ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

VASILE I. ISTRĂŢESCU

On some classes of operators. I

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **52** (1972), n.6, p. 868–870. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1972_8_52_6_868_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi funzionale. — On some classes of operators. I. Nota di Vasile I. Istrațescu, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — Si estende un teorema di J. Wermer sugli operatori normali di uno spazio di Hilbert agli operatori di uno spazio di Banach.

- o. Our purpose in this Note is to prove that an operator which is quasisimilar to a unilateral weighted shift is irreducible and to prove Wermer's theorem for normal operators on Banach spaces.
- 1. Let H be a Hilbert space and $\{\varphi_n\}$ be an orthogonal basis of H and let $\{\alpha_n\}$ be a bounded sequence of complex scalars.

Then a unilateral weighted shift A with weights is the operator on H defined by

$$A\varphi_n = \alpha_n \, \varphi_{n+1} \qquad (n = 0, 1, 2, \cdots)$$

and its adjoint is given by

$$A^* \varphi_0 = o$$
 and $A^* \varphi_n = \overline{\alpha_{n-1}} \varphi_{n-1}$ $(n = 1, 2, 3, \cdots)$.

It is known that a unilateral shift is irreducible, i.e., it has no nontrivial reducing subspace. In [6] it is proved that every operator on a Hilbert space which is similar to a unilateral weighted shift with nonzero weights is irreducible.

Our aim in this section is to prove that this property is valid under quasisimilarity. We recall the definition [3].

Definition. A_1 and A_2 are said to be quasi-similar if there are bounded linear operators $R: H_2 \to H_1$ and $S: H_1 \to H_2$ which satisfy the following conditions:

- I) $SA_1 = A_2 R$ and $A_1 R = RA_2$
- 2) R and S have zero kernels and dense ranges.

THEOREM 1. Every operator on a Hilbert space H which is quasi similar to a unilateral weighted shift with non zero weights is irreducible.

Proof. Let R, S be the operators which invoke the quasi-similarity and A₀ an operator on H which is quasi-similar with the weighted shift A defined above.

Let m be the subspace which is reducing for B. Then

$$B^*m \subset m$$
 , $B^*m^1 \subset m^1$

(*) Nella seduta del 16 giugno 1962.

and since $A^* B^* = S^* B^*$, $R^* A^* = B^* R^*$ we obtain that $A^* S^* m = S^* B^* m \subset S^* m$ $A^* S^* m^{\perp} = S^* B^* m^{\perp} \subset S^* m^{\perp}.$

Thus S^*m and S^*m^1 are invariant subspaces for A^* . It is known and follows from Theorem 10 [8, Ch.VI], that if A_1 and A_2 are quasi-similar then A_1^* and A_2^* are again quasi-similar. Since S has a null space equal to 0 and the range dense (in fact is equal to the whole space) we obtain that

$$H_1 = S^* m + S^* m^1$$

which is impossible because of the Lemma in [6]. The theorem is proved.

Remark. The structure theorem for spectral type operators suggests the consideration of the class of operators of the following type: T=S+N where N is quasi-nilpotent and commuting with S and S is quasi-similar to a normal operator.

Some results about this class of operators will be given in [9].

In [7] J. Wermer has proved the following result: if N is a normal operators on a Hilbert space H and $\sigma(N)$ is of area zero then if m is an invariant subspace of dimension ≥ 2 then $\Re/m = T$ has a nontrivial invariant subspace.

For another proof see [2].

Our aim in this section is to prove the same result for operators on Banach space. First, we recall some definitions [4].

Definition 1. An operator S on the Banach space $\mathfrak R$ is called self conjugate if and only if for all $t \in \mathbb R$, $\|e^{its}\| = 1$.

Definition 2. If every element T of a closed commutative algebra $\mathfrak{A} \subset \mathfrak{L}(\mathfrak{X})$ can be written in the form T = R + iJ with R and J self conjugate operators in \mathfrak{A} then \mathfrak{A} with the map $T = R + iJ \to \overline{T} = R - iJ$ will be called a commutative V^* -algebra.

