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Analisi matematica. — On Comparison Theorems for Matrix
Inequalities with Mixed Boundary Conditions . Nota di Euriouio
C. Young, presentata @ dal Socio M. Prcone.

RIASSUNTO. — In questa Nota si estendono i risultati conseguiti da Swanson nel con-
fronto fra due sistemi di equazioni lineari autoaggiunte con condizioni miste al contorno a
sistemi le cui matrici sono quasi lineari € non autoaggiunte.

1. INTRODUCTION

The Sturmian comparison theorem of Kuks [1] for linear strongly elliptic
systems was recently generalized by Kreith [2], [3] by introducing more
general boundary conditions, and by Kreith and Travis [4]. Kreith’s technique
was based on a generalization of a Picone identity. On the other hand, using
a variational approach Swanson [5] extended Kuks result to quasilinear
selfadjoint elliptic systems and sharpened Kuks’ original theorem. Swanson’s
work was subsequently carried over to nonselfadjoint quasilinear matrix
inequalities by Noussair [6] and thereby derived some oscillation and nono-
scillation theorems. More recently, Swanson [7] improved a result of [4]
and stated a corresponding result for linear selfadjoint systems with mixed
boundary conditions. The purpose of this paper is to extend a result of [3]
and [7] to quasilinear nonselfadjoint matrix inequalities. The result gene-
ralizes Theorem 1 of [6] in that it deals with more general boundary conditions.

Let K and L denote the elliptic differential operators defined by

(1) Ku=—D,la;(x,u)D;u] +26,(x,2%) D2 + ¢ (x,u)u

and

(2) LV =—D,;[A;(x,V)D;V] +2B,(#,V)D,V +C(x,V) V
x=(r, 1) D”:Si’ Pi=1,n

respectively, for ¥ € R, € H ,V € H” where R is a nonempty, regular, bounded
domain in z-dimensional Euclidean space E” with smooth boundary aR.
H is a domain in E” containing the origin, H” is the set of 7 Xm matrices,
and % is a m—vector function of class C2 (R) N C'(R) with range in H. The
repeated indices are to be summed from 1 to . The coefficients @, , 4;, and ¢
are real 7 X 7 matrix functions of class C'(R x H). Analogous conditions
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are satisfied by the coefficients A, B;, and C in R X H”. Further, the
mn X mn matrix (A (x,V)) is symmetric and positive definite in R x H”.

The conclusion of the comparison theorems given below concerns 7 X m
matrices V € C®(R) 0 C* (R) which are “prepared’ in the sense that

@ VYA, (x,V)D,V, i=1, . m

is symmetric with V" denoting the transposed of V.

2. COMPARISON THEOREMS.

Since the mn X mn matrix (A, (x,V)) is positive definite in R x H”,
a diagonal matrix G (x,V) = (g, (x,V)) can be constructed such that the
quadratic form

@ Q,V)=(VD,u)' Ay (x , V) VD, u + 2 (Vi)' B, (x,V) VD, u
+ (V)" C (x,V) Vu
is positive semidefinite in R X H”. This can be done by using a criterion of
Gantmacher [8] and an inductive argument.
THEOREM 1. Let V be a prepared matrix satisfying
( V'LV >o (positive semidefinite) in R

) | %A,;(,V)D,V +S@WV =0 o T,CoR

where S is a mXm matrix function continuous on U, and (v, "+, V) denotes
the outward unit normal vector on 9R. If there exists a nontrivial vector function
# € C*(R) N CY(R) satisfying

suTKugo n R

6) vya,; (x,u)Dyu +s(x)u=o0 on Ty
(u=o on Iy, MUy =9R
such that
R
Q F,V) = [ {007 [ay (v, ) — Ay (&, V)] Dy

+ 24" [6,(x,2%) — B, (x,V)] D, n
+ul[c(x,4) —C(x,V)—G (x,V)] u} dx
-+ ' u" [s (x) —S (x)] # do >0

then N is singular at some point in R.
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Proof. The proof depends on the following identity
" Ku—u" (LV)V 'y
= —D,[u ay(x,u)yD;u—u" Ay (x,V) (D, V)V y
+ D, 0) [ay(x, ) — A, (x V1D, + 22 [6,(x, %) —B,(x,V)] D, u
+ Dy — @O, V)V u]" Ay (2, V) [D; . — (D; V) V1 1]
+2u B (x,V)[D;u— (D, V)V ] + 4" G (x,V) u
+ T [c(x,4) —C(x,V)—G (x,V)]

which is readily established by making use of the symmetric property of (3)
and (AU) (see [4]). Suppose'V is nonsmgular in R. Then there exists a unique
w € C'(R) such that # = Vw or w =V ' in R. Substituting this in (8) and
integrating over R, making use of the boundary conditions satisfied by «
and V, we obtain by Green’s theorem

) J”[uT Ku —w' V' LV —Q (w, V)] dx = F (u, V)

R

where Q (w,V) is given in (4) and F (%, V) in (7). By hypothesis, the left
hand side in (9) is nonpositive while the right hand side is positive. This
contradiction shows that V must vanish at some point in R.

We remark that if G is determined such that the quadratic form (4) is
positive definite, then the condition (7) can be replaced by F (z,V)=o.
Indeed, in such case equation (9) implies that both sides of the equation must
vanish. Since each term in the integrand on the left hand side of (9) is nonpo-
sitive, we conclude in particular that

(10) ’.Q(w,V)dxzo

By the positive definiteness of Q, (10) holds if and only if @ = o in R, which
implies that % = Ve = 0 in R. This contradicts the fact that « is a nontrivial
vector function; hence the conclusion of the theorem.

A variational type theorem corresponding to Theorem 1 is given below.

THEOREM 2. Let V be a prepared matrix satisfying (5). If there exists a
%om‘mwal Sunction u € C2(R) N C*R) vanishing on Ty such that

‘[(DZ-M)TAU (x,V)D;u +22%" B, (x,V)D, u
4+ u" (C(x,V) + G (x,V) ] dx

—|—’uTS(x)udc<0
T,

then NV is singular in R.
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The proof is similar to that of Theorem 1, making use of the identity (8)
with the coefficients «,;, 4;,, and ¢ all set equal to zero.

7 Y

3. SELFADJOINT CASE

In the case that ;= B,=o0 (f=1,--+,%) so that the operators K
and L become
K*u = —D,[a, (x,2) Dju] +c(x,u)u
and
L*V=—D,[A,; (x,V)D;V] +C(x, V)V

respectively, we choose G = 0 in (4). Then we have the following generali-
zation of a result of [3] and [7].

THEOREM 3. Let V be a prepared matrix satisfying (5) with L replaced
by L*. If there exists a nontrivial vector function u satisfying (6), with K
replaced by K*, such that

| @i [ ) — Ay @ VI Dy

R

+u' [e(x, %) —C (x,V)] u}dx

+ [t ) —S @luds =0

T

then N is singular at some point in R.
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