y, whose exceptional locus is an elliptic curve.
In this case the condition a) fulfilled because X' is a plane curve of degree
3 and the condition ) can be stated in the form:

¢) degi(I)=3s with s an integer, s >o0.
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In fact it is sufficient to observe that deg Oy (1) = 3 on an elliptic curve;
conversely, every invertible sheaf of degree 3 is very ample and gives 1ise
to an imbedding of X' in the projective plane (straightforward consequence
of Riemann—Roch’s theorem).

PROPOSITION 2. — Let Y be an algebraic surface, y € Y a normal point,
9 : XY the blowing-up of Y at y. Assume that the exceptional locus is an
elliptic curve and that deg i* 1 = 35 with s a strictly positive integer. Then
the canonical homomorphism

o D J ——> @ ¢, (I
n>0 n=0

is an isomorphism, and Ro,(I"Y=o0 for ¢>2 or for =1 and n > 1.
Furthermore, dim R ¢, Oy = 1.

Proof. — By Proposition 1 and the remark made above, we have only
to prove that Rlcp*I”= o if #>1; but we are sure that Rlcp*I” = o for
7 > 0. From the exact sequence

n+1

0—— I""" — I" —— 7,04 (ns) —> o,

we deduce the exact sequence
Rl (I"") — R'q, (I") —> R'o, (7, Oy (ns)) = H' (X', Oy (ns)).

In view of (A) (in which we take & = 1, 71 = 3, N = o), H! (X, Oy (ns))
is the dual of the vector space H (X', Oxr (— ns)), which is zero if #> o and
isomorphic with K if #» = 0. This proves our proposition.

We wish to investigate now the following problem: let X’ be a projective
variety, 7: X’ < X a closed immersion given by an invertible ideal, I, such
that the conditions @) and 4) are fulfilled; when does exist an algebraic variety
Y with a proper morphism ¢ : X— Y such that X coincides with the blowing-
up of Y at some normal point ¥ and X’ with the exceptional locus of ¢? When
such a variety exists we say that X is contractible along X’ and Y will be
referred to the contraction of X along X'. It follows immediately that this
contraction is unique up to an isomorphism, if it exists.

PROPOSITION 3. — Let X' be a projective variety, i: X' ©>X a closed
immersion given by an invertible sheaf of ideals 1, such that X is normal in
every point of X'. Assume that R* Y, (1) = o, where § : X—T is the canonical
contipuous map into the quotient space T obtained by identifying the points of
X' Then, if the conditions a) and b) are fulfilled, X is contractable along X'.

First of all we prove the following:

LEMMA. — In the hypotheses stated above, there exists an open neighbourhood
U of X' in X such that the following conditions are fulfilled:

1)  The homomorphism of restriction

H°(U,I) — H° (X', Oy (s)

is surjective;

iy pOy =1, where p=H"(U, ).
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Proof. — Consider the commutative diagram (in the category of topolo-
gical spaces):

’

Spec K = {4} A, |

and the exact sequence

o I? I £, Oy (s) —> ©
which gives rise to the exact sequence
b —> 4, 4,04 () — R4, =o.
In particular, we get the surjection
O] WD)y —— W7 Ox (), -

On the other hand, (y, (1)), = lim H°(V, Y, (I)) = lim H°(U, I) and

Vo UDX'
(95, Ox (), = (729, 0 (), = H* ({ ¥}, 9, Oy (5)) = H (X', Oy ().

Since H° (X', Oy (s)) is a finite dimensional vector space over K, the
surjectivity of () and the definition of the direct limit show the existence
of a neighbourhood U satisfying 1i).

