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Algebra topologica. — Functiofi Algebras over Valued Fields and 
Measures. N ota I I I  di E d w a r d  B e c k e n s t e i n , G e o r g e  B a c h m a n  e 
L a w r e n c e  N a r i c i , presentata (#) dal Corrisp. G. Z a p p a .

R iassunto. — Si studiano gli anelli di funzioni continue C (T , F) definite su uno spazio 
topologico di H ausdorff O-dim ensionale a valori in un campo completo F non archimedeo 
di rango uno, a valutazione non banale.

S e c t io n  z e r o . I n t r o d u c t io n

In  this paper we consider rings of continuous functions C (T , F) taking 
a O-dim ensional H ausdorff topological space T  into a complete nonarchi- 
m edean rank  one nontriv ially  valued field F. We analyse these structures 
in the spirit of [5] utilizing the notion of 0-1 measures and answer a num ber 
of questions raised in [1].

Principal am ong our results (Theorem 1) is th a t if F  is a complete discre
tely valued field whose residue class field has nonm easurable cardinal, then 
a m axim al ideal M of C ( T , F) is the kernel of a hom om orphism  of C ( T , F) 
into F if and only if the collection Z (M) =  {Z“ 1 (O) | / e  M } is closed with 
respect to the form ation of denum erable intersections. This is an analog of 
a result of Hew itt [3, page 75] in which the underlying field F is the real 
num ber R. Of interest is the fact th a t properties of R which are useful 
in proofs of this result (e.g. R is an ordered field, ]/— 1 € R , R is locally 
compact) are not properties of the fields considered here. T he broad category 
of discretely valued fields whose residue class fields have nonm easurable 
cardinal includes the local fields. W e show tha t the statem ent of Theorem  1 
is true for all complete and discretely valued fields if and only if all cardinals 
are nonm easurable. Thus we obtain a functional-analytic equivalent to the 
long standing conjecture th a t all cardinals are nonm easurable.

T hroughout the paper T  will denote a o-dim ensional H ausdorff topo
logical space, § the base for the topology consisting of all closed and open 
sets, and F a complete nonarchim edean rank  one nontrivially  valued field. 
The algebra of all continuous functions taking T  into F will be denoted by 
C ( T , F), the algebra of bounded continuous functions tak ing  T  into F by 
C*(T, F). The F—valued characteristic function of a subset E of T  is denoted 
by kE.

In this Note I I I  only sections 1 and 2 appear. Sections 3, 4 and 5 will 
appear in Note IV.

(*) Nella seduta del 16 giugno 1972.
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I. M a x i m a l  i d e a l s  a n d  z e r o  s e t s

In this section we consider the nature of zero sets z  ( / )  =  / -1 (O) for 
some /  e C ( T , F) and their relationship to the m axim al ideals of C ( T , F) 
(Proposition 4). The collection of all zero sets of T  will be shown (Propo
sition 1) to be independent of the field F  and will be referred to as 5.

D E FIN IT IO N  i. A  subset E o f T is a Cs set i f  there exists a denumerable
00

fa m ily  (fin) o f dopen (closed and open) sets such that E =  n  Sr
n~ 1

PROPOSITION i. A  subset E  ö /T  is a zero set i f  and only i f  E  is a set.
' 00 ,

Proof. If E  =  z  ( / ) ,  then E  — n  { t e T Ì  \ f ( t )  \ <  i j n} .  Conversely, if
n — 1

00

E =  n  S„ , then choosing a e F such that | a | <  i and setting /  =  ^ ] <*■” &csn, 
we find tha t ^ ( / )  =  E.

P ro p o s i t io n  2. I f  E is a C8 set mere exists f e  C * (T ,F )  such that
E = * ( / ) .

Proof. W e refer to the function /  constructed in the proof of Propo
sition I, and note th a t /  is a bounded function.

PROPOSITION 3 • D isjo in t C s sets can be separated by disjo int clopen sets.

P roof. By Proposition 1 we m ay take F to be a field such th a t 
y ~  I € F  Suppose z  (f ) m ( g ) =  0  for some f , g e  C (T , F). Then let 

and we see th a t z ( f ) C { t e T  I \ h ( t ) \  < 1 }  while 
z  (g) C {t  e T  I \ h( f ) \  A  i} .

D E FIN IT IO N  2. A  z-filter % is a collection o f nonempty zero sets stable 
under fin ite  intersections such that i f  E e % and  E C  K e  ^ then K 6 S.

As an intersection of two zero (C8) sets is a zero (Cd) set, it can readily  
be shown th a t every ^-filter can be extended to a  m axim al ^-filter (^-ultra- 
filter). W e wish to show now th a t for any field F, there is a i —i correspondence 
between the ^-ultrafilters and the m axim al ideals of C (T , F) where a. ̂ -u ltra- 
filter S  ip shown to be the collection of zero sets of the functions in some 
m ax im al'id ea l M C C ( T , F), and this establishes the correspondence. To 
dem onstrate this we first prove three prelim inary Lemmas.