DEFINITION 3. An operator N is said to be normal if there exist self conjugate operators R and J such that

- (1) N = R + iJ
- (2) $\mathfrak{A}_t = e^{itR}$, $V_t = e^{itJ}$ are contained in a commutative V^* algebra for all $t \in \mathbb{R}^1$.

Our result is the following.

Theorem 2. If N is a normal operator on a Banach space $\mathfrak X$ and the following property holds: the area of the spectrum $\sigma(N)$ is zero and if m is an invariant subspace of N of dimension ≥ 2 , then the operator T=N/m has a nontrivial invariant subspace.

Proof. Let K be the smallest subspace containing m and reducing for N (i.e. invariant for N and N), since N/K is normal with the spectrum contained in σ (N).

If $\sigma(T) \subset \sigma(N)$ then T is in fact normal. Indeed, we find a sequence of rational functions converging uniformly to \bar{z} on $\sigma(N)$ and thus $r_n(N)$ converge uniformly to \bar{N} . Since m is invariant under N then m is clear invariant under \bar{N} and thus N/m is a normal operator. Thus in this case the theorem is proved. If $\sigma(N) \subset \sigma(T)$ we remark that the point spectrum of N includes the spectrum of T and also the continuous spectrum of N includes that of T. But N has no residual spectrum of T. From this we obtain that $\sigma(T) - \sigma(N)$ is in the residual spectrum of T. If $\sigma(T) - \sigma(N) \neq \emptyset$ then T has a non trivial invariant subspace. If $\sigma(T) = \sigma(N)$ then as above, we can show that T is in fact normal.

Remark 1. In the case of Hilbert spaces we can prove that T is normal without use of Hartogs-Rosenthal theorem. Indeed, on every invariant subspace, T = N/m is a hypernormal operator and as above, it remains to consider only the case when $\sigma(T)$ is of area zero. By a recent result of Putnam [5] T is normal.

Remark 2. In [9] we study a generalization of *n*-normal operators on Hilbert spaces to *n*-normal operators on Banach spaces which are defined in a natural way.

REFERENCES

- [1] N. DUNFORD, A survey of the theory of spectral operators, « Bull. Amer. Math. Soc. », 64, 217-274 (1958).
- [2] P. FILMORE, Notes on operator Theory. Van Nostrand, 1970.
- [3] T. B. HOOVER, Hyperinvariant subspaces for n-normal operators, «Acta Sci. Math.», 32 (1-2), 109-121 (Szeged).
- [4] T. W. PALMER, Unbounded normal operators on Banach spaces, «Trans. A.M.S.», 133 (2), 385-414 (1968).
- [5] C. R. PUTMAN, An inequality for the Area of Hypernormal operator, «Math. Zeitsch.», 116, 323-330 (1970).
- [6] N. SUZUKI, On the irreducibility of weighted shifts, « Proc. A.M.S. », 22 (3), 579-581 (1969).
- [7] J. WERMER, Report on Subnormal Operators. Operator theory and Group Representation. NAS-NRC (1953).
- [8] R. PALAIS, Seminar on the Atyah-Singer Index theorem. Princeton, New Jersey 1965.
- [9] V. ISTRĂȚESCU, On some classes of operators, IV (in preparation).

⁽¹⁾ Let S be a normal operator on a Banach space. Thus S=R+iJ where R, J are in a commutative V*-algebra. But the Banach algebra generated by R, J is isometric and *-isomorphic with the *-algebra $\mathfrak{A}^*=\{\overline{T},T\in\mathfrak{A}\}\subset\mathfrak{L}(\mathfrak{X})$. If $\lambda\in\sigma_r(S)$ then there exists $x^*\in\mathfrak{X}^*$ such that $S^*x^*=\overline{\lambda}x^*$ and thus $E(\overline{\lambda})\neq o$. From the isometric *-isomorphism between \mathfrak{A} and \mathfrak{A}^* we obtain that $\lambda\in\sigma_p(S)$.