In order to prove ii), we remark that this assertion is equivalent to
the one that the invertible sheaf I is generated by its sections on U,
ie. U= LfJUf (feH'(U, 1)), where U,={x€U/f(x)==0}. But since
i*1 = Oy (s), we have X' = U Xp [f'€HY (X, Og (s))]. Let x€X’ bea
point and f’ E,HO(X’,OX/(:)) a section such that x € Xz ; by i), there exists a
section € H*(X, I) such that f'= ¢*(f). Then x € Xs, which implies that

X, contains a whole neighbourhood U, of x. We finish the proof of ii) by
taking for U the union of U, with x € X',

Proof of Proposition 3. — We can now assume that the conditions of the
lemma are fulfilled for X, replacing, if necessary, X by U, since the problem
is local along X'. Consider the commutative diagram

Xt X
9’ 1
¥ ; v
(pre—2t v
where Vi = Spec H*(X, Oy), @, -corresponds to the identity of H (X, Oy),
and the closed immersion 7, to the surjective homomorphism H°(X, O4)— K
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[whose kernel is p=H’(X,D]. Let =:X;= Proj® p” —Y: be the
7n>0

blowing-up of Y at y. Since I = ¢ 1(p) = pO is invertible, by the universal

property of the blowing—up, we get a unique Y-morphism ¢: X— X, which

corresponds to the canonical inclusion @ p" — @ H° (X, I"), such that
nz0 =
e*O4 (1) = 1. In order to prove the required result, it is sufficient to show

that ¢(X’) =="'(y) and that € is an open immersion in a certain open neigh-
bourhood of X'.
The composed homomorphism of graded algebras
®p — @ H'(X,I") — @ H(X', Oy (s7))
7n>0 n>0 n>0
(which corresponds to the morphism eo7) is surjective, since its first compo-
nent is so [condition i) of the lemma] and the graded algebra @ H®(X’, Oy (sm))
n>0

is generated by H®(X’, Oy (5)) [by (A)]. It follows that the morphism
go7z:X'— X is a closed immersion, consequently the inclusion o 7 (X')C
Cn'(y) implies dim X — 1< dim X;—1, or dim X < dim Xi; hence
dim X = dim X1, ¢, being dominating. From the assumption that X is
a birational morphism, therefore e is birational too. ‘

Since €07 is an immersion and &7 (x7l(y)) = o7l (y) = X', we have
el(e(x)) = {«} for every x € X’; hence every x € X' is isolated in its fibre
with respect to e. By Zariski’s Main Theorem, there exists an open neigh-
bourhood Up of X' in X and an open immersion % : U C—> Z, with Z the
normalisation of X, such that the following diagram

U, SN Z
] :
¥ c v
XX

is commutative (§ is the canonical finite morphism). It is easily seen that
7 (X') is a connected component of (mo&) ™' (y) and, since Yi is normal,
Zariski’s Connectedness Theorem shows that 4(X') = (mo&) ™1 (y), i.e. n71 (y) =
= ¢ (X"). Consequently &/4(X’) is a bijection and, since it is a finite mor-
phism, for every z € n(X') the homomorphism of local rings

%
Ez : OXX,E(Z) E—— OZ,z
is finite; hence, for every x € X', the homomorphism

—> OZ,x

*
€y ¢ OX,,a(x)
is finite. Finally, the commutative diagram

O - pOXUs(x) > OXI,s(x) —> On“l(y),a(x) — O

o I, Ox,« Ox,x

)

—- O
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in which the lines are exact and the last vertical arrow is surjective, together
with the assumption pO, = I, show that

mXI,E(x) OX,x = mX,x :

Therefore &f is an isomorphism, because the local rings Ox. and
Ox,,ev) have the same residue fields and one can apply Nakayama’s lemma.
Hence ¢ is biregular in every point of X', which completes the proof.