Lemma i. L et I be an ideal in  C (T , F), and  S a clopen subset o f T . I f  
S == z  ( / )  fo r  some f  e I, then kCs € I.

Proof. Consider the function g( f )  = \ °>
I f ( t y \

t e S  
t e C  S .

Clearly g f  — kCs e I.
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L e m m a  2. I f  Y is a proper ideal in  C (T , F ) and z  ( / )  , z (g) e Z (I) =

=  {* ( / )  I /  e 1} » then * ( / )  n  z  (g) 4 =0  •

Proof. If z  ( / )  O -sr (^) =  0  , then by Proposition 3 there exists a clopen 
set S such th a t z  ( / )  C S while z ( g ) C C S .  Since I is an ideal it follows 
tha t S and CS both belong to Z (I) and therefore by Lem m a 1, ks and hcs 
both belong to I. But then I is not a proper ideal.

LEMMA 3. I f  M is a m axim al ideal and z  ( / )  , z (g) e Z (M), then

Proof. F irst we note th a t if z {%) =  z (Ji) for some h € M,* then x  e M. 
This follows as a consequence of Lem m a 2, for clearly the ideal generated 
by M U { i }  is a proper ideal.

We m ay assume th a t f , g £  M. There exists a pair of sequences of clopen
00 00

sets (W-)  and (Sz) such th a t z  ( / )  =  n  W z- and z(g)== O S t-. W e choose a e F
z=l i—I

00

such th a t [ oc ] <  1 and consider the continuous functions f f — 2  ^cw-
i — l

00

and g ' =  k2*+1 ^csr  C learly / ' ,  /  e M  and z  ( / '  +  g ') =  z  ( / )  D z  ( g ) .
i = 1

PROPOSITION 4 . There exists a 1-1 correspondence between m axim al 
ideals o f C (T , F)' and z-ultrafilters where fo r  each m axim al ideal M the 
m apping

M ^ { z ( f ) \ f e M }

establishes the correspondence.

Proof. Based on Lem m a 3 and the fact th a t a finite intersection of zero 
(Cs) sets is a zero (C8) set, we m ay use a standard  argum ent for the proof 
as can be found in [2].

2. Z e r o - o n e  M e a s u r e s  o n  S a n d  t h e i r  E x t e n s i o n s

In  this section we explore the relationships between certain types of 
p—I m easures on S and m axim al ideals of C ( T ,  F). W e find th a t there is 
a i-L  correspondence between m axim al ideals M of C (T , F) and these special 
types of 0-1 measures.

D EFIN IT IO N  3. A  monotone 0-1 measure on S is a map  [x F such
that fo r  all S , W  e §

(1) n ( S ) < U o , i } .

(2) IJ  s n  W  =  0 ,  then p (S U W) =  {i (S) +  j* (W ).

(3) I f  S C W  and  ji (W) =  o, then jx, (S) =  o .

(4 ) e U T ) =  I-
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W e note th a t if char F  =j= 2 then (3) follows from (1) and (2). In  this 
case it hard ly  m atters to w hat field the values o and 1 belong, as one cannot 
distinguish between the properties of a 0-1 .measure tak ing  values in one such 
field or another. In  adding property  (3) to the definition of our m easure we 
ensure th a t p will be indistinguishable from a m easure whose values are taken 
in a  field of characteristic 4= 2. As a result of this, it will not be necessary 
to restrict the characteristic of the field F  in any  of the results to follow.

PROPOSITION 5 - There is a 1—1 correspondence between the monotone 
0 -1  measures on S and the m axim al ideals o f C (T, F) where the m apping

M -> [A

w ith  p (S) =  1 i f  and  only i f  S e Z  (M) establishes the correspondence.

Proof. Given a m axim al ideal M let us define p with p (S) =  1 if and 
only if S e Z (M). As a result of the properties of the ^-ultrafilter Z (M), 
it is clear th a t p is a m onotone o —1 m easure on S.

Conversely, if p is a m onotone o - i  measure on §, let us consider the 
ideal

I =  [{ka, J S e S , p (S) =  I }].

Since p is monotone (i.e., property  (3) applies), then if p (S ■) =  1 for

i =  I n, it follows th a t p | n  =  1 and I is a proper ideal. E x tend

ing I to a  m axim al ideal M, it can be shown th a t p (S) =  1 if and only if 
S e Z  (M). T he 1—1 correspondence is now clear.

U nder the correspondence of Proposition 5 we refer to the m axim al 
ideal generated by p as M 14.