THEOREM. — Let X' be a projective variety, and ¢ : X'C— X a closed immer-
sion given by an invertible sheaf of ideals 1, such that X is projective and normal
at every point of X'. Assume that there exists a suttable tmmersion b X'C—P,
such that X' is a complete intersection in P, and the Picard group of X' is gene-
rated by the class of Oy (1) = k" Op,(1). Then X is contractible along X' if,
and only if, i1 is ample on X' and, in this case, the contraction Y (whick is
unique) is also projective.-

Remarks. — a) The condition that Pic X’ is generated by the class of
Ox/(1) is always fulfilled if dim X'> 3 [by (B)], as well as for dim X' = 2
or dim X' =1 if X'= P2 and X’ = P respectively.

6) In [1] a more general criterion for contractibility is given (and,
in particular, a more general criterion for contractibility to a point): but the
contraction is there only an algebraic space. On the contrary, the previous
theorem gives sufficient conditions in order that the contraction is in fact
an algebraic variety.

Progf. — We recall that, in the proof of Proposition 3, the cohomological
condition R* ¢y (1%) = o has been used only for deducing the condition i) of
the lemma [from which condition ii) follows restraining again X along X'].

On the other hand, it is easy to see that the condition “z*I is ample
on X'” can be replaced by “7*I1 = Oy (s) where s >o0".

We shall prove that the condition i) of the lemma is a consequence of
the hypothesis of projectivity of X. Let then H be a hyperplane section on
X (i.e. a very ample invertible sheaf on X) and therefore *H = Oy (),
where 72 > o, since Pic X’ is generated by Oy (1); further we can suppose 7
a multiple of s, replacing, if necessary, H by H¢®: hence m = sz with z€Z.
For every integer N, we have the exact sequence:

o BakE I 4,04/ (sN) — o

[because 2*I = Oy (s)]. If we choose a positive integer 7 sufficiently large
such that H' (X, I(%)) = o, where 1(7) = IQH®", we get by tensorising
with I(n) the exact sequence:

o — ") — ') — 4,04 (s(N+1 + 7)) —> o,
which gives rise to the exact sequence of cohomology:
HY(X, I"? (%)) — HYX, I™'(n)) — H(X',04 (s(N+1 42)).

64. — RENDICONTI 1972, Vol. LII, fasc. 6.
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But H' (X, Ox'(@)) = o if @ > o since either X'=P; or, if dim X' > 2,
one can apply (A); hence H'(X,I(%)) = o implies (by taking in-

ductively N = —1, —2,--+, —#m—1) that Hl(X , I-t"”(n)) =0 and
H' (X, 17" (%)) = 0. In other words, the homomorphisms of restriction:
HY(X, 177 ) ——— H'(X', O ()
H* (X, 17" () ———— H"(X', Oy

are surjective. From the second surjection it follows the existence of a section
«€ H* (X, 17" (%) such that ¢*(«) =1, and, if D is the Cartier divisor
of «, we have X'NSuppD = @, ie, X'CU =X — Supp D; then D/U is
linearly equivalent with the zero divisor and therefore 17" (x)/U = I/U.
The first surjection and the commutative diagram

HO (X , I—tn-ﬁ-l(h)) *_\

res i HO(X', Oy (5)
0 V4
HOU,) —

prove the existence of the contraction Y (which is unique).

We have now only to prove that Y is projective. But I™"(2)/X — X'
is very ample on X -— X/, since I”" (%)X — X" = H®|X — X'

On the other hand, if « is the section considered above, -the canonical
rational map #:X — P(H*(X, 17" (n))) is every where defined and it is
an isomorphism between X — X' and # (X — X'), where P(H*(X, 17" (%))
is the projective space associated to the finite dimensional vector space
H°(X, 17" (n). But #(X') is a single point, since, if one chooses a basis
® = &, &y, -, o, of this vector space such that 7*(a;) = o for 7 = 2, then
u(X')=(1,0,--+,0)=9'". The projectivity of X implies that x(X) is
also projective. One can suppose % (X) normal in ¥, replacing, if necessary,
#(X) by its normalisation (which remains projective). Then the contraction
must be isomorphic with #(X), and so Y is projective, which completes the
‘proof of the theorem.
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