D e f in it io n  4. A  monotone 0-1  measure p on § is said to be G-smooth i f
OO

given a denumerable descending sequence SÄ of do  pen sets such that n  S n — 0 ,
fl = J

then {X (S„) -> o.
O f course in the above definition we see tha t (j, (S„) m ust ultim ately 

become equal to o.

PROPOSITION 6. I f  is the kernel o f a homomorphism o f C (T , F) 
into F  then [i is a—smooth.

Proof. Suppose th a t Mf. is the kernel of a hom om orphism  h . Let S be a
OO

clopen set such th a t S =  U S z- and S?- n  Sy =  0  for all i f .  To show th a t [l is
i = 1

OO

(7-smooth it is necessary and  sufficient to prove th a t p (S) =  p (S,-). W e
Ì' — 1

m ay consider; two cases: p ($,.) =  o for all i, and p (S-) =  i for some i. 
Assum ing first th a t p (S,) =  o for all i, take a e F  such th a t o <  I a I < T

OO ' ‘

and consider /  =  2  ^  +  hcs • Since z  ( /  —  h ( / )  kT) =  W  e Z (M !J) and
i = l

61. — RENDICONTI 1972, Voi. LII, fase. 6.
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W  =  CS or W  — S,-o for some integer i0, it follows from the fact tha t jx (W) =  1 
and pi. (S,-o) — o th a t W  =  CS and therefore that fx (S) =  0.

T he case where fx (S?) =  1 for some i is trivial.
W e now show th a t any  m onotone m easure (x can be extended to the 

algebra <5 of subsets of T  generated by 3.

DEFINITION 4. Let (x be a monòtone 0-1 measure on 8 and

I f  E G a (fx) and  E D z  ( / )  f o r  some f  G M**, we define fx (E) =  1. Other
wise (I (E) — o.

It is clear th a t a ffi)  is an algebra of sets containing 5 and tha t i  is a 
m onotone 0-1 m easure on a (jx).

PROPOSITION 7. There is a 1—1 correspondence between m axim al ideals 
M lx o f C ( T ,  F) and monotone o —1 measures (x on § where the relationship

establishes the correspondence.

Proof. W e refer to the properties of Z (IVL) (Proposition 4) and the 
properties of the extension fi of [x for the proof of this result.

Lemma 4. x̂ is g—smooth on 8 i f  and only i f  the extension ß o f y. is 
g—smooth on a (fi).

Proof. L et us suppose th a t p  is a-sm ooth on 8 and th a t E / g  a (fi) w ith 
E t-^ 0 .  W e wish to show th a t it is not possible to have fx(Ez-) — 1 for 
all i. If  this were so then E - D z  (/,.) where ß f i ( f f i )  =  1 for each i. As each 
z  ( //)  (is a C8 set, we can then construct a sequence of clopen sets St- such tha t

0 0  0 0  0 0

(x (S,-) =  I for each i while n  S,- =  D z  (/,-) =  D E,. =  0 .  But this contra
i l  i i  i t

diets the assum ption th a t fx is cr-smooth on 8.

PROPOSITION 8. [X is g—smooth on 8 i f  and only i f  is closed under
the form ation  o f denumerable intersections.

Proof. W e appeal to the fact th a t a denum erable intersection of zero (Cs) 
sets is a zero (Cs) set and the result of Lem m a 4 for the proof.

W e wish now to consider the extensions of the a-sm ooth  m onotone 0-1  
m easures. W e wish to show th a t these m easures-can be extended to the 
a—algebra cB generated by  the zero sets. H enceforth we refer to eB as the 
B aire I sets.

P r o p o s i t i o n  9 . The fo llow ing  statements are equivalent : (a )  fx is 
G-smooth on 8 ; (b) a (fi) is a g—algebra and  fx is-'g—smooth ' on a ( f i .

some f  G ) 
some / g M ^ ì

[x - »  =  { /  G- C  ( T , F )  I jx (z  ( / ) )  =  ' I }
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Proof. Based on the results of Lem m a 4 and Proposition 8 we need only- 
show th a t if [x is a-sm ooth  on then  a ((x) is a  o-algebra. However, we 
observe th a t if E- e a ,(jx) and CE- D ^ (/,.) where ^ (/•)  e Z (M^) fo r each i, 
it follows from Proposition 8 th a t

00 .0 0
n C E p n  z (f i ) = z (/)
i—l Z = 1

00

for some /  e and therefore U E z- G a (jx). T he other case (E 2- D z  QQ

where f  \ e for some Ï) clearly leads to U E a (jx) and therefore a (jx)
is a o-algebra.

T he measures (x have the property  that: jx(E) =  “ sup ” {[i(z ( / ) )  | z { f )  C E} 
for any  set on which (x is defined. Because of this, these measures will be 
referred to as regular measures.